1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
|
//===- LoopEmitter.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LoopEmitter.h"
#include "CodegenUtils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
// File local shorthand macros
//===----------------------------------------------------------------------===//
#define CMPI(p, l, r) \
(builder.create<arith::CmpIOp>(loc, arith::CmpIPredicate::p, (l), (r)) \
.getResult())
#define C_IDX(v) (constantIndex(builder, loc, (v)))
#define YIELD(vs) (builder.create<scf::YieldOp>(loc, (vs)))
#define ADDI(lhs, rhs) (builder.create<arith::AddIOp>(loc, (lhs), (rhs)))
#define ANDI(lhs, rhs) (builder.create<arith::AndIOp>(loc, (lhs), (rhs)))
#define SUBI(lhs, rhs) (builder.create<arith::SubIOp>(loc, (lhs), (rhs)))
#define MULI(lhs, rhs) (builder.create<arith::MulIOp>(loc, (lhs), (rhs)))
#define REMUI(lhs, rhs) (builder.create<arith::RemUIOp>(loc, (lhs), (rhs)))
#define DIVUI(lhs, rhs) (builder.create<arith::DivUIOp>(loc, (lhs), (rhs)))
#define SELECT(c, l, r) (builder.create<arith::SelectOp>(loc, (c), (l), (r)))
//===----------------------------------------------------------------------===//
// Debugging utils
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
LLVM_ATTRIBUTE_UNUSED static void dumpIndexMemRef(OpBuilder &builder,
Location loc, Value memref) {
memref = builder.create<memref::CastOp>(
loc, UnrankedMemRefType::get(builder.getIndexType(), 0), memref);
createFuncCall(builder, loc, "printMemrefInd", TypeRange{},
ValueRange{memref}, EmitCInterface::On);
}
#endif
//===----------------------------------------------------------------------===//
// File local helper functions.
//===----------------------------------------------------------------------===//
// For index reduction loops, since the tensor are sliced into non-continuous
// fragments, we need a triple [pLo, pHi, pPtr], in which the pair (pLo, pHi)
// specifies the range of the fragment, and pPtr specifies the index of the
// corresponding fragment in the child level (i.e., a pointer to the sliced
// position array).
static Value genSliceOffset(OpBuilder &builder, Location loc, Value tensor,
Level lvl) {
auto enc = getSparseTensorEncoding(tensor.getType());
return createOrFoldSliceOffsetOp(builder, loc, tensor, toDim(enc, lvl));
}
static Value genSliceStride(OpBuilder &builder, Location loc, Value tensor,
Level lvl) {
auto enc = getSparseTensorEncoding(tensor.getType());
return createOrFoldSliceStrideOp(builder, loc, tensor, toDim(enc, lvl));
}
static bool isIntOrFPZero(Attribute attr) {
if (auto f = llvm::dyn_cast<FloatAttr>(attr); f && f.getValue().isZero())
return true;
if (auto i = llvm::dyn_cast<IntegerAttr>(attr); i && i.getValue().isZero())
return true;
return false;
}
static Value unFoldOpIntResult(OpBuilder &builder, Location loc,
OpFoldResult ofr) {
if (std::optional<int64_t> i = getConstantIntValue(ofr); i.has_value())
return constantIndex(builder, loc, *i);
return ofr.get<Value>();
}
static Value tryFoldTensors(Value t) {
// TODO: this should be done through a folding pass after switching to
// `sparse_tensor.iterate`-based sparsification.
auto stt = tryGetSparseTensorType(t);
auto padOp = t.getDefiningOp<tensor::PadOp>();
if (padOp && stt.has_value() && stt->hasEncoding() &&
padOp.getSourceType().getEncoding() == stt->getEncoding() &&
stt->getEncoding().isIdentity()) {
// Try fusing padOp with zeros.
Attribute padCst;
if (matchPattern(padOp.getBody()->getTerminator(),
m_Op<tensor::YieldOp>(m_Constant(&padCst))) &&
isIntOrFPZero(padCst)) {
return padOp.getSource();
}
}
return t;
}
//===----------------------------------------------------------------------===//
// Sparse tensor loop emitter class implementations
//===----------------------------------------------------------------------===//
LoopEmitter::LoopEmitter(ValueRange tensors, StringAttr loopTag, bool hasOutput,
bool isSparseOut, unsigned numLoops,
DependentLvlGetter dimGetter,
SparseEmitStrategy emitStrategy) {
initialize(tensors, loopTag, hasOutput, isSparseOut, numLoops, dimGetter);
}
void LoopEmitter::initialize(ValueRange ts, StringAttr loopTag, bool hasOutput,
bool isSparseOut, unsigned numLoops,
DependentLvlGetter dimGetter,
SparseEmitStrategy emitStrategy) {
// First initialize the top-level type of the fields.
this->loopTag = loopTag;
this->hasOutput = hasOutput;
this->isSparseOut = isSparseOut;
this->emitStrategy = emitStrategy;
const unsigned numManifestTensors = ts.size();
const unsigned synTensorId = numManifestTensors;
const unsigned numTensors = numManifestTensors + 1;
// tensors array (len == numManifestTensor).
this->tensors.assign(ts.begin(), ts.end());
// Arrays with len == numTensor.
this->valBuffer.assign(numTensors, nullptr);
this->lvls.resize(numTensors);
this->iters.resize(numTensors);
this->spIterVals.resize(numTensors);
// These zeros will be overwritten below, but we need to initialize
// them to something since we'll need random-access assignment.
this->loopStack.reserve(numLoops);
this->loopSeqStack.reserve(numLoops);
// Index-reduction related fields.
this->dependentLvlMap.assign(
numTensors, std::vector<std::vector<std::pair<TensorLevel, unsigned>>>());
this->sliceMeta.assign(
numTensors, std::vector<std::vector<std::pair<Value, unsigned>>>());
this->levelReducedDep.assign(numTensors, std::vector<unsigned>());
// Initialize nested types of `TensorId`-indexed fields.
for (TensorId tid = 0; tid < numTensors; tid++) {
Level lvlRank;
if (tid == synTensorId) {
// Synthetic tensor (conceptually) is an all-dense tensor with rank equal
// to the total number of loops (each level can potentially be mapped to
// one of the loop being generated).
lvlRank = numLoops;
} else {
const Value t = tensors[tid];
// a scalar or 0-dimension tensors
if (isZeroRankedTensorOrScalar(t.getType()))
continue;
auto rtp = getRankedTensorType(t);
const SparseTensorType stt(rtp);
lvlRank = stt.getLvlRank();
}
lvls[tid].resize(lvlRank);
iters[tid].resize(lvlRank);
spIterVals[tid].resize(lvlRank);
loopHighs.assign(numLoops, nullptr);
// Slice-driven loops related initialization.
levelReducedDep[tid].assign(lvlRank, 0);
dependentLvlMap[tid].assign(
lvlRank, std::vector<std::pair<TensorLevel, unsigned>>());
sliceMeta[tid].assign(lvlRank, std::vector<std::pair<Value, unsigned>>());
if (dimGetter && !isSynTensor(tid)) {
for (Level l = 0; l < lvlRank; l++) {
std::vector<std::pair<LoopId, unsigned>> deps = dimGetter(tid, l);
// Sort the loop by order.
llvm::sort(deps, llvm::less_first());
dependentLvlMap[tid][l] = std::move(deps);
unsigned depends = dependentLvlMap[tid][l].size();
if (depends == 0)
continue;
sliceMeta[tid][l].reserve(depends);
}
}
}
}
std::unique_ptr<SparseIterator>
LoopEmitter::makeLevelIterator(OpBuilder &builder, Location loc, TensorId t,
Level l) {
Value tensor = tensors[t];
auto stt = getSparseTensorType(tensor);
auto it = makeSimpleIterator(*lvls[t][l], emitStrategy);
Value folded = tryFoldTensors(tensor);
if (folded != tensor) {
auto padOp = tensor.getDefiningOp<tensor::PadOp>();
assert(padOp);
if (padOp.getPaddedDims().test(l)) {
Value low = unFoldOpIntResult(builder, loc, padOp.getMixedLowPad()[l]);
Value high = unFoldOpIntResult(builder, loc, padOp.getMixedHighPad()[l]);
auto padIt = makePaddedIterator(std::move(it), low, high, emitStrategy);
return padIt;
}
}
if (stt.hasEncoding() && stt.getEncoding().isSlice()) {
Value offset = genSliceOffset(builder, loc, tensor, l);
Value stride = genSliceStride(builder, loc, tensor, l);
auto slicedIt = makeSlicedLevelIterator(
std::move(it), offset, stride, lvls[t][l]->getSize(), emitStrategy);
return slicedIt;
}
return it;
}
void LoopEmitter::initializeLoopEmit(
OpBuilder &builder, Location loc, LoopEmitter::OutputUpdater updater,
LoopEmitter::SynTensorBoundSetter synSetter) {
// For every manifest tensor, set up the values buffer.
for (TensorId t = 0, numTensors = getNumManifestTensors(); t < numTensors;
t++) {
// TODO: this should be done through a folding pass after switching to
// `sparse_tensor.iterate`-based sparsification.
const Value tensor = tryFoldTensors(tensors[t]);
const auto rtp = dyn_cast<RankedTensorType>(tensor.getType());
// Skips only scalar, zero ranked tensor still need to be bufferized and
// (probably) filled with zeros by users.
if (!rtp)
continue;
auto stt = getSparseTensorType(tensor);
const auto shape = rtp.getShape();
// Perform the required bufferization. Dense inputs materialize from the
// input tensors. Sparse inputs use sparse primitives to obtain the values.
// Delegates extra output initialization to clients.
bool isOutput = isOutputTensor(t);
Type elementType = stt.getElementType();
if (!stt.hasEncoding()) {
// Non-annotated dense tensors.
BaseMemRefType denseTp = MemRefType::get(shape, elementType);
// TODO: if we unconditionally use fully dynamic layout here, it breaks
// some vectorization passes which requires static stride = 1.
// Is it possible to call vectorization pass after bufferization?
if (llvm::isa_and_nonnull<tensor::ExtractSliceOp>(tensor.getDefiningOp()))
denseTp = bufferization::getMemRefTypeWithFullyDynamicLayout(rtp);
Value denseVal =
builder.create<bufferization::ToMemrefOp>(loc, denseTp, tensor);
// Dense outputs need special handling.
if (isOutput && updater)
denseVal = updater(builder, loc, denseVal, tensor);
valBuffer[t] = denseVal;
} else {
// Annotated sparse tensors.
// We also need the value buffer for all-dense annotated "sparse"
// tensors.
valBuffer[t] = builder.create<ToValuesOp>(loc, tensor);
}
}
// The sparse iterator values will only be available after the loop is
// constructed.
if (emitStrategy == SparseEmitStrategy::kSparseIterator)
return;
// For every synthetic tensor, set the high bound by calling the callback.
if (synSetter) {
TensorId synId = getSynTensorId();
for (unsigned i = 0, e = loopHighs.size(); i < e; i++) {
Value sz = loopHighs[i] = synSetter(builder, loc, i);
auto [stl, it] = makeSynLevelAndIterator(sz, synId, i, emitStrategy);
lvls[synId][i] = std::move(stl);
iters[synId][i].emplace_back(std::move(it));
}
}
// For every manifest tensor:
// * For every level:
// * get the positions and coordinates buffers
// * get/compute the level-size, which is also used as the upper-bound
// on positions.
for (TensorId t = 0, numTensors = getNumManifestTensors(); t < numTensors;
t++) {
// TODO: this should be done through a folding pass after switching to
// `sparse_tensor.iterate`-based sparsification.
const Value tensor = tryFoldTensors(tensors[t]);
const auto rtp = dyn_cast<RankedTensorType>(tensor.getType());
if (!rtp)
// Skips only scalar, zero ranked tensor still need to be bufferized and
// (probably) filled with zeros by users.
continue;
auto stt = getSparseTensorType(tensor);
const Level lvlRank = stt.getLvlRank();
// Scan all levels of current tensor.
for (Level l = 0; l < lvlRank; l++) {
// Find upper bound in current dimension.
lvls[t][l] = makeSparseTensorLevel(builder, loc, tensor, t, l);
if (!dependentLvlMap[t][l].empty())
continue;
auto it = makeLevelIterator(builder, loc, t, l);
iters[t][l].emplace_back(std::move(it));
}
// NOTE: we can also prepare for 0 lvl here in advance, this will hoist
// some loop preparation from tensor iteration, but will also (undesirably)
// hoist the code ouside if-conditions.
}
// TODO: avoid treating subsection iterator as a special case.
initSubSectIterator(builder, loc);
}
void LoopEmitter::initSubSectIterator(OpBuilder &builder, Location loc) {
Value c0 = C_IDX(0);
for (TensorId t = 0, e = tensors.size(); t < e; t++) {
auto rtp = dyn_cast<RankedTensorType>(tensors[t].getType());
if (!rtp)
continue;
Level lvlRank = SparseTensorType(rtp).getLvlRank();
// Compute the dependency reduction order.
auto remDepStack = dependentLvlMap;
std::vector<std::tuple<LoopId, TensorId, Level>> depRedOrder;
for (Level lvl = 0; lvl < lvlRank; lvl++) {
// Reverse queue into a stack.
std::reverse(remDepStack[t][lvl].begin(), remDepStack[t][lvl].end());
for (auto [loop, coeff] : dependentLvlMap[t][lvl])
depRedOrder.emplace_back(std::make_tuple(loop, t, lvl));
}
if (depRedOrder.empty())
continue;
std::sort(depRedOrder.begin(), depRedOrder.end(),
[](auto &l, auto &r) { return std::get<0>(l) < std::get<0>(r); });
SmallVector<SparseIterator *> lastIter(tensors.size(), nullptr);
for (auto [loop, t, lvl] : depRedOrder) {
std::pair<LoopId, unsigned> curDep = remDepStack[t][lvl].back();
assert(curDep.first == loop);
remDepStack[t][lvl].pop_back();
auto lvlIt = makeLevelIterator(builder, loc, t, lvl);
const SparseIterator *parent = lastIter[t];
if (!parent && lvl > 0) {
if (dependentLvlMap[t][lvl - 1].empty()) {
parent = iters[t][lvl - 1].back().get();
}
}
std::unique_ptr<SparseIterator> it;
if (!remDepStack[t][lvl].empty()) {
// Compute the subsection size.
Value size = c0;
for (auto [loop, stride] : remDepStack[t][lvl]) {
Value idxMax = SUBI(loopHighs[loop], C_IDX(1));
size = ADDI(size, ADDI(MULI(idxMax, C_IDX(stride)), C_IDX(1)));
}
it = makeNonEmptySubSectIterator(builder, loc, parent, loopHighs[loop],
std::move(lvlIt), size, curDep.second,
emitStrategy);
} else {
const SparseIterator &subSectIter = *iters[t][lvl].back();
it = makeTraverseSubSectIterator(builder, loc, subSectIter, *parent,
std::move(lvlIt), loopHighs[loop],
curDep.second, emitStrategy);
}
lastIter[t] = it.get();
iters[t][lvl].emplace_back(std::move(it));
}
}
}
void LoopEmitter::categorizeIterators(
ArrayRef<TensorLevel> tidLvls, SmallVectorImpl<SparseIterator *> &raIters,
SmallVectorImpl<SparseIterator *> &spIters) {
// Finds out the tensor level that we should use to generate loops. Amongs all
// the tensor levels, there is at most one sparse tensor level.
for (auto [t, l] : unpackTensorLevelRange(tidLvls)) {
SparseIterator *it = &getCurIterator(t, l);
if (it->randomAccessible())
raIters.push_back(it);
else
spIters.push_back(it);
}
std::stable_sort(spIters.begin(), spIters.end(), [](auto lhs, auto rhs) {
// AffineUnRed > Affine > Slice > Trivial
return static_cast<uint8_t>(lhs->kind) > static_cast<uint8_t>(rhs->kind);
});
}
void LoopEmitter::enterNewLoopSeq(OpBuilder &builder, Location loc,
ArrayRef<TensorLevel> tidLvls) {
// TODO: sort
assert(loopSeqStack.size() == loopStack.size());
if (emitStrategy != SparseEmitStrategy::kSparseIterator) {
// Prepares for all the tensors used in the current loop sequence.
for (auto [tid, lvl] : unpackTensorLevelRange(tidLvls)) {
levelReducedDep[tid][lvl]++;
prepareLoopOverTensorAtLvl(builder, loc, tid, lvl);
}
}
// Universal Index starts from 0.
loopSeqStack.emplace_back(C_IDX(0), tidLvls.vec());
}
void LoopEmitter::exitCurrentLoopSeq(OpBuilder &builder, Location loc) {
assert(loopSeqStack.size() == loopStack.size() + 1);
// Depending on whether the slice is resolved or not at current loop sequence,
// end them in different ways.
for (auto [tid, lvl] : unpackTensorLevelRange(loopSeqStack.back().second))
levelReducedDep[tid][lvl]--;
loopSeqStack.pop_back();
}
Value LoopEmitter::genAffine(OpBuilder &builder, Location loc, AffineExpr a) {
switch (a.getKind()) {
case AffineExprKind::DimId: {
// FIXME: since the one callsite in Sparsification passes in a
// level-expression, the `getPosition` must in fact be a `Dimension`.
// However, elsewhere we have been lead to expect that `loopIdToOrd`
// should be indexed by `LoopId`...
const auto loopId = cast<AffineDimExpr>(a).getPosition();
return loopStack[loopId].iv;
}
case AffineExprKind::Add: {
auto binOp = cast<AffineBinaryOpExpr>(a);
return ADDI(genAffine(builder, loc, binOp.getLHS()),
genAffine(builder, loc, binOp.getRHS()));
}
case AffineExprKind::Mul: {
auto binOp = cast<AffineBinaryOpExpr>(a);
return MULI(genAffine(builder, loc, binOp.getLHS()),
genAffine(builder, loc, binOp.getRHS()));
}
case AffineExprKind::Constant: {
int64_t c = cast<AffineConstantExpr>(a).getValue();
return C_IDX(c);
}
default:
llvm_unreachable("unexpected affine subscript");
}
}
std::pair<Operation *, Value> LoopEmitter::emitForLoopOverTensorAtLvl(
OpBuilder &builder, Location loc, SparseIterator &iter,
MutableArrayRef<Value> reduc, bool isParallel) {
// TODO: support dynamic slices.
// Uses the first dimension here to build the loop bound (which is also the
// biggest range).
Value step = C_IDX(1);
auto [lo, hi] = iter.genForCond(builder, loc);
Operation *loop = nullptr;
Value iv;
if (isParallel) {
scf::ParallelOp parOp =
builder.create<scf::ParallelOp>(loc, lo, hi, step, reduc);
builder.setInsertionPointToStart(parOp.getBody());
assert(parOp.getNumReductions() == reduc.size());
iv = parOp.getInductionVars()[0];
// In-place update on the reduction variable vector.
// Note that the init vals is not the actual reduction variables but instead
// used as a "special handle" to (temporarily) represent them. The
// expression on init vals will be moved into scf.reduce and replaced with
// the block arguments when exiting the loop (see exitForLoop). This is
// needed as we can not build the actual reduction block and get the actual
// reduction variable before users fill parallel loop body.
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = parOp.getInitVals()[i];
loop = parOp;
} else {
scf::ForOp forOp = builder.create<scf::ForOp>(loc, lo, hi, step, reduc);
builder.setInsertionPointToStart(forOp.getBody());
iv = forOp.getInductionVar();
// In-place update on the reduction variable vector.
assert(forOp.getNumRegionIterArgs() == reduc.size());
for (int i = 0, e = reduc.size(); i < e; i++)
reduc[i] = forOp.getRegionIterArg(i);
loop = forOp;
}
assert(loop && iv);
Value crd = iv;
if (!iter.randomAccessible()) {
iter.linkNewScope(iv);
crd = iter.deref(builder, loc);
} else {
iter.locate(builder, loc, iv);
}
return {loop, crd};
}
std::pair<Operation *, Value> LoopEmitter::emitWhileLoopOverTensorsAtLvls(
OpBuilder &builder, Location loc, ArrayRef<SparseIterator *> spIters,
MutableArrayRef<Value> reduc, bool needsUniv) {
// NOTE: the slice driven tensor-related reduction variable must
// appear before normal tensors.
// The set of induction variables for the while loop.
SmallVector<Value> ivs;
// Construct the while-loop with a parameter for each coordinate.
for (SparseIterator *it : spIters) {
ValueRange itVals = it->getCursor();
ivs.append(itVals.begin(), itVals.end());
}
// The position where user-supplied reduction variable starts.
ivs.append(reduc.begin(), reduc.end());
// Update universal index.
if (needsUniv)
ivs.push_back(loopSeqStack.back().first);
// Ensures all operands are valid.
assert(llvm::all_of(ivs, [](Value v) { return v != nullptr; }));
TypeRange types = ValueRange(ivs).getTypes();
auto whileOp = builder.create<scf::WhileOp>(loc, types, ivs);
SmallVector<Location> locs(types.size(), loc);
Block *before = builder.createBlock(&whileOp.getBefore(), {}, types, locs);
Block *after = builder.createBlock(&whileOp.getAfter(), {}, types, locs);
// Generates loop conditions.
builder.setInsertionPointToStart(before);
ValueRange bArgs = before->getArguments();
Value whileCond = nullptr; // bool values for loop condition.
for (SparseIterator *it : spIters) {
auto [cond, remArgs] = it->genWhileCond(builder, loc, bArgs);
whileCond = !whileCond ? cond : ANDI(whileCond, cond);
bArgs = remArgs;
}
// The remaining block arguments are user-provided reduction values and an
// optional universal index. Make sure their sizes match.
assert(bArgs.size() == reduc.size() + needsUniv);
builder.create<scf::ConditionOp>(loc, whileCond, before->getArguments());
// Generates loop body.
builder.setInsertionPointToStart(after);
ValueRange aArgs = after->getArguments();
// Since some LoopCondKind might need extra checks to filter out invalid
// iterations, we maintains another array to hold the iteration arguments to
// yield if the checks fails.
SmallVector<Value> nextArgs(aArgs.begin(), aArgs.end());
for (SparseIterator *it : spIters) {
aArgs = it->linkNewScope(aArgs);
// Dereference the iterator to cache the coordinate.
it->deref(builder, loc);
}
// In-place update on reduction variable.
assert(aArgs.size() == reduc.size() + needsUniv);
for (unsigned i = 0, e = reduc.size(); i < e; i++)
reduc[i] = aArgs[i];
Value min;
// Finds the minimum coordinate
if (!needsUniv) {
for (SparseIterator *it : spIters) {
if (min) {
Value cmp = CMPI(ult, it->getCrd(), min);
min = SELECT(cmp, it->getCrd(), min);
} else {
min = it->getCrd();
}
}
} else {
// Otherwise, universal index is the minimal pos.
min = whileOp.getAfterArguments().back();
}
return {whileOp, min};
}
bool LoopEmitter::shouldIteratedByForLoop(ArrayRef<SparseIterator *> spIters) {
// If we need to co-iterate over two sparse tensors, we need a while loop
if (spIters.size() > 1)
return false;
if (spIters.size() == 1)
return spIters.front()->iteratableByFor();
return true;
}
Operation *LoopEmitter::enterCoIterationOverTensorsAtLvls(
OpBuilder &builder, Location loc, ArrayRef<TensorLevel> tidLvls,
MutableArrayRef<Value> reduc, bool tryParallel, bool needsUniv) {
// TODO: handle coiteration with sparse iterator.
if (emitStrategy == SparseEmitStrategy::kSparseIterator) {
assert(tidLvls.size() == 1);
auto [tid, lvl] = unpackTensorLevel(tidLvls.front());
Value t = tensors[tid];
// Extract and iterate over the iteration space.
ExtractIterSpaceOp extractSpaceOp =
lvl == 0 ? builder.create<ExtractIterSpaceOp>(loc, t)
: builder.create<ExtractIterSpaceOp>(
loc, t, spIterVals[tid][lvl - 1], lvl);
IterateOp iterOp = builder.create<IterateOp>(
loc, extractSpaceOp.getExtractedSpace(), reduc);
spIterVals[tid][lvl] = iterOp.getIterator();
// Update the reduction varaibles.
llvm::copy(iterOp.getRegionIterArgs(), reduc.begin());
// Set the insertion point to loop body.
builder.setInsertionPointToStart(iterOp.getBody());
loopStack.emplace_back(tidLvls, iterOp, builder.getInsertionBlock(),
iterOp.getIterator(), loopTag);
return iterOp;
}
// TODO: support multiple return on parallel for?
tryParallel = tryParallel && reduc.size() <= 1;
SmallVector<SparseIterator *> raIters;
SmallVector<SparseIterator *> spIters;
categorizeIterators(tidLvls, raIters, spIters);
// Only when there is at least one sparse conditions, do we really need the
// universal index.
// TODO: Maybe we should instead requires merger to pass in a valid value at
// the first place instead of adjusting it in LoopEmitter?
needsUniv = !spIters.empty() && needsUniv;
// The TensorLevel used for loop conditions.
// If there is any sparse level, we need to use the sparse condition.
// If all levels are dense, we can pick arbitrary one (dense slice-driven loop
// can be generated using a simple ForOp as well).
Operation *l = nullptr;
Value iv = nullptr;
SmallVector<TensorLevel> tls;
// Generates loops differently depending on whether we need a slice-driven
// loop or a simple level traversal loop.
if (shouldIteratedByForLoop(spIters) && !needsUniv) {
assert(spIters.size() <= 1);
SparseIterator &it = spIters.empty() ? *raIters.front() : *spIters.front();
std::tie(l, iv) =
emitForLoopOverTensorAtLvl(builder, loc, it, reduc, tryParallel);
tls.push_back(makeTensorLevel(it.tid, it.lvl));
} else {
for (auto *it : spIters) {
tls.push_back(makeTensorLevel(it->tid, it->lvl));
}
if (needsUniv)
for (auto *it : raIters)
tls.push_back(makeTensorLevel(it->tid, it->lvl));
std::tie(l, iv) =
emitWhileLoopOverTensorsAtLvls(builder, loc, spIters, reduc, needsUniv);
}
// Enter dense tensor levels.
for (SparseIterator *it : raIters)
it->locate(builder, loc, iv);
// NOTE: we can also prepare for next dim here in advance
// Pushes the loop into stack.
loopStack.emplace_back(tls, l, builder.getInsertionBlock(), iv, loopTag);
return l;
}
void LoopEmitter::locateLvlAtAffineAddress(OpBuilder &builder, Location loc,
TensorLevel tidLvl,
AffineExpr lvlExpr) {
auto [tid, lvl] = unpackTensorLevel(tidLvl);
const SparseIterator *parent =
lvl == 0 ? nullptr : iters[tid][lvl - 1].back().get();
auto &it = getCurIterator(tid, lvl);
it.genInit(builder, loc, parent);
assert(it.kind == IterKind::kTrivial && it.randomAccessible());
Value lvlCrd = genAffine(builder, loc, lvlExpr);
it.locate(builder, loc, lvlCrd);
}
void LoopEmitter::prepareLoopOverTensorAtLvl(OpBuilder &builder, Location loc,
TensorId tid, Level lvl) {
// if this is the first level, there is no parent iterator for the current
// iterator.
// If the current iterator is a subsection-based iterator, the parent iterator
// is memorized by the iterator.
bool hasParent = lvl == 0 || !dependentLvlMap[tid][lvl].empty();
const SparseIterator *parent =
hasParent ? nullptr : iters[tid][lvl - 1].back().get();
auto &it = getCurIterator(tid, lvl);
it.genInit(builder, loc, parent);
// Locates the randon accessible iterator to 0.
if (it.randomAccessible())
it.locate(builder, loc, C_IDX(0));
}
void LoopEmitter::exitForLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc) {
const LoopInfo &loopInfo = loopStack.back();
if (emitStrategy == SparseEmitStrategy::kSparseIterator) {
auto iterateOp = llvm::cast<IterateOp>(loopInfo.loop);
assert(reduc.size() == iterateOp.getNumResults());
rewriter.create<sparse_tensor::YieldOp>(loc, reduc);
// Exit the loop.
rewriter.setInsertionPointAfter(iterateOp);
// In-place update reduction variables.
llvm::copy(iterateOp.getResults(), reduc.begin());
return;
}
if (auto forOp = llvm::dyn_cast<scf::ForOp>(loopInfo.loop)) {
if (!reduc.empty()) {
assert(reduc.size() == forOp.getNumResults());
rewriter.create<scf::YieldOp>(loc, reduc);
}
// Exit the loop.
rewriter.setInsertionPointAfter(forOp);
// In-place update reduction variables.
llvm::copy(forOp.getResults(), reduc.begin());
} else {
auto parOp = llvm::cast<scf::ParallelOp>(loopInfo.loop);
if (!reduc.empty()) {
assert(reduc.size() == parOp.getInitVals().size() && reduc.size() == 1);
Operation *redExp = reduc.front().getDefiningOp();
// Reduction expression should have no use.
assert(redExp->getUses().empty());
// This must be a binary operation.
// NOTE: This is users' responsibility to ensure the operation are
// commutative.
assert(redExp->getNumOperands() == 2 && redExp->getNumResults() == 1);
Value redVal = parOp.getInitVals().front();
Value curVal;
if (redExp->getOperand(0) == redVal)
curVal = redExp->getOperand(1);
else if (redExp->getOperand(1) == redVal)
curVal = redExp->getOperand(0);
// One of the operands must be the init value (which is also the
// previous reduction value).
assert(curVal);
#ifndef NDEBUG
// The reduction expression should be the only user of the reduction val
// inside the parallel for.
unsigned numUsers = 0;
for (Operation *op : redVal.getUsers()) {
if (op->getParentOp() == parOp)
numUsers++;
}
assert(numUsers == 1);
#endif // NDEBUG
rewriter.setInsertionPointAfter(redExp);
auto redOp = rewriter.create<scf::ReduceOp>(loc, curVal);
// Attach to the reduction op.
Block *redBlock = &redOp.getReductions().front().front();
rewriter.setInsertionPointToEnd(redBlock);
Operation *newRed = rewriter.clone(*redExp);
// Replaces arguments of the reduction expression by using the block
// arguments from scf.reduce.
rewriter.modifyOpInPlace(
newRed, [&]() { newRed->setOperands(redBlock->getArguments()); });
// Erases the out-dated reduction expression.
rewriter.eraseOp(redExp);
rewriter.setInsertionPointToEnd(redBlock);
rewriter.create<scf::ReduceReturnOp>(loc, newRed->getResult(0));
}
rewriter.setInsertionPointAfter(parOp);
// In-place update reduction variables.
for (unsigned i = 0, e = parOp.getResults().size(); i < e; i++)
reduc[i] = parOp.getResult(i);
}
}
void LoopEmitter::exitWhileLoop(OpBuilder &builder, Location loc,
MutableArrayRef<Value> reduc) {
const LoopInfo &loopInfo = loopStack.back();
auto whileOp = llvm::cast<scf::WhileOp>(loopInfo.loop);
Value iv = loopInfo.iv;
Value one = C_IDX(1);
// Finalize the induction. Note that the induction could be performed
// in the individual if-branches to avoid re-evaluating the conditions.
// However, that would result in a rather elaborate forest of yield
// instructions during code generation. Moreover, performing the induction
// after the if-statements more closely resembles code generated by TACO.
SmallVector<Value> operands;
ValueRange whileRes = whileOp.getResults();
for (auto [tid, lvl] : unpackTensorLevelRange(loopInfo.tidLvls)) {
SparseIterator &it = getCurIterator(tid, lvl);
if (!it.randomAccessible()) {
// Forward the sparse iterator.
Value cmp = CMPI(eq, it.getCrd(), iv);
it.forwardIf(builder, loc, cmp);
operands.append(it.getCursor().begin(), it.getCursor().end());
// const Value newPos = whileOp->getResult(o++);
// Following loops continue iteration from the break point of the
// current while loop.
whileRes = it.linkNewScope(whileRes);
} else {
// Make sure randomly accessible (dense) iterator is set to the right
// position according to the universal index.
Value uniIdx = whileOp.getResults().back();
it.locate(builder, loc, uniIdx);
}
}
// Reduction value from users.
for (auto &i : reduc) {
operands.push_back(i);
// Update user reduction variables.
i = whileRes.front();
whileRes = whileRes.drop_front();
}
// An (optional) universal index.
if (operands.size() < whileOp.getNumResults()) {
assert(operands.size() + 1 == whileOp.getNumResults());
// The last one is the universial index.
operands.push_back(ADDI(iv, one));
// update the loop starting point of current loop sequence
loopSeqStack.back().first = whileOp->getResults().back();
}
if (!operands.empty())
YIELD(operands);
builder.setInsertionPointAfter(whileOp);
}
void LoopEmitter::exitCurrentLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc) {
// Clean up the values, it would help use to discover potential bug at a
// earlier stage (instead of silently using a wrong value).
const LoopInfo &loopInfo = loopStack.back();
// Sets the insertion point to the right position.
rewriter.setInsertionPointToEnd(loopInfo.userCodeBlock);
if (!loopInfo.userCodeBlock->empty() &&
llvm::isa<scf::YieldOp>(&loopInfo.userCodeBlock->back())) {
// scf::While/For inserts an implicit yield op when there is no loop
// iter args. In this case, we need to insert the code before the yield.
assert(loopInfo.userCodeBlock->back().getNumResults() == 0);
rewriter.setInsertionPoint(&loopInfo.userCodeBlock->back());
}
if (llvm::isa<scf::WhileOp>(loopInfo.loop)) {
exitWhileLoop(rewriter, loc, reduc);
} else {
exitForLoop(rewriter, loc, reduc);
}
assert(loopStack.size() == loopSeqStack.size());
loopStack.pop_back();
}
#undef CMPI
#undef C_IDX
#undef YIELD
#undef ADDI
#undef ANDI
#undef SUBI
#undef MULI
#undef SELECT
|