1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
//===- LoopEmitter.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_UTILS_LOOPEMITTER_H_
#define MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_UTILS_LOOPEMITTER_H_
#include <vector>
#include "SparseTensorIterator.h"
#include "mlir/Dialect/SparseTensor/IR/Enums.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/SparseTensor/Utils/Merger.h"
#include "mlir/IR/PatternMatch.h"
namespace mlir {
namespace sparse_tensor {
// A compressed <tensor id, level> pair.
using TensorLevel = unsigned;
//
// SparseTensorLoopEmiter class, manages sparse tensors and helps to
// generate loop structure to (co)-iterate sparse tensors.
//
// An example usage:
// To generate the following loops over T1<?x?> and T2<?x?>
//
// for i in TENSOR_1_0 {
// for j : TENSOR_2_0 {
// for k : TENSOR_1_1 {}
// for k : TENSOR_2_1 {}
// }
// }
//
// One can use
//
// LoopEmiter loopEmiter({T1, T1});
// loopEmiter.initializeLoopEmit();
// loopEmiter.enterLoopOverTensorAtLvl(T1, 0);
// loopEmiter.enterLoopOverTensorAtLvl(T2, 0);
// loopEmiter.enterLoopOverTensorAtLvl(T1, 1);
// loopEmiter.exitCurrentLoop();
// loopEmiter.enterLoopOverTensorAtLvl(T2, 1);
// loopEmiter.exitCurrentLoop(); // exit k
// loopEmiter.exitCurrentLoop(); // exit j
// loopEmiter.exitCurrentLoop(); // exit i
//
class LoopEmitter {
public:
/// Optional callback function to setup dense output tensors when
/// initializing the loop emitter (e.g., to fill a dense output with zeros).
using OutputUpdater = function_ref<Value(OpBuilder &builder, Location loc,
Value memref, Value tensor)>;
/// Optional callback function to set the bound for the synthetic tensor,
/// which essentially is the dense loop bound.
using SynTensorBoundSetter =
function_ref<Value(OpBuilder &builder, Location loc, Level lvl)>;
// Map from [tid, lvl] to a list of dependent [LoopId, coeffecient] for
// subscript expressions on sparse tensors.
//
// E.g., for affine index (2 * d0 + d1), it depends on loop d0 and d1 (for
// affine expression reduction) and uses 2 and 1 for coefficients on d0, d1
// respectively. If the list is empty, it means that there is no affine
// expression on the input [tid, lvl].
//
// NOTE: LoopEmitter assumes that the loop id is consistent with the loop
// order, i.e., loop `d0` will be generated before loop `d1`.
using DependentLvlGetter =
function_ref<std::vector<std::pair<LoopId, unsigned>>(TensorId, Level)>;
LoopEmitter() = default;
/// Takes an array of input tensors, which the generated loops will
/// iterate over. Each tensor is given a `TensorId` (numerically equal
/// to the position of that tensor `Value` in the array). Setting
/// `isSparseOut` indicates that the sparse output tensor is empty,
/// so the loop emitter will generate loops over it according to the
/// level-sizes.
void
initialize(ValueRange tensors, StringAttr loopTag = nullptr,
bool hasOutput = false, bool isSparseOut = false,
unsigned numLoops = 0, DependentLvlGetter getter = nullptr,
SparseEmitStrategy emitStrategy = SparseEmitStrategy::kFunctional);
explicit LoopEmitter(
ValueRange tensors, StringAttr loopTag = nullptr, bool hasOutput = false,
bool isSparseOut = false, unsigned numLoops = 0,
DependentLvlGetter getter = nullptr,
SparseEmitStrategy emitStrategy = SparseEmitStrategy::kFunctional);
/// Starts a loop emitting session by generating all the buffers needed
/// for iterating over the tensors.
void initializeLoopEmit(OpBuilder &builder, Location loc,
OutputUpdater updater = nullptr,
SynTensorBoundSetter synSetter = nullptr);
/// Generates code to compute an affine expression whose variables are
/// `LoopId`s (i.e., `a.cast<AffineDimExpr>().getPosition()` is a valid
/// `LoopId`).
Value genAffine(OpBuilder &builder, Location loc, AffineExpr a);
/// Enters a new loop sequence, the loops within the same sequence starts
/// from the break points of previous loop instead of starting over from 0.
/// e.g.,
/// {
/// // loop sequence start.
/// p0 = while(xxx)
/// ...
/// break p0
///
/// // Starts loop from p0
/// for (i = p0; i < end; i++)
/// ...
/// // loop sequence end.
/// }
void enterNewLoopSeq(OpBuilder &builder, Location loc,
ArrayRef<TensorLevel> tidLvls);
/// Exits the current loop sequence, this will reset universal index to 0.
void exitCurrentLoopSeq(OpBuilder &builder, Location loc);
/// Emits the address for a dense level based on the value evaluated by the
/// provided affine expression.
void locateLvlAtAffineAddress(OpBuilder &builder, Location loc,
TensorLevel tidLvl, AffineExpr lvlExpr);
// TODO: Get rid of `lvls` in the argument list? Track the level we
// are currently at internally. Then it would be enterNextLvlForTensor.
// Still need a way to specify the lvl for non-annotated tensors though,
// as those can be accessed out of order.
//
/// Emits a co-iteration loop over a set of tensors.
/// Emits loop over tensor_tid_lvl, it assumes that loops between
/// tensor_tid_[0, lvl - 1] have already been generated.
/// The function will also perform in-place update on the `reduc` vector to
/// return the reduction variable used inside the generated loop.
Operation *enterCoIterationOverTensorsAtLvls(
OpBuilder &builder, Location loc, ArrayRef<TensorLevel> tidLvls,
MutableArrayRef<Value> reduc = {}, bool isParallel = false,
bool needsUniv = false);
/// Generates code to exit the current loop (e.g., generates yields, forwards
/// loop induction variables, etc).
void exitCurrentLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc = {});
/// Get the range of values for all induction variables.
auto getLoopIVsRange() const {
return llvm::map_range(loopStack, [](const LoopInfo &li) { return li.iv; });
}
/// Fills the out-parameter with the loop induction variables for all
/// loops in the current loop-stack.
SmallVector<Value> getLoopIVs() const {
return llvm::to_vector(getLoopIVsRange());
}
/// Gets the current depth of the loop-stack.
LoopId getCurrentDepth() const { return llvm::range_size(getLoopIVsRange()); }
/// Gets loop induction variable for the given loop
Value getLoopIV(LoopId n) const {
if (n >= getCurrentDepth())
return Value();
auto it = getLoopIVsRange().begin();
std::advance(it, n);
return *it;
}
/// Gets the total number of manifest tensors (excluding the synthetic
/// tensor).
unsigned getNumManifestTensors() const { return tensors.size(); }
/// Gets the total number of tensors that loopEmitter is operating on.
unsigned getNumTensors() const {
// Manifest tensors with one synthetic tensor at the end.
return getNumManifestTensors() + 1;
}
/// Gets the TensorId for synthetic tensor.
TensorId getSynTensorId() const { return tensors.size(); }
/// Gets the TensorId for output tensor.
TensorId getOutTensorId() const {
assert(hasOutput);
return getNumManifestTensors() - 1;
}
/// Compresses a TensorId and Level into a TensorLevel.
TensorLevel makeTensorLevel(TensorId t, Level l) const {
return l * getNumTensors() + t;
}
/// De-compresses a TensorLevel back to a pair of TensorId and Level.
std::pair<TensorId, Level> unpackTensorLevel(TensorLevel tidLvl) const {
unsigned nt = getNumTensors();
return std::make_pair(tidLvl % nt, tidLvl / nt);
}
/// Converts a range of TensorLevel to a range of std::pair<TensorId, Level>
template <class ContainerTy>
auto unpackTensorLevelRange(ContainerTy &&c) const {
using EltTy = decltype(*c.begin());
static_assert(std::is_same_v<llvm::remove_cvref_t<EltTy>, TensorLevel>,
"Must be unpacking a TensorLevel range");
return llvm::map_range(std::forward<ContainerTy>(c), [this](EltTy tl) {
return this->unpackTensorLevel(tl);
});
}
///
/// Getters.
///
SmallVector<Value> getValPosits(TensorId tid) const {
SmallVector<Value> batchCrds = iters[tid].back().back()->getBatchCrds();
Value lastLvlPos = iters[tid].back().back()->getCurPosition().front();
batchCrds.push_back(lastLvlPos);
return batchCrds;
};
Value getCoord(TensorId tid, Level lvl) const {
return getCurIterator(tid, lvl).getCrd();
};
const std::vector<Value> &getValBuffer() const { return valBuffer; };
constexpr static llvm::StringLiteral getLoopEmitterLoopAttrName() {
return llvm::StringLiteral("Emitted from");
}
private:
///
/// Structure definitions that hold different kinds of loops information.
///
// LoopInfo stores information of a loop generated by LoopEmitter. E.g.,
// the set of tensors levels that the loop is iterating over.
struct LoopInfo final {
LoopInfo(ArrayRef<TensorLevel> tidLvls, Operation *loop, Block *userBlock,
Value iv, StringAttr loopTag)
: tidLvls(tidLvls), loop(loop), userCodeBlock(userBlock), iv(iv) {
// Attached a special tag to loop emitter generated loop.
if (loopTag)
loop->setAttr(LoopEmitter::getLoopEmitterLoopAttrName(), loopTag);
}
// The set of <tensor, lvl>, with *only* trivial index expressions, that are
// used as the condition for the generated loop. Extra information is
// required for levels with non-tivial index expressions, which is
// maintained by the sliceDrivenInfo array below.
const llvm::SmallVector<TensorLevel> tidLvls;
const Operation *loop; // the loop operation
Block *const userCodeBlock; // the block holding users' generated code.
const Value iv; // the induction variable for the loop
};
void categorizeIterators(ArrayRef<TensorLevel> tidLvls,
SmallVectorImpl<SparseIterator *> &raIters,
SmallVectorImpl<SparseIterator *> &spIters);
///
/// LoopEmitter internal helper functions.
///
using LoopBodyBuilder = llvm::function_ref<void(OpBuilder &, Location, Value,
MutableArrayRef<Value>)>;
/// Whether the list of the sparse condition should be iterated by for loop.
bool shouldIteratedByForLoop(ArrayRef<SparseIterator *> spIters);
/// Generates instructions to compute the coordinate of tensors[tid][lvl]
/// under the current loop context. The final argument is the
/// collapsed-output level, whereas this function handles converting
/// that to the uncollapsed-input level
Value genSparseCrd(OpBuilder &builder, Location loc, TensorId tid,
Level dstLvl);
bool isSynTensor(TensorId tid) const { return tid == getSynTensorId(); }
bool isOutputTensor(TensorId tid) const {
return hasOutput && tid == getOutTensorId();
}
bool isSparseOutput(TensorId tid) const {
return isOutputTensor(tid) && isSparseOut;
}
bool isValidLevel(TensorId tid, Level lvl) const {
return tid < lvls.size() && lvl < lvls[tid].size();
}
/// Prepares loop for iterating over `tensor[lvl]`, under the assumption
/// that `tensor[0...lvl-1]` loops have already been set up.
void prepareLoopOverTensorAtLvl(OpBuilder &builder, Location loc,
TensorId tid, Level lvl);
/// Emits a for loop to iterate over a tensor level with the provided
/// lower bound `lo` and upper bound `hi`. Apart from iterating just
/// single tensor level, for loops can be used for slice-driven loop on
/// dense level too.
/// Returns a pair: the loop generated and the value for the induction
/// variable.
std::pair<Operation *, Value>
emitForLoopOverTensorAtLvl(OpBuilder &builder, Location loc,
SparseIterator &iter, MutableArrayRef<Value> reduc,
bool isParallel);
/// Emits a while loop to co-iterate over a list of sparse condition, or
/// (complex) single sparse condition that can not be handled by for loop
/// (e.g., index reduction loop).
/// Returns a pair: the loop generated and the value for the induction
/// variable (which is the minimum coordinate of all the tensor that being
/// iterated).
std::pair<Operation *, Value>
emitWhileLoopOverTensorsAtLvls(OpBuilder &builder, Location loc,
ArrayRef<SparseIterator *> iters,
MutableArrayRef<Value> reduc, bool needsUniv);
/// Exits a for loop, returns the reduction results, e.g.,
/// For sequential for loops:
/// %ret = for () {
/// ...
/// %val = addi %args, %c
/// yield %val
/// }
/// For parallel loops, the following generated code by users:
/// %ret = parallel () init(%args) {
/// ...
/// %val = op %args, %c
/// }
/// will be transformed into
/// %ret = parallel () init(%args) {
/// ...
/// scf.reduce(%c) bb0(%0, %1){
/// %val = op %0, %1
/// scf.reduce.return %val
/// }
/// }
/// NOTE: only one instruction will be moved into reduce block,
/// transformation will fail if multiple instructions are used to compute
/// the reduction value. Return %ret to user, while %val is provided by
/// users (`reduc`).
void exitForLoop(RewriterBase &rewriter, Location loc,
MutableArrayRef<Value> reduc);
/// Exits a while loop, returns the reduction results.
void exitWhileLoop(OpBuilder &builder, Location loc,
MutableArrayRef<Value> reduc);
//
// Slice-driven loop related methods.
//
void initSubSectIterator(OpBuilder &builder, Location loc);
/// Get the reduced number of contraints on tensor[tid][lvl].
unsigned redDepOnLevel(TensorId tid, Level lvl) const {
return levelReducedDep[tid][lvl];
};
SparseIterator &getCurIterator(TensorId tid, Level lvl) const {
if (dependentLvlMap[tid][lvl].empty())
return *iters[tid][lvl].back();
assert(redDepOnLevel(tid, lvl) >= 1);
return *iters[tid][lvl][redDepOnLevel(tid, lvl) - 1];
}
std::unique_ptr<SparseIterator>
makeLevelIterator(OpBuilder &builder, Location loc, TensorId tid, Level l);
/// A optional string attribute that should be attached to the loop
/// generated by loop emitter, it might help following passes to identify
/// loops that operates on sparse tensors more easily.
StringAttr loopTag;
/// Whether the loop emitter needs to treat the last tensor as the output
/// tensor.
bool hasOutput;
bool isSparseOut;
SparseEmitStrategy emitStrategy;
//
// Fields which have `numTensor` many entries.
//
/// Input and (optional) output tensors.
std::vector<Value> tensors;
std::vector<Value> loopHighs;
std::vector<std::vector<std::unique_ptr<SparseTensorLevel>>> lvls;
std::vector<std::vector<std::vector<std::unique_ptr<SparseIterator>>>> iters;
std::vector<Value> valBuffer; // to_value
// Map from [tid, level] to a list of dependent [tidlevel, coefficient].
// See comments for `DependentLvlGetter`.
std::vector<std::vector<std::vector<std::pair<LoopId, unsigned>>>>
dependentLvlMap;
// The (size, stride) for each conceptual slice used for index reduction
// loops.
std::vector<std::vector<std::vector<std::pair<Value, unsigned>>>> sliceMeta;
// The number of reduced dependencies on a tensor level so far.
std::vector<std::vector<unsigned>> levelReducedDep;
//
// Fields which have at most `numLoops` many entries.
//
/// Loop Stack, stores the information of all the nested loops that are
/// alive.
std::vector<LoopInfo> loopStack;
// Loop Sequence Stack, stores the universal index for the current loop
// sequence. and a list of tid level that the loop sequence traverse.
std::vector<std::pair<Value, std::vector<TensorLevel>>> loopSeqStack;
//
// EXPERIMENTAL:
// Fields for generating sparse-iterator-based loop.
//
std::vector<std::vector<Value>> spIterVals;
};
} // namespace sparse_tensor
} // namespace mlir
#endif // MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_UTILS_LOOPEMITTER_H_
|