1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
//===- SparseTensorRuntime.cpp - SparseTensor runtime support lib ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a light-weight runtime support library for
// manipulating sparse tensors from MLIR. More specifically, it provides
// C-API wrappers so that MLIR-generated code can call into the C++ runtime
// support library. The functionality provided in this library is meant
// to simplify benchmarking, testing, and debugging of MLIR code operating
// on sparse tensors. However, the provided functionality is **not**
// part of core MLIR itself.
//
// The following memory-resident sparse storage schemes are supported:
//
// (a) A coordinate scheme for temporarily storing and lexicographically
// sorting a sparse tensor by coordinate (SparseTensorCOO).
//
// (b) A "one-size-fits-all" sparse tensor storage scheme defined by
// per-dimension sparse/dense annnotations together with a dimension
// ordering used by MLIR compiler-generated code (SparseTensorStorage).
//
// The following external formats are supported:
//
// (1) Matrix Market Exchange (MME): *.mtx
// https://math.nist.gov/MatrixMarket/formats.html
//
// (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
// http://frostt.io/tensors/file-formats.html
//
// Two public APIs are supported:
//
// (I) Methods operating on MLIR buffers (memrefs) to interact with sparse
// tensors. These methods should be used exclusively by MLIR
// compiler-generated code.
//
// (II) Methods that accept C-style data structures to interact with sparse
// tensors. These methods can be used by any external runtime that wants
// to interact with MLIR compiler-generated code.
//
// In both cases (I) and (II), the SparseTensorStorage format is externally
// only visible as an opaque pointer.
//
//===----------------------------------------------------------------------===//
#include "mlir/ExecutionEngine/SparseTensorRuntime.h"
#ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
#include "mlir/ExecutionEngine/SparseTensor/ArithmeticUtils.h"
#include "mlir/ExecutionEngine/SparseTensor/COO.h"
#include "mlir/ExecutionEngine/SparseTensor/File.h"
#include "mlir/ExecutionEngine/SparseTensor/Storage.h"
#include <cstring>
#include <numeric>
using namespace mlir::sparse_tensor;
//===----------------------------------------------------------------------===//
//
// Utilities for manipulating `StridedMemRefType`.
//
//===----------------------------------------------------------------------===//
namespace {
#define ASSERT_NO_STRIDE(MEMREF) \
do { \
assert((MEMREF) && "Memref is nullptr"); \
assert(((MEMREF)->strides[0] == 1) && "Memref has non-trivial stride"); \
} while (false)
#define MEMREF_GET_USIZE(MEMREF) \
detail::checkOverflowCast<uint64_t>((MEMREF)->sizes[0])
#define ASSERT_USIZE_EQ(MEMREF, SZ) \
assert(detail::safelyEQ(MEMREF_GET_USIZE(MEMREF), (SZ)) && \
"Memref size mismatch")
#define MEMREF_GET_PAYLOAD(MEMREF) ((MEMREF)->data + (MEMREF)->offset)
/// Initializes the memref with the provided size and data pointer. This
/// is designed for functions which want to "return" a memref that aliases
/// into memory owned by some other object (e.g., `SparseTensorStorage`),
/// without doing any actual copying. (The "return" is in scarequotes
/// because the `_mlir_ciface_` calling convention migrates any returned
/// memrefs into an out-parameter passed before all the other function
/// parameters.)
template <typename DataSizeT, typename T>
static inline void aliasIntoMemref(DataSizeT size, T *data,
StridedMemRefType<T, 1> &ref) {
ref.basePtr = ref.data = data;
ref.offset = 0;
using MemrefSizeT = std::remove_reference_t<decltype(ref.sizes[0])>;
ref.sizes[0] = detail::checkOverflowCast<MemrefSizeT>(size);
ref.strides[0] = 1;
}
} // anonymous namespace
extern "C" {
//===----------------------------------------------------------------------===//
//
// Public functions which operate on MLIR buffers (memrefs) to interact
// with sparse tensors (which are only visible as opaque pointers externally).
//
//===----------------------------------------------------------------------===//
#define CASE(p, c, v, P, C, V) \
if (posTp == (p) && crdTp == (c) && valTp == (v)) { \
switch (action) { \
case Action::kEmpty: { \
return SparseTensorStorage<P, C, V>::newEmpty( \
dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim); \
} \
case Action::kFromReader: { \
assert(ptr && "Received nullptr for SparseTensorReader object"); \
SparseTensorReader &reader = *static_cast<SparseTensorReader *>(ptr); \
return static_cast<void *>(reader.readSparseTensor<P, C, V>( \
lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim)); \
} \
case Action::kPack: { \
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
intptr_t *buffers = static_cast<intptr_t *>(ptr); \
return SparseTensorStorage<P, C, V>::newFromBuffers( \
dimRank, dimSizes, lvlRank, lvlSizes, lvlTypes, dim2lvl, lvl2dim, \
dimRank, buffers); \
} \
case Action::kSortCOOInPlace: { \
assert(ptr && "Received nullptr for SparseTensorStorage object"); \
auto &tensor = *static_cast<SparseTensorStorage<P, C, V> *>(ptr); \
tensor.sortInPlace(); \
return ptr; \
} \
} \
fprintf(stderr, "unknown action %d\n", static_cast<uint32_t>(action)); \
exit(1); \
}
#define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V)
// Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor
// can safely rewrite kIndex to kU64. We make this assertion to guarantee
// that this file cannot get out of sync with its header.
static_assert(std::is_same<index_type, uint64_t>::value,
"Expected index_type == uint64_t");
// The Swiss-army-knife for sparse tensor creation.
void *_mlir_ciface_newSparseTensor( // NOLINT
StridedMemRefType<index_type, 1> *dimSizesRef,
StridedMemRefType<index_type, 1> *lvlSizesRef,
StridedMemRefType<LevelType, 1> *lvlTypesRef,
StridedMemRefType<index_type, 1> *dim2lvlRef,
StridedMemRefType<index_type, 1> *lvl2dimRef, OverheadType posTp,
OverheadType crdTp, PrimaryType valTp, Action action, void *ptr) {
ASSERT_NO_STRIDE(dimSizesRef);
ASSERT_NO_STRIDE(lvlSizesRef);
ASSERT_NO_STRIDE(lvlTypesRef);
ASSERT_NO_STRIDE(dim2lvlRef);
ASSERT_NO_STRIDE(lvl2dimRef);
const uint64_t dimRank = MEMREF_GET_USIZE(dimSizesRef);
const uint64_t lvlRank = MEMREF_GET_USIZE(lvlSizesRef);
ASSERT_USIZE_EQ(lvlTypesRef, lvlRank);
ASSERT_USIZE_EQ(dim2lvlRef, lvlRank);
ASSERT_USIZE_EQ(lvl2dimRef, dimRank);
const index_type *dimSizes = MEMREF_GET_PAYLOAD(dimSizesRef);
const index_type *lvlSizes = MEMREF_GET_PAYLOAD(lvlSizesRef);
const LevelType *lvlTypes = MEMREF_GET_PAYLOAD(lvlTypesRef);
const index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef);
const index_type *lvl2dim = MEMREF_GET_PAYLOAD(lvl2dimRef);
// Rewrite kIndex to kU64, to avoid introducing a bunch of new cases.
// This is safe because of the static_assert above.
if (posTp == OverheadType::kIndex)
posTp = OverheadType::kU64;
if (crdTp == OverheadType::kIndex)
crdTp = OverheadType::kU64;
// Double matrices with all combinations of overhead storage.
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t,
uint64_t, double);
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t,
uint32_t, double);
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t,
uint16_t, double);
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t,
uint8_t, double);
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t,
uint64_t, double);
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t,
uint32_t, double);
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t,
uint16_t, double);
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t,
uint8_t, double);
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t,
uint64_t, double);
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t,
uint32_t, double);
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t,
uint16_t, double);
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t,
uint8_t, double);
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t,
uint64_t, double);
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t,
uint32_t, double);
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t,
uint16_t, double);
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t,
uint8_t, double);
// Float matrices with all combinations of overhead storage.
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t,
uint64_t, float);
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t,
uint32_t, float);
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t,
uint16_t, float);
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t,
uint8_t, float);
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t,
uint64_t, float);
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t,
uint32_t, float);
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t,
uint16_t, float);
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t,
uint8_t, float);
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t,
uint64_t, float);
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t,
uint32_t, float);
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t,
uint16_t, float);
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t,
uint8_t, float);
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t,
uint64_t, float);
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t,
uint32_t, float);
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t,
uint16_t, float);
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t,
uint8_t, float);
// Two-byte floats with both overheads of the same type.
CASE_SECSAME(OverheadType::kU64, PrimaryType::kF16, uint64_t, f16);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kBF16, uint64_t, bf16);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kF16, uint32_t, f16);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kBF16, uint32_t, bf16);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kF16, uint16_t, f16);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kBF16, uint16_t, bf16);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kF16, uint8_t, f16);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kBF16, uint8_t, bf16);
// Integral matrices with both overheads of the same type.
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI64, uint32_t, int64_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI64, uint16_t, int64_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI64, uint8_t, int64_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t);
// Complex matrices with wide overhead.
CASE_SECSAME(OverheadType::kU64, PrimaryType::kC64, uint64_t, complex64);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kC32, uint64_t, complex32);
// Unsupported case (add above if needed).
fprintf(stderr, "unsupported combination of types: <P=%d, C=%d, V=%d>\n",
static_cast<int>(posTp), static_cast<int>(crdTp),
static_cast<int>(valTp));
exit(1);
}
#undef CASE
#undef CASE_SECSAME
#define IMPL_SPARSEVALUES(VNAME, V) \
void _mlir_ciface_sparseValues##VNAME(StridedMemRefType<V, 1> *ref, \
void *tensor) { \
assert(ref &&tensor); \
std::vector<V> *v; \
static_cast<SparseTensorStorageBase *>(tensor)->getValues(&v); \
assert(v); \
aliasIntoMemref(v->size(), v->data(), *ref); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_SPARSEVALUES)
#undef IMPL_SPARSEVALUES
#define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \
void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \
index_type lvl) { \
assert(ref &&tensor); \
std::vector<TYPE> *v; \
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, lvl); \
assert(v); \
aliasIntoMemref(v->size(), v->data(), *ref); \
}
#define IMPL_SPARSEPOSITIONS(PNAME, P) \
IMPL_GETOVERHEAD(sparsePositions##PNAME, P, getPositions)
MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSEPOSITIONS)
#undef IMPL_SPARSEPOSITIONS
#define IMPL_SPARSECOORDINATES(CNAME, C) \
IMPL_GETOVERHEAD(sparseCoordinates##CNAME, C, getCoordinates)
MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSECOORDINATES)
#undef IMPL_SPARSECOORDINATES
#define IMPL_SPARSECOORDINATESBUFFER(CNAME, C) \
IMPL_GETOVERHEAD(sparseCoordinatesBuffer##CNAME, C, getCoordinatesBuffer)
MLIR_SPARSETENSOR_FOREVERY_O(IMPL_SPARSECOORDINATESBUFFER)
#undef IMPL_SPARSECOORDINATESBUFFER
#undef IMPL_GETOVERHEAD
#define IMPL_LEXINSERT(VNAME, V) \
void _mlir_ciface_lexInsert##VNAME( \
void *t, StridedMemRefType<index_type, 1> *lvlCoordsRef, \
StridedMemRefType<V, 0> *vref) { \
assert(t &&vref); \
auto &tensor = *static_cast<SparseTensorStorageBase *>(t); \
ASSERT_NO_STRIDE(lvlCoordsRef); \
index_type *lvlCoords = MEMREF_GET_PAYLOAD(lvlCoordsRef); \
assert(lvlCoords); \
V *value = MEMREF_GET_PAYLOAD(vref); \
tensor.lexInsert(lvlCoords, *value); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_LEXINSERT)
#undef IMPL_LEXINSERT
#define IMPL_EXPINSERT(VNAME, V) \
void _mlir_ciface_expInsert##VNAME( \
void *t, StridedMemRefType<index_type, 1> *lvlCoordsRef, \
StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \
StridedMemRefType<index_type, 1> *aref, index_type count) { \
assert(t); \
auto &tensor = *static_cast<SparseTensorStorageBase *>(t); \
ASSERT_NO_STRIDE(lvlCoordsRef); \
ASSERT_NO_STRIDE(vref); \
ASSERT_NO_STRIDE(fref); \
ASSERT_NO_STRIDE(aref); \
ASSERT_USIZE_EQ(vref, MEMREF_GET_USIZE(fref)); \
index_type *lvlCoords = MEMREF_GET_PAYLOAD(lvlCoordsRef); \
V *values = MEMREF_GET_PAYLOAD(vref); \
bool *filled = MEMREF_GET_PAYLOAD(fref); \
index_type *added = MEMREF_GET_PAYLOAD(aref); \
uint64_t expsz = vref->sizes[0]; \
tensor.expInsert(lvlCoords, values, filled, added, count, expsz); \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_EXPINSERT)
#undef IMPL_EXPINSERT
void *_mlir_ciface_createCheckedSparseTensorReader(
char *filename, StridedMemRefType<index_type, 1> *dimShapeRef,
PrimaryType valTp) {
ASSERT_NO_STRIDE(dimShapeRef);
const uint64_t dimRank = MEMREF_GET_USIZE(dimShapeRef);
const index_type *dimShape = MEMREF_GET_PAYLOAD(dimShapeRef);
auto *reader = SparseTensorReader::create(filename, dimRank, dimShape, valTp);
return static_cast<void *>(reader);
}
void _mlir_ciface_getSparseTensorReaderDimSizes(
StridedMemRefType<index_type, 1> *out, void *p) {
assert(out && p);
SparseTensorReader &reader = *static_cast<SparseTensorReader *>(p);
auto *dimSizes = const_cast<uint64_t *>(reader.getDimSizes());
aliasIntoMemref(reader.getRank(), dimSizes, *out);
}
#define IMPL_GETNEXT(VNAME, V, CNAME, C) \
bool _mlir_ciface_getSparseTensorReaderReadToBuffers##CNAME##VNAME( \
void *p, StridedMemRefType<index_type, 1> *dim2lvlRef, \
StridedMemRefType<index_type, 1> *lvl2dimRef, \
StridedMemRefType<C, 1> *cref, StridedMemRefType<V, 1> *vref) { \
assert(p); \
auto &reader = *static_cast<SparseTensorReader *>(p); \
ASSERT_NO_STRIDE(dim2lvlRef); \
ASSERT_NO_STRIDE(lvl2dimRef); \
ASSERT_NO_STRIDE(cref); \
ASSERT_NO_STRIDE(vref); \
const uint64_t dimRank = reader.getRank(); \
const uint64_t lvlRank = MEMREF_GET_USIZE(dim2lvlRef); \
const uint64_t cSize = MEMREF_GET_USIZE(cref); \
const uint64_t vSize = MEMREF_GET_USIZE(vref); \
ASSERT_USIZE_EQ(lvl2dimRef, dimRank); \
assert(cSize >= lvlRank * reader.getNSE()); \
assert(vSize >= reader.getNSE()); \
(void)dimRank; \
(void)cSize; \
(void)vSize; \
index_type *dim2lvl = MEMREF_GET_PAYLOAD(dim2lvlRef); \
index_type *lvl2dim = MEMREF_GET_PAYLOAD(lvl2dimRef); \
C *lvlCoordinates = MEMREF_GET_PAYLOAD(cref); \
V *values = MEMREF_GET_PAYLOAD(vref); \
return reader.readToBuffers<C, V>(lvlRank, dim2lvl, lvl2dim, \
lvlCoordinates, values); \
}
MLIR_SPARSETENSOR_FOREVERY_V_O(IMPL_GETNEXT)
#undef IMPL_GETNEXT
void _mlir_ciface_outSparseTensorWriterMetaData(
void *p, index_type dimRank, index_type nse,
StridedMemRefType<index_type, 1> *dimSizesRef) {
assert(p);
ASSERT_NO_STRIDE(dimSizesRef);
assert(dimRank != 0);
index_type *dimSizes = MEMREF_GET_PAYLOAD(dimSizesRef);
std::ostream &file = *static_cast<std::ostream *>(p);
file << dimRank << " " << nse << '\n';
for (index_type d = 0; d < dimRank - 1; d++)
file << dimSizes[d] << " ";
file << dimSizes[dimRank - 1] << '\n';
}
#define IMPL_OUTNEXT(VNAME, V) \
void _mlir_ciface_outSparseTensorWriterNext##VNAME( \
void *p, index_type dimRank, \
StridedMemRefType<index_type, 1> *dimCoordsRef, \
StridedMemRefType<V, 0> *vref) { \
assert(p &&vref); \
ASSERT_NO_STRIDE(dimCoordsRef); \
const index_type *dimCoords = MEMREF_GET_PAYLOAD(dimCoordsRef); \
std::ostream &file = *static_cast<std::ostream *>(p); \
for (index_type d = 0; d < dimRank; d++) \
file << (dimCoords[d] + 1) << " "; \
V *value = MEMREF_GET_PAYLOAD(vref); \
file << *value << '\n'; \
}
MLIR_SPARSETENSOR_FOREVERY_V(IMPL_OUTNEXT)
#undef IMPL_OUTNEXT
//===----------------------------------------------------------------------===//
//
// Public functions which accept only C-style data structures to interact
// with sparse tensors (which are only visible as opaque pointers externally).
//
//===----------------------------------------------------------------------===//
index_type sparseLvlSize(void *tensor, index_type l) {
return static_cast<SparseTensorStorageBase *>(tensor)->getLvlSize(l);
}
index_type sparseDimSize(void *tensor, index_type d) {
return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d);
}
void endLexInsert(void *tensor) {
return static_cast<SparseTensorStorageBase *>(tensor)->endLexInsert();
}
void delSparseTensor(void *tensor) {
delete static_cast<SparseTensorStorageBase *>(tensor);
}
char *getTensorFilename(index_type id) {
constexpr size_t bufSize = 80;
char var[bufSize];
snprintf(var, bufSize, "TENSOR%" PRIu64, id);
char *env = getenv(var);
if (!env) {
fprintf(stderr, "Environment variable %s is not set\n", var);
exit(1);
}
return env;
}
index_type getSparseTensorReaderNSE(void *p) {
return static_cast<SparseTensorReader *>(p)->getNSE();
}
void delSparseTensorReader(void *p) {
delete static_cast<SparseTensorReader *>(p);
}
void *createSparseTensorWriter(char *filename) {
std::ostream *file =
(filename[0] == 0) ? &std::cout : new std::ofstream(filename);
*file << "# extended FROSTT format\n";
return static_cast<void *>(file);
}
void delSparseTensorWriter(void *p) {
std::ostream *file = static_cast<std::ostream *>(p);
file->flush();
assert(file->good());
if (file != &std::cout)
delete file;
}
} // extern "C"
#undef MEMREF_GET_PAYLOAD
#undef ASSERT_USIZE_EQ
#undef MEMREF_GET_USIZE
#undef ASSERT_NO_STRIDE
#endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
|