1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
//===- LowerVectorInterleave.cpp - Lower 'vector.interleave' operation ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements target-independent rewrites and utilities to lower the
// 'vector.interleave' operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/PatternMatch.h"
#define DEBUG_TYPE "vector-interleave-lowering"
using namespace mlir;
using namespace mlir::vector;
namespace {
/// A one-shot unrolling of vector.interleave to the `targetRank`.
///
/// Example:
///
/// ```mlir
/// vector.interleave %a, %b : vector<1x2x3x4xi64> -> vector<1x2x3x8xi64>
/// ```
/// Would be unrolled to:
/// ```mlir
/// %result = arith.constant dense<0> : vector<1x2x3x8xi64>
/// %0 = vector.extract %a[0, 0, 0] ─┐
/// : vector<4xi64> from vector<1x2x3x4xi64> |
/// %1 = vector.extract %b[0, 0, 0] |
/// : vector<4xi64> from vector<1x2x3x4xi64> | - Repeated 6x for
/// %2 = vector.interleave %0, %1 : | all leading positions
/// : vector<4xi64> -> vector<8xi64> |
/// %3 = vector.insert %2, %result [0, 0, 0] |
/// : vector<8xi64> into vector<1x2x3x8xi64> ┘
/// ```
///
/// Note: If any leading dimension before the `targetRank` is scalable the
/// unrolling will stop before the scalable dimension.
class UnrollInterleaveOp final : public OpRewritePattern<vector::InterleaveOp> {
public:
UnrollInterleaveOp(int64_t targetRank, MLIRContext *context,
PatternBenefit benefit = 1)
: OpRewritePattern(context, benefit), targetRank(targetRank){};
LogicalResult matchAndRewrite(vector::InterleaveOp op,
PatternRewriter &rewriter) const override {
VectorType resultType = op.getResultVectorType();
auto unrollIterator = vector::createUnrollIterator(resultType, targetRank);
if (!unrollIterator)
return failure();
auto loc = op.getLoc();
Value result = rewriter.create<arith::ConstantOp>(
loc, resultType, rewriter.getZeroAttr(resultType));
for (auto position : *unrollIterator) {
Value extractLhs = rewriter.create<ExtractOp>(loc, op.getLhs(), position);
Value extractRhs = rewriter.create<ExtractOp>(loc, op.getRhs(), position);
Value interleave =
rewriter.create<InterleaveOp>(loc, extractLhs, extractRhs);
result = rewriter.create<InsertOp>(loc, interleave, result, position);
}
rewriter.replaceOp(op, result);
return success();
}
private:
int64_t targetRank = 1;
};
/// A one-shot unrolling of vector.deinterleave to the `targetRank`.
///
/// Example:
///
/// ```mlir
/// %0, %1 = vector.deinterleave %a : vector<1x2x3x8xi64> -> vector<1x2x3x4xi64>
/// ```
/// Would be unrolled to:
/// ```mlir
/// %result = arith.constant dense<0> : vector<1x2x3x4xi64>
/// %0 = vector.extract %a[0, 0, 0] ─┐
/// : vector<8xi64> from vector<1x2x3x8xi64> |
/// %1, %2 = vector.deinterleave %0 |
/// : vector<8xi64> -> vector<4xi64> | -- Initial deinterleave
/// %3 = vector.insert %1, %result [0, 0, 0] | operation unrolled.
/// : vector<4xi64> into vector<1x2x3x4xi64> |
/// %4 = vector.insert %2, %result [0, 0, 0] |
/// : vector<4xi64> into vector<1x2x3x4xi64> ┘
/// %5 = vector.extract %a[0, 0, 1] ─┐
/// : vector<8xi64> from vector<1x2x3x8xi64> |
/// %6, %7 = vector.deinterleave %5 |
/// : vector<8xi64> -> vector<4xi64> | -- Recursive pattern for
/// %8 = vector.insert %6, %3 [0, 0, 1] | subsequent unrolled
/// : vector<4xi64> into vector<1x2x3x4xi64> | deinterleave
/// %9 = vector.insert %7, %4 [0, 0, 1] | operations. Repeated
/// : vector<4xi64> into vector<1x2x3x4xi64> ┘ 5x in this case.
/// ```
///
/// Note: If any leading dimension before the `targetRank` is scalable the
/// unrolling will stop before the scalable dimension.
class UnrollDeinterleaveOp final
: public OpRewritePattern<vector::DeinterleaveOp> {
public:
UnrollDeinterleaveOp(int64_t targetRank, MLIRContext *context,
PatternBenefit benefit = 1)
: OpRewritePattern(context, benefit), targetRank(targetRank) {};
LogicalResult matchAndRewrite(vector::DeinterleaveOp op,
PatternRewriter &rewriter) const override {
VectorType resultType = op.getResultVectorType();
auto unrollIterator = vector::createUnrollIterator(resultType, targetRank);
if (!unrollIterator)
return failure();
auto loc = op.getLoc();
Value emptyResult = rewriter.create<arith::ConstantOp>(
loc, resultType, rewriter.getZeroAttr(resultType));
Value evenResult = emptyResult;
Value oddResult = emptyResult;
for (auto position : *unrollIterator) {
auto extractSrc =
rewriter.create<vector::ExtractOp>(loc, op.getSource(), position);
auto deinterleave =
rewriter.create<vector::DeinterleaveOp>(loc, extractSrc);
evenResult = rewriter.create<vector::InsertOp>(
loc, deinterleave.getRes1(), evenResult, position);
oddResult = rewriter.create<vector::InsertOp>(loc, deinterleave.getRes2(),
oddResult, position);
}
rewriter.replaceOp(op, ValueRange{evenResult, oddResult});
return success();
}
private:
int64_t targetRank = 1;
};
/// Rewrite vector.interleave op into an equivalent vector.shuffle op, when
/// applicable: `sourceType` must be 1D and non-scalable.
///
/// Example:
///
/// ```mlir
/// vector.interleave %a, %b : vector<7xi16> -> vector<14xi16>
/// ```
///
/// Is rewritten into:
///
/// ```mlir
/// vector.shuffle %arg0, %arg1 [0, 7, 1, 8, 2, 9, 3, 10, 4, 11, 5, 12, 6, 13]
/// : vector<7xi16>, vector<7xi16>
/// ```
struct InterleaveToShuffle final : OpRewritePattern<vector::InterleaveOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(vector::InterleaveOp op,
PatternRewriter &rewriter) const override {
VectorType sourceType = op.getSourceVectorType();
if (sourceType.getRank() != 1 || sourceType.isScalable()) {
return failure();
}
int64_t n = sourceType.getNumElements();
auto seq = llvm::seq<int64_t>(2 * n);
auto zip = llvm::to_vector(llvm::map_range(
seq, [n](int64_t i) { return (i % 2 ? n : 0) + i / 2; }));
rewriter.replaceOpWithNewOp<ShuffleOp>(op, op.getLhs(), op.getRhs(), zip);
return success();
}
};
} // namespace
void mlir::vector::populateVectorInterleaveLoweringPatterns(
RewritePatternSet &patterns, int64_t targetRank, PatternBenefit benefit) {
patterns.add<UnrollInterleaveOp, UnrollDeinterleaveOp>(
targetRank, patterns.getContext(), benefit);
}
void mlir::vector::populateVectorInterleaveToShufflePatterns(
RewritePatternSet &patterns, PatternBenefit benefit) {
patterns.add<InterleaveToShuffle>(patterns.getContext(), benefit);
}
|