File: EmptyOpPatterns.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (182 lines) | stat: -rw-r--r-- 6,981 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
//===- EmptyOpPatterns.cpp - Patterns related to tensor.empty folding ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"

using namespace mlir;
using namespace mlir::tensor;

namespace {

template <typename ReshapeOp>
struct FoldEmptyTensorWithReshapeOp : public OpRewritePattern<ReshapeOp> {
  FoldEmptyTensorWithReshapeOp(MLIRContext *ctx, PatternBenefit benefit = 1,
                               bool foldSingleUseOnly = false)
      : OpRewritePattern<ReshapeOp>(ctx, benefit),
        foldSingleUseOnly(foldSingleUseOnly) {}

  LogicalResult matchAndRewrite(ReshapeOp reshapeOp,
                                PatternRewriter &rewriter) const override {
    // Check for tensor.empty source.
    auto emptyOp = reshapeOp.getSrc().template getDefiningOp<EmptyOp>();
    if (!emptyOp)
      return failure();

    // Check for single use.
    if (foldSingleUseOnly && !llvm::hasSingleElement(emptyOp->getUses()))
      return failure();

    // Reify result shape.
    Location loc = reshapeOp.getLoc();
    ReifiedRankedShapedTypeDims resultShapes;
    if (failed(reifyResultShapes(rewriter, reshapeOp, resultShapes)) ||
        !llvm::hasSingleElement(resultShapes))
      return failure();

    // Create new tensor.empty op.
    // TODO: Do not drop tensor type encoding.
    Value emptyTensor = rewriter.create<EmptyOp>(
        loc, resultShapes[0], reshapeOp.getResultType().getElementType());
    if (emptyTensor.getType() != reshapeOp.getResultType()) {
      rewriter.replaceOpWithNewOp<tensor::CastOp>(
          reshapeOp, reshapeOp.getResultType(), emptyTensor);
    } else {
      rewriter.replaceOp(reshapeOp, emptyTensor);
    }
    return success();
  }

private:
  bool foldSingleUseOnly = false;
};

/// tensor.empty does not define any tensor contents, so a slice of a
/// tensor.empty can be folded to a smaller tensor.empty.
struct FoldEmptyTensorWithExtractSliceOp
    : public OpRewritePattern<ExtractSliceOp> {
  FoldEmptyTensorWithExtractSliceOp(MLIRContext *ctx,
                                    PatternBenefit benefit = 1,
                                    bool foldSingleUseOnly = false)
      : OpRewritePattern<ExtractSliceOp>(ctx, benefit),
        foldSingleUseOnly(foldSingleUseOnly) {}

  LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
                                PatternRewriter &rewriter) const override {
    // Check for tensor.empty source.
    auto emptyOp = sliceOp.getSource().template getDefiningOp<EmptyOp>();
    if (!emptyOp)
      return failure();

    // Check for single use.
    if (foldSingleUseOnly && !llvm::hasSingleElement(emptyOp->getUses()))
      return failure();

    // Create new tensor.empty op. tensor.extract_slice may be rank-reducing;
    // its dynamic sizes must be preserved as well as its result type.
    auto tensorType = RankedTensorType::get(sliceOp.getType().getShape(),
                                            sliceOp.getType().getElementType(),
                                            sliceOp.getType().getEncoding());
    rewriter.replaceOpWithNewOp<EmptyOp>(sliceOp, tensorType,
                                         sliceOp.getSizes());
    return success();
  }

private:
  bool foldSingleUseOnly = false;
};

/// tensor.empty does not define any tensor contents, so an unpadded pack
/// can be folded away.
struct FoldEmptyTensorWithPackOp : public OpRewritePattern<PackOp> {
  using OpRewritePattern<PackOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(PackOp packOp,
                                PatternRewriter &rewriter) const override {
    // Check for tensor.empty source.
    auto emptyOp = packOp.getSource().getDefiningOp<EmptyOp>();
    if (!emptyOp)
      return failure();

    // Check for padding.
    // Packing with padding cannot be simply removed.
    if (packOp.getPaddingValue())
      return rewriter.notifyMatchFailure(packOp, "expects no padding value");

    // Replace the pack directly with its destination.
    rewriter.replaceOp(packOp, packOp.getDest());

    return success();
  }
};

/// tensor.empty does not define any tensor contents, so an unpack
/// can be folded away.
struct FoldEmptyTensorWithUnPackOp : public OpRewritePattern<UnPackOp> {
  using OpRewritePattern<UnPackOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(UnPackOp unPackOp,
                                PatternRewriter &rewriter) const override {
    // Check for tensor.empty source.
    auto emptyOp = unPackOp.getSource().getDefiningOp<EmptyOp>();
    if (!emptyOp)
      return failure();

    // Replace the unpack directly with its destination.
    rewriter.replaceOp(unPackOp, unPackOp.getDest());

    return success();
  }
};

// Fold concat operation where all the operands are empty.
struct FoldConcatsOfEmpty : public OpRewritePattern<ConcatOp> {
  using OpRewritePattern<ConcatOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tensor::ConcatOp concatOp,
                                PatternRewriter &rewriter) const override {
    auto concatOperands = concatOp.getInputs();
    if (concatOperands.empty()) {
      return failure();
    }
    auto firstEmptyOp = concatOperands.front().getDefiningOp<tensor::EmptyOp>();
    if (!firstEmptyOp) {
      return failure();
    }
    auto isDefinedByEmptyOp = [](Value v) -> bool {
      return v.getDefiningOp<tensor::EmptyOp>();
    };
    if (!llvm::all_of(concatOperands.drop_front(), isDefinedByEmptyOp)) {
      return rewriter.notifyMatchFailure(
          concatOp, "not all operands are defined by an empty op");
    }
    SmallVector<SmallVector<OpFoldResult>> resultShape;
    if (failed(concatOp.reifyResultShapes(rewriter, resultShape))) {
      return rewriter.notifyMatchFailure(concatOp,
                                         "failed to get result shape");
    }
    rewriter.replaceOpWithNewOp<tensor::EmptyOp>(
        concatOp, resultShape[0], concatOp.getResultType().getElementType());
    return success();
  }
};

} // namespace

void mlir::tensor::populateFoldTensorEmptyPatterns(RewritePatternSet &patterns,
                                                   bool foldSingleUseOnly) {
  patterns.add<FoldEmptyTensorWithExtractSliceOp,
               FoldEmptyTensorWithReshapeOp<tensor::ExpandShapeOp>,
               FoldEmptyTensorWithReshapeOp<tensor::CollapseShapeOp>>(
      patterns.getContext(), /*benefit=*/1, foldSingleUseOnly);
  patterns.add<FoldConcatsOfEmpty, FoldEmptyTensorWithPackOp,
               FoldEmptyTensorWithUnPackOp>(patterns.getContext(),
                                            /*benefit=*/1);
}