File: ConcatOpPatterns.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (93 lines) | stat: -rw-r--r-- 3,541 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
//===- ConcatOpPatterns.cpp - Patterns related to tensor.concat lowering --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/IR/PatternMatch.h"

using namespace mlir;
using namespace mlir::tensor;

namespace {

/// Decompose `tensor.concat` into `tensor.empty` and a chain of slice inserts.
///
/// %concat = tensor.concat dim(1) %0, %1 :
///         (tensor<2x3xf32>, tensor<2x4xf32>) -> tensor<2x7xf32>
///
/// Becomes
///
/// %empty = tensor.empty() : tensor<2x7xf32>
/// %insert0 = tensor.insert_slice %0 into %empty[0, 0][2, 3][1, 1]
/// %concat = tensor.insert_slice %1 into %insert0[0, 3][2, 4][1, 1]
struct DecomposeTensorConcatOp : public OpRewritePattern<ConcatOp> {
  using OpRewritePattern<ConcatOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(ConcatOp concatOp,
                                PatternRewriter &rewriter) const override {
    Location loc = concatOp.getLoc();
    FailureOr<Value> dest =
        tensor::getOrCreateDestination(rewriter, loc, concatOp->getResult(0));
    if (failed(dest))
      return failure();

    auto empty = dest->getDefiningOp<tensor::EmptyOp>();
    if (!empty)
      return failure();

    int64_t dim = concatOp.getDim();
    Value dimValue =
        rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(dim));

    int64_t rank = concatOp.getResultType().getRank();
    SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
    SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0));

    // Compute the partial sums for the slice offsets.
    AffineExpr sum = rewriter.getAffineDimExpr(0);
    SmallVector<AffineExpr> partialSums = {sum};
    SmallVector<OpFoldResult> offsetStrides = {rewriter.getIndexAttr(0)};
    for (auto [idx, input] :
         llvm::enumerate(concatOp.getInputs().drop_back())) {
      sum = sum + rewriter.getAffineDimExpr(idx + 1);
      partialSums.push_back(sum);
      offsetStrides.push_back(
          rewriter.createOrFold<tensor::DimOp>(loc, input, dimValue));
    }
    auto partialSumMap = AffineMap::get(concatOp.getInputs().size(), 0,
                                        partialSums, rewriter.getContext());
    SmallVector<OpFoldResult> dimOffsets =
        affine::makeComposedFoldedMultiResultAffineApply(
            rewriter, loc, partialSumMap, offsetStrides);

    // Construct the chain of insert_slice ops into the destination.
    Value result = *dest;
    for (auto [input, offset] :
         llvm::zip_equal(concatOp.getInputs(), dimOffsets)) {
      SmallVector<OpFoldResult> sizes =
          tensor::getMixedSizes(rewriter, loc, input);
      offsets[dim] = offset;
      result = rewriter.createOrFold<tensor::InsertSliceOp>(
          loc, input, result, offsets, sizes, strides);
    }

    rewriter.replaceOpWithNewOp<tensor::CastOp>(
        concatOp, concatOp.getResultType(), result);
    return success();
  }
};

} // namespace

void mlir::tensor::populateDecomposeTensorConcatPatterns(
    RewritePatternSet &patterns) {
  patterns.add<DecomposeTensorConcatOp>(patterns.getContext());
}