1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
|
//===- ValueBoundsOpInterface.cpp - Value Bounds -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Interfaces/DestinationStyleOpInterface.h"
#include "mlir/Interfaces/ViewLikeInterface.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "value-bounds-op-interface"
using namespace mlir;
using presburger::BoundType;
using presburger::VarKind;
namespace mlir {
#include "mlir/Interfaces/ValueBoundsOpInterface.cpp.inc"
} // namespace mlir
static Operation *getOwnerOfValue(Value value) {
if (auto bbArg = dyn_cast<BlockArgument>(value))
return bbArg.getOwner()->getParentOp();
return value.getDefiningOp();
}
HyperrectangularSlice::HyperrectangularSlice(ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides)
: mixedOffsets(offsets), mixedSizes(sizes), mixedStrides(strides) {
assert(offsets.size() == sizes.size() &&
"expected same number of offsets, sizes, strides");
assert(offsets.size() == strides.size() &&
"expected same number of offsets, sizes, strides");
}
HyperrectangularSlice::HyperrectangularSlice(ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes)
: mixedOffsets(offsets), mixedSizes(sizes) {
assert(offsets.size() == sizes.size() &&
"expected same number of offsets and sizes");
// Assume that all strides are 1.
if (offsets.empty())
return;
MLIRContext *ctx = offsets.front().getContext();
mixedStrides.append(offsets.size(), Builder(ctx).getIndexAttr(1));
}
HyperrectangularSlice::HyperrectangularSlice(OffsetSizeAndStrideOpInterface op)
: HyperrectangularSlice(op.getMixedOffsets(), op.getMixedSizes(),
op.getMixedStrides()) {}
/// If ofr is a constant integer or an IntegerAttr, return the integer.
static std::optional<int64_t> getConstantIntValue(OpFoldResult ofr) {
// Case 1: Check for Constant integer.
if (auto val = llvm::dyn_cast_if_present<Value>(ofr)) {
APSInt intVal;
if (matchPattern(val, m_ConstantInt(&intVal)))
return intVal.getSExtValue();
return std::nullopt;
}
// Case 2: Check for IntegerAttr.
Attribute attr = llvm::dyn_cast_if_present<Attribute>(ofr);
if (auto intAttr = dyn_cast_or_null<IntegerAttr>(attr))
return intAttr.getValue().getSExtValue();
return std::nullopt;
}
ValueBoundsConstraintSet::Variable::Variable(OpFoldResult ofr)
: Variable(ofr, std::nullopt) {}
ValueBoundsConstraintSet::Variable::Variable(Value indexValue)
: Variable(static_cast<OpFoldResult>(indexValue)) {}
ValueBoundsConstraintSet::Variable::Variable(Value shapedValue, int64_t dim)
: Variable(static_cast<OpFoldResult>(shapedValue), std::optional(dim)) {}
ValueBoundsConstraintSet::Variable::Variable(OpFoldResult ofr,
std::optional<int64_t> dim) {
Builder b(ofr.getContext());
if (auto constInt = ::getConstantIntValue(ofr)) {
assert(!dim && "expected no dim for index-typed values");
map = AffineMap::get(/*dimCount=*/0, /*symbolCount=*/0,
b.getAffineConstantExpr(*constInt));
return;
}
Value value = cast<Value>(ofr);
#ifndef NDEBUG
if (dim) {
assert(isa<ShapedType>(value.getType()) && "expected shaped type");
} else {
assert(value.getType().isIndex() && "expected index type");
}
#endif // NDEBUG
map = AffineMap::get(/*dimCount=*/0, /*symbolCount=*/1,
b.getAffineSymbolExpr(0));
mapOperands.emplace_back(value, dim);
}
ValueBoundsConstraintSet::Variable::Variable(AffineMap map,
ArrayRef<Variable> mapOperands) {
assert(map.getNumResults() == 1 && "expected single result");
// Turn all dims into symbols.
Builder b(map.getContext());
SmallVector<AffineExpr> dimReplacements, symReplacements;
for (int64_t i = 0, e = map.getNumDims(); i < e; ++i)
dimReplacements.push_back(b.getAffineSymbolExpr(i));
for (int64_t i = 0, e = map.getNumSymbols(); i < e; ++i)
symReplacements.push_back(b.getAffineSymbolExpr(i + map.getNumDims()));
AffineMap tmpMap = map.replaceDimsAndSymbols(
dimReplacements, symReplacements, /*numResultDims=*/0,
/*numResultSyms=*/map.getNumSymbols() + map.getNumDims());
// Inline operands.
DenseMap<AffineExpr, AffineExpr> replacements;
for (auto [index, var] : llvm::enumerate(mapOperands)) {
assert(var.map.getNumResults() == 1 && "expected single result");
assert(var.map.getNumDims() == 0 && "expected only symbols");
SmallVector<AffineExpr> symReplacements;
for (auto valueDim : var.mapOperands) {
auto it = llvm::find(this->mapOperands, valueDim);
if (it != this->mapOperands.end()) {
// There is already a symbol for this operand.
symReplacements.push_back(b.getAffineSymbolExpr(
std::distance(this->mapOperands.begin(), it)));
} else {
// This is a new operand: add a new symbol.
symReplacements.push_back(
b.getAffineSymbolExpr(this->mapOperands.size()));
this->mapOperands.push_back(valueDim);
}
}
replacements[b.getAffineSymbolExpr(index)] =
var.map.getResult(0).replaceSymbols(symReplacements);
}
this->map = tmpMap.replace(replacements, /*numResultDims=*/0,
/*numResultSyms=*/this->mapOperands.size());
}
ValueBoundsConstraintSet::Variable::Variable(AffineMap map,
ArrayRef<Value> mapOperands)
: Variable(map, llvm::map_to_vector(mapOperands,
[](Value v) { return Variable(v); })) {}
ValueBoundsConstraintSet::ValueBoundsConstraintSet(
MLIRContext *ctx, StopConditionFn stopCondition,
bool addConservativeSemiAffineBounds)
: builder(ctx), stopCondition(stopCondition),
addConservativeSemiAffineBounds(addConservativeSemiAffineBounds) {
assert(stopCondition && "expected non-null stop condition");
}
char ValueBoundsConstraintSet::ID = 0;
#ifndef NDEBUG
static void assertValidValueDim(Value value, std::optional<int64_t> dim) {
if (value.getType().isIndex()) {
assert(!dim.has_value() && "invalid dim value");
} else if (auto shapedType = dyn_cast<ShapedType>(value.getType())) {
assert(*dim >= 0 && "invalid dim value");
if (shapedType.hasRank())
assert(*dim < shapedType.getRank() && "invalid dim value");
} else {
llvm_unreachable("unsupported type");
}
}
#endif // NDEBUG
void ValueBoundsConstraintSet::addBound(BoundType type, int64_t pos,
AffineExpr expr) {
// Note: If `addConservativeSemiAffineBounds` is true then the bound
// computation function needs to handle the case that the constraints set
// could become empty. This is because the conservative bounds add assumptions
// (e.g. for `mod` it assumes `rhs > 0`). If these constraints are later found
// not to hold, then the bound is invalid.
LogicalResult status = cstr.addBound(
type, pos,
AffineMap::get(cstr.getNumDimVars(), cstr.getNumSymbolVars(), expr),
addConservativeSemiAffineBounds
? FlatLinearConstraints::AddConservativeSemiAffineBounds::Yes
: FlatLinearConstraints::AddConservativeSemiAffineBounds::No);
if (failed(status)) {
// Not all semi-affine expressions are not yet supported by
// FlatLinearConstraints. However, we can just ignore such failures here.
// Even without this bound, there may be enough information in the
// constraint system to compute the requested bound. In case this bound is
// actually needed, `computeBound` will return `failure`.
LLVM_DEBUG(llvm::dbgs() << "Failed to add bound: " << expr << "\n");
}
}
AffineExpr ValueBoundsConstraintSet::getExpr(Value value,
std::optional<int64_t> dim) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
#endif // NDEBUG
// Check if the value/dim is statically known. In that case, an affine
// constant expression should be returned. This allows us to support
// multiplications with constants. (Multiplications of two columns in the
// constraint set is not supported.)
std::optional<int64_t> constSize = std::nullopt;
auto shapedType = dyn_cast<ShapedType>(value.getType());
if (shapedType) {
if (shapedType.hasRank() && !shapedType.isDynamicDim(*dim))
constSize = shapedType.getDimSize(*dim);
} else if (auto constInt = ::getConstantIntValue(value)) {
constSize = *constInt;
}
// If the value/dim is already mapped, return the corresponding expression
// directly.
ValueDim valueDim = std::make_pair(value, dim.value_or(kIndexValue));
if (valueDimToPosition.contains(valueDim)) {
// If it is a constant, return an affine constant expression. Otherwise,
// return an affine expression that represents the respective column in the
// constraint set.
if (constSize)
return builder.getAffineConstantExpr(*constSize);
return getPosExpr(getPos(value, dim));
}
if (constSize) {
// Constant index value/dim: add column to the constraint set, add EQ bound
// and return an affine constant expression without pushing the newly added
// column to the worklist.
(void)insert(value, dim, /*isSymbol=*/true, /*addToWorklist=*/false);
if (shapedType)
bound(value)[*dim] == *constSize;
else
bound(value) == *constSize;
return builder.getAffineConstantExpr(*constSize);
}
// Dynamic value/dim: insert column to the constraint set and put it on the
// worklist. Return an affine expression that represents the newly inserted
// column in the constraint set.
return getPosExpr(insert(value, dim, /*isSymbol=*/true));
}
AffineExpr ValueBoundsConstraintSet::getExpr(OpFoldResult ofr) {
if (Value value = llvm::dyn_cast_if_present<Value>(ofr))
return getExpr(value, /*dim=*/std::nullopt);
auto constInt = ::getConstantIntValue(ofr);
assert(constInt.has_value() && "expected Integer constant");
return builder.getAffineConstantExpr(*constInt);
}
AffineExpr ValueBoundsConstraintSet::getExpr(int64_t constant) {
return builder.getAffineConstantExpr(constant);
}
int64_t ValueBoundsConstraintSet::insert(Value value,
std::optional<int64_t> dim,
bool isSymbol, bool addToWorklist) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
#endif // NDEBUG
ValueDim valueDim = std::make_pair(value, dim.value_or(kIndexValue));
assert(!valueDimToPosition.contains(valueDim) && "already mapped");
int64_t pos = isSymbol ? cstr.appendVar(VarKind::Symbol)
: cstr.appendVar(VarKind::SetDim);
LLVM_DEBUG(llvm::dbgs() << "Inserting constraint set column " << pos
<< " for: " << value
<< " (dim: " << dim.value_or(kIndexValue)
<< ", owner: " << getOwnerOfValue(value)->getName()
<< ")\n");
positionToValueDim.insert(positionToValueDim.begin() + pos, valueDim);
// Update reverse mapping.
for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i)
if (positionToValueDim[i].has_value())
valueDimToPosition[*positionToValueDim[i]] = i;
if (addToWorklist) {
LLVM_DEBUG(llvm::dbgs() << "Push to worklist: " << value
<< " (dim: " << dim.value_or(kIndexValue) << ")\n");
worklist.push(pos);
}
return pos;
}
int64_t ValueBoundsConstraintSet::insert(bool isSymbol) {
int64_t pos = isSymbol ? cstr.appendVar(VarKind::Symbol)
: cstr.appendVar(VarKind::SetDim);
LLVM_DEBUG(llvm::dbgs() << "Inserting anonymous constraint set column " << pos
<< "\n");
positionToValueDim.insert(positionToValueDim.begin() + pos, std::nullopt);
// Update reverse mapping.
for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i)
if (positionToValueDim[i].has_value())
valueDimToPosition[*positionToValueDim[i]] = i;
return pos;
}
int64_t ValueBoundsConstraintSet::insert(AffineMap map, ValueDimList operands,
bool isSymbol) {
assert(map.getNumResults() == 1 && "expected affine map with one result");
int64_t pos = insert(isSymbol);
// Add map and operands to the constraint set. Dimensions are converted to
// symbols. All operands are added to the worklist (unless they were already
// processed).
auto mapper = [&](std::pair<Value, std::optional<int64_t>> v) {
return getExpr(v.first, v.second);
};
SmallVector<AffineExpr> dimReplacements = llvm::to_vector(
llvm::map_range(ArrayRef(operands).take_front(map.getNumDims()), mapper));
SmallVector<AffineExpr> symReplacements = llvm::to_vector(
llvm::map_range(ArrayRef(operands).drop_front(map.getNumDims()), mapper));
addBound(
presburger::BoundType::EQ, pos,
map.getResult(0).replaceDimsAndSymbols(dimReplacements, symReplacements));
return pos;
}
int64_t ValueBoundsConstraintSet::insert(const Variable &var, bool isSymbol) {
return insert(var.map, var.mapOperands, isSymbol);
}
int64_t ValueBoundsConstraintSet::getPos(Value value,
std::optional<int64_t> dim) const {
#ifndef NDEBUG
assertValidValueDim(value, dim);
assert((isa<OpResult>(value) ||
cast<BlockArgument>(value).getOwner()->isEntryBlock()) &&
"unstructured control flow is not supported");
#endif // NDEBUG
LLVM_DEBUG(llvm::dbgs() << "Getting pos for: " << value
<< " (dim: " << dim.value_or(kIndexValue)
<< ", owner: " << getOwnerOfValue(value)->getName()
<< ")\n");
auto it =
valueDimToPosition.find(std::make_pair(value, dim.value_or(kIndexValue)));
assert(it != valueDimToPosition.end() && "expected mapped entry");
return it->second;
}
AffineExpr ValueBoundsConstraintSet::getPosExpr(int64_t pos) {
assert(pos >= 0 && pos < cstr.getNumDimAndSymbolVars() && "invalid position");
return pos < cstr.getNumDimVars()
? builder.getAffineDimExpr(pos)
: builder.getAffineSymbolExpr(pos - cstr.getNumDimVars());
}
bool ValueBoundsConstraintSet::isMapped(Value value,
std::optional<int64_t> dim) const {
auto it =
valueDimToPosition.find(std::make_pair(value, dim.value_or(kIndexValue)));
return it != valueDimToPosition.end();
}
void ValueBoundsConstraintSet::processWorklist() {
LLVM_DEBUG(llvm::dbgs() << "Processing value bounds worklist...\n");
while (!worklist.empty()) {
int64_t pos = worklist.front();
worklist.pop();
assert(positionToValueDim[pos].has_value() &&
"did not expect std::nullopt on worklist");
ValueDim valueDim = *positionToValueDim[pos];
Value value = valueDim.first;
int64_t dim = valueDim.second;
// Check for static dim size.
if (dim != kIndexValue) {
auto shapedType = cast<ShapedType>(value.getType());
if (shapedType.hasRank() && !shapedType.isDynamicDim(dim)) {
bound(value)[dim] == getExpr(shapedType.getDimSize(dim));
continue;
}
}
// Do not process any further if the stop condition is met.
auto maybeDim = dim == kIndexValue ? std::nullopt : std::make_optional(dim);
if (stopCondition(value, maybeDim, *this)) {
LLVM_DEBUG(llvm::dbgs() << "Stop condition met for: " << value
<< " (dim: " << maybeDim << ")\n");
continue;
}
// Query `ValueBoundsOpInterface` for constraints. New items may be added to
// the worklist.
auto valueBoundsOp =
dyn_cast<ValueBoundsOpInterface>(getOwnerOfValue(value));
LLVM_DEBUG(llvm::dbgs()
<< "Query value bounds for: " << value
<< " (owner: " << getOwnerOfValue(value)->getName() << ")\n");
if (valueBoundsOp) {
if (dim == kIndexValue) {
valueBoundsOp.populateBoundsForIndexValue(value, *this);
} else {
valueBoundsOp.populateBoundsForShapedValueDim(value, dim, *this);
}
continue;
}
LLVM_DEBUG(llvm::dbgs() << "--> ValueBoundsOpInterface not implemented\n");
// If the op does not implement `ValueBoundsOpInterface`, check if it
// implements the `DestinationStyleOpInterface`. OpResults of such ops are
// tied to OpOperands. Tied values have the same shape.
auto dstOp = value.getDefiningOp<DestinationStyleOpInterface>();
if (!dstOp || dim == kIndexValue)
continue;
Value tiedOperand = dstOp.getTiedOpOperand(cast<OpResult>(value))->get();
bound(value)[dim] == getExpr(tiedOperand, dim);
}
}
void ValueBoundsConstraintSet::projectOut(int64_t pos) {
assert(pos >= 0 && pos < static_cast<int64_t>(positionToValueDim.size()) &&
"invalid position");
cstr.projectOut(pos);
if (positionToValueDim[pos].has_value()) {
bool erased = valueDimToPosition.erase(*positionToValueDim[pos]);
(void)erased;
assert(erased && "inconsistent reverse mapping");
}
positionToValueDim.erase(positionToValueDim.begin() + pos);
// Update reverse mapping.
for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i)
if (positionToValueDim[i].has_value())
valueDimToPosition[*positionToValueDim[i]] = i;
}
void ValueBoundsConstraintSet::projectOut(
function_ref<bool(ValueDim)> condition) {
int64_t nextPos = 0;
while (nextPos < static_cast<int64_t>(positionToValueDim.size())) {
if (positionToValueDim[nextPos].has_value() &&
condition(*positionToValueDim[nextPos])) {
projectOut(nextPos);
// The column was projected out so another column is now at that position.
// Do not increase the counter.
} else {
++nextPos;
}
}
}
void ValueBoundsConstraintSet::projectOutAnonymous(
std::optional<int64_t> except) {
int64_t nextPos = 0;
while (nextPos < static_cast<int64_t>(positionToValueDim.size())) {
if (positionToValueDim[nextPos].has_value() || except == nextPos) {
++nextPos;
} else {
projectOut(nextPos);
// The column was projected out so another column is now at that position.
// Do not increase the counter.
}
}
}
LogicalResult ValueBoundsConstraintSet::computeBound(
AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type,
const Variable &var, StopConditionFn stopCondition, bool closedUB) {
MLIRContext *ctx = var.getContext();
int64_t ubAdjustment = closedUB ? 0 : 1;
Builder b(ctx);
mapOperands.clear();
// Process the backward slice of `value` (i.e., reverse use-def chain) until
// `stopCondition` is met.
ValueBoundsConstraintSet cstr(ctx, stopCondition);
int64_t pos = cstr.insert(var, /*isSymbol=*/false);
assert(pos == 0 && "expected first column");
cstr.processWorklist();
// Project out all variables (apart from `valueDim`) that do not match the
// stop condition.
cstr.projectOut([&](ValueDim p) {
auto maybeDim =
p.second == kIndexValue ? std::nullopt : std::make_optional(p.second);
return !stopCondition(p.first, maybeDim, cstr);
});
cstr.projectOutAnonymous(/*except=*/pos);
// Compute lower and upper bounds for `valueDim`.
SmallVector<AffineMap> lb(1), ub(1);
cstr.cstr.getSliceBounds(pos, 1, ctx, &lb, &ub,
/*closedUB=*/true);
// Note: There are TODOs in the implementation of `getSliceBounds`. In such a
// case, no lower/upper bound can be computed at the moment.
// EQ, UB bounds: upper bound is needed.
if ((type != BoundType::LB) &&
(ub.empty() || !ub[0] || ub[0].getNumResults() == 0))
return failure();
// EQ, LB bounds: lower bound is needed.
if ((type != BoundType::UB) &&
(lb.empty() || !lb[0] || lb[0].getNumResults() == 0))
return failure();
// TODO: Generate an affine map with multiple results.
if (type != BoundType::LB)
assert(ub.size() == 1 && ub[0].getNumResults() == 1 &&
"multiple bounds not supported");
if (type != BoundType::UB)
assert(lb.size() == 1 && lb[0].getNumResults() == 1 &&
"multiple bounds not supported");
// EQ bound: lower and upper bound must match.
if (type == BoundType::EQ && ub[0] != lb[0])
return failure();
AffineMap bound;
if (type == BoundType::EQ || type == BoundType::LB) {
bound = lb[0];
} else {
// Computed UB is a closed bound.
bound = AffineMap::get(ub[0].getNumDims(), ub[0].getNumSymbols(),
ub[0].getResult(0) + ubAdjustment);
}
// Gather all SSA values that are used in the computed bound.
assert(cstr.cstr.getNumDimAndSymbolVars() == cstr.positionToValueDim.size() &&
"inconsistent mapping state");
SmallVector<AffineExpr> replacementDims, replacementSymbols;
int64_t numDims = 0, numSymbols = 0;
for (int64_t i = 0; i < cstr.cstr.getNumDimAndSymbolVars(); ++i) {
// Skip `value`.
if (i == pos)
continue;
// Check if the position `i` is used in the generated bound. If so, it must
// be included in the generated affine.apply op.
bool used = false;
bool isDim = i < cstr.cstr.getNumDimVars();
if (isDim) {
if (bound.isFunctionOfDim(i))
used = true;
} else {
if (bound.isFunctionOfSymbol(i - cstr.cstr.getNumDimVars()))
used = true;
}
if (!used) {
// Not used: Remove dim/symbol from the result.
if (isDim) {
replacementDims.push_back(b.getAffineConstantExpr(0));
} else {
replacementSymbols.push_back(b.getAffineConstantExpr(0));
}
continue;
}
if (isDim) {
replacementDims.push_back(b.getAffineDimExpr(numDims++));
} else {
replacementSymbols.push_back(b.getAffineSymbolExpr(numSymbols++));
}
assert(cstr.positionToValueDim[i].has_value() &&
"cannot build affine map in terms of anonymous column");
ValueBoundsConstraintSet::ValueDim valueDim = *cstr.positionToValueDim[i];
Value value = valueDim.first;
int64_t dim = valueDim.second;
if (dim == ValueBoundsConstraintSet::kIndexValue) {
// An index-type value is used: can be used directly in the affine.apply
// op.
assert(value.getType().isIndex() && "expected index type");
mapOperands.push_back(std::make_pair(value, std::nullopt));
continue;
}
assert(cast<ShapedType>(value.getType()).isDynamicDim(dim) &&
"expected dynamic dim");
mapOperands.push_back(std::make_pair(value, dim));
}
resultMap = bound.replaceDimsAndSymbols(replacementDims, replacementSymbols,
numDims, numSymbols);
return success();
}
LogicalResult ValueBoundsConstraintSet::computeDependentBound(
AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type,
const Variable &var, ValueDimList dependencies, bool closedUB) {
return computeBound(
resultMap, mapOperands, type, var,
[&](Value v, std::optional<int64_t> d, ValueBoundsConstraintSet &cstr) {
return llvm::is_contained(dependencies, std::make_pair(v, d));
},
closedUB);
}
LogicalResult ValueBoundsConstraintSet::computeIndependentBound(
AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type,
const Variable &var, ValueRange independencies, bool closedUB) {
// Return "true" if the given value is independent of all values in
// `independencies`. I.e., neither the value itself nor any value in the
// backward slice (reverse use-def chain) is contained in `independencies`.
auto isIndependent = [&](Value v) {
SmallVector<Value> worklist;
DenseSet<Value> visited;
worklist.push_back(v);
while (!worklist.empty()) {
Value next = worklist.pop_back_val();
if (visited.contains(next))
continue;
visited.insert(next);
if (llvm::is_contained(independencies, next))
return false;
// TODO: DominanceInfo could be used to stop the traversal early.
Operation *op = next.getDefiningOp();
if (!op)
continue;
worklist.append(op->getOperands().begin(), op->getOperands().end());
}
return true;
};
// Reify bounds in terms of any independent values.
return computeBound(
resultMap, mapOperands, type, var,
[&](Value v, std::optional<int64_t> d, ValueBoundsConstraintSet &cstr) {
return isIndependent(v);
},
closedUB);
}
FailureOr<int64_t> ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType type, const Variable &var,
StopConditionFn stopCondition, bool closedUB) {
// Default stop condition if none was specified: Keep adding constraints until
// a bound could be computed.
int64_t pos = 0;
auto defaultStopCondition = [&](Value v, std::optional<int64_t> dim,
ValueBoundsConstraintSet &cstr) {
return cstr.cstr.getConstantBound64(type, pos).has_value();
};
ValueBoundsConstraintSet cstr(
var.getContext(), stopCondition ? stopCondition : defaultStopCondition);
pos = cstr.populateConstraints(var.map, var.mapOperands);
assert(pos == 0 && "expected `map` is the first column");
// Compute constant bound for `valueDim`.
int64_t ubAdjustment = closedUB ? 0 : 1;
if (auto bound = cstr.cstr.getConstantBound64(type, pos))
return type == BoundType::UB ? *bound + ubAdjustment : *bound;
return failure();
}
void ValueBoundsConstraintSet::populateConstraints(Value value,
std::optional<int64_t> dim) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
#endif // NDEBUG
// `getExpr` pushes the value/dim onto the worklist (unless it was already
// analyzed).
(void)getExpr(value, dim);
// Process all values/dims on the worklist. This may traverse and analyze
// additional IR, depending the current stop function.
processWorklist();
}
int64_t ValueBoundsConstraintSet::populateConstraints(AffineMap map,
ValueDimList operands) {
int64_t pos = insert(map, operands, /*isSymbol=*/false);
// Process the backward slice of `operands` (i.e., reverse use-def chain)
// until `stopCondition` is met.
processWorklist();
return pos;
}
FailureOr<int64_t>
ValueBoundsConstraintSet::computeConstantDelta(Value value1, Value value2,
std::optional<int64_t> dim1,
std::optional<int64_t> dim2) {
#ifndef NDEBUG
assertValidValueDim(value1, dim1);
assertValidValueDim(value2, dim2);
#endif // NDEBUG
Builder b(value1.getContext());
AffineMap map = AffineMap::get(/*dimCount=*/2, /*symbolCount=*/0,
b.getAffineDimExpr(0) - b.getAffineDimExpr(1));
return computeConstantBound(presburger::BoundType::EQ,
Variable(map, {{value1, dim1}, {value2, dim2}}));
}
bool ValueBoundsConstraintSet::comparePos(int64_t lhsPos,
ComparisonOperator cmp,
int64_t rhsPos) {
// This function returns "true" if "lhs CMP rhs" is proven to hold.
//
// Example for ComparisonOperator::LE and index-typed values: We would like to
// prove that lhs <= rhs. Proof by contradiction: add the inverse
// relation (lhs > rhs) to the constraint set and check if the resulting
// constraint set is "empty" (i.e. has no solution). In that case,
// lhs > rhs must be incorrect and we can deduce that lhs <= rhs holds.
// We cannot prove anything if the constraint set is already empty.
if (cstr.isEmpty()) {
LLVM_DEBUG(
llvm::dbgs()
<< "cannot compare value/dims: constraint system is already empty");
return false;
}
// EQ can be expressed as LE and GE.
if (cmp == EQ)
return comparePos(lhsPos, ComparisonOperator::LE, rhsPos) &&
comparePos(lhsPos, ComparisonOperator::GE, rhsPos);
// Construct inequality.
SmallVector<int64_t> eq(cstr.getNumCols(), 0);
if (cmp == LT || cmp == LE) {
++eq[lhsPos];
--eq[rhsPos];
} else if (cmp == GT || cmp == GE) {
--eq[lhsPos];
++eq[rhsPos];
} else {
llvm_unreachable("unsupported comparison operator");
}
if (cmp == LE || cmp == GE)
eq[cstr.getNumCols() - 1] -= 1;
// Add inequality to the constraint set and check if it made the constraint
// set empty.
int64_t ineqPos = cstr.getNumInequalities();
cstr.addInequality(eq);
bool isEmpty = cstr.isEmpty();
cstr.removeInequality(ineqPos);
return isEmpty;
}
bool ValueBoundsConstraintSet::populateAndCompare(const Variable &lhs,
ComparisonOperator cmp,
const Variable &rhs) {
int64_t lhsPos = populateConstraints(lhs.map, lhs.mapOperands);
int64_t rhsPos = populateConstraints(rhs.map, rhs.mapOperands);
return comparePos(lhsPos, cmp, rhsPos);
}
bool ValueBoundsConstraintSet::compare(const Variable &lhs,
ComparisonOperator cmp,
const Variable &rhs) {
int64_t lhsPos = -1, rhsPos = -1;
auto stopCondition = [&](Value v, std::optional<int64_t> dim,
ValueBoundsConstraintSet &cstr) {
// Keep processing as long as lhs/rhs were not processed.
if (size_t(lhsPos) >= cstr.positionToValueDim.size() ||
size_t(rhsPos) >= cstr.positionToValueDim.size())
return false;
// Keep processing as long as the relation cannot be proven.
return cstr.comparePos(lhsPos, cmp, rhsPos);
};
ValueBoundsConstraintSet cstr(lhs.getContext(), stopCondition);
lhsPos = cstr.populateConstraints(lhs.map, lhs.mapOperands);
rhsPos = cstr.populateConstraints(rhs.map, rhs.mapOperands);
return cstr.comparePos(lhsPos, cmp, rhsPos);
}
FailureOr<bool> ValueBoundsConstraintSet::areEqual(const Variable &var1,
const Variable &var2) {
if (ValueBoundsConstraintSet::compare(var1, ComparisonOperator::EQ, var2))
return true;
if (ValueBoundsConstraintSet::compare(var1, ComparisonOperator::LT, var2) ||
ValueBoundsConstraintSet::compare(var1, ComparisonOperator::GT, var2))
return false;
return failure();
}
FailureOr<bool>
ValueBoundsConstraintSet::areOverlappingSlices(MLIRContext *ctx,
HyperrectangularSlice slice1,
HyperrectangularSlice slice2) {
assert(slice1.getMixedOffsets().size() == slice1.getMixedOffsets().size() &&
"expected slices of same rank");
assert(slice1.getMixedSizes().size() == slice1.getMixedSizes().size() &&
"expected slices of same rank");
assert(slice1.getMixedStrides().size() == slice1.getMixedStrides().size() &&
"expected slices of same rank");
Builder b(ctx);
bool foundUnknownBound = false;
for (int64_t i = 0, e = slice1.getMixedOffsets().size(); i < e; ++i) {
AffineMap map =
AffineMap::get(/*dimCount=*/0, /*symbolCount=*/4,
b.getAffineSymbolExpr(0) +
b.getAffineSymbolExpr(1) * b.getAffineSymbolExpr(2) -
b.getAffineSymbolExpr(3));
{
// Case 1: Slices are guaranteed to be non-overlapping if
// offset1 + size1 * stride1 <= offset2 (for at least one dimension).
SmallVector<OpFoldResult> ofrOperands;
ofrOperands.push_back(slice1.getMixedOffsets()[i]);
ofrOperands.push_back(slice1.getMixedSizes()[i]);
ofrOperands.push_back(slice1.getMixedStrides()[i]);
ofrOperands.push_back(slice2.getMixedOffsets()[i]);
SmallVector<Value> valueOperands;
AffineMap foldedMap =
foldAttributesIntoMap(b, map, ofrOperands, valueOperands);
FailureOr<int64_t> constBound = computeConstantBound(
presburger::BoundType::EQ, Variable(foldedMap, valueOperands));
foundUnknownBound |= failed(constBound);
if (succeeded(constBound) && *constBound <= 0)
return false;
}
{
// Case 2: Slices are guaranteed to be non-overlapping if
// offset2 + size2 * stride2 <= offset1 (for at least one dimension).
SmallVector<OpFoldResult> ofrOperands;
ofrOperands.push_back(slice2.getMixedOffsets()[i]);
ofrOperands.push_back(slice2.getMixedSizes()[i]);
ofrOperands.push_back(slice2.getMixedStrides()[i]);
ofrOperands.push_back(slice1.getMixedOffsets()[i]);
SmallVector<Value> valueOperands;
AffineMap foldedMap =
foldAttributesIntoMap(b, map, ofrOperands, valueOperands);
FailureOr<int64_t> constBound = computeConstantBound(
presburger::BoundType::EQ, Variable(foldedMap, valueOperands));
foundUnknownBound |= failed(constBound);
if (succeeded(constBound) && *constBound <= 0)
return false;
}
}
// If at least one bound could not be computed, we cannot be certain that the
// slices are really overlapping.
if (foundUnknownBound)
return failure();
// All bounds could be computed and none of the above cases applied.
// Therefore, the slices are guaranteed to overlap.
return true;
}
FailureOr<bool>
ValueBoundsConstraintSet::areEquivalentSlices(MLIRContext *ctx,
HyperrectangularSlice slice1,
HyperrectangularSlice slice2) {
assert(slice1.getMixedOffsets().size() == slice1.getMixedOffsets().size() &&
"expected slices of same rank");
assert(slice1.getMixedSizes().size() == slice1.getMixedSizes().size() &&
"expected slices of same rank");
assert(slice1.getMixedStrides().size() == slice1.getMixedStrides().size() &&
"expected slices of same rank");
// The two slices are equivalent if all of their offsets, sizes and strides
// are equal. If equality cannot be determined for at least one of those
// values, equivalence cannot be determined and this function returns
// "failure".
for (auto [offset1, offset2] :
llvm::zip_equal(slice1.getMixedOffsets(), slice2.getMixedOffsets())) {
FailureOr<bool> equal = areEqual(offset1, offset2);
if (failed(equal))
return failure();
if (!equal.value())
return false;
}
for (auto [size1, size2] :
llvm::zip_equal(slice1.getMixedSizes(), slice2.getMixedSizes())) {
FailureOr<bool> equal = areEqual(size1, size2);
if (failed(equal))
return failure();
if (!equal.value())
return false;
}
for (auto [stride1, stride2] :
llvm::zip_equal(slice1.getMixedStrides(), slice2.getMixedStrides())) {
FailureOr<bool> equal = areEqual(stride1, stride2);
if (failed(equal))
return failure();
if (!equal.value())
return false;
}
return true;
}
void ValueBoundsConstraintSet::dump() const {
llvm::errs() << "==========\nColumns:\n";
llvm::errs() << "(column\tdim\tvalue)\n";
for (auto [index, valueDim] : llvm::enumerate(positionToValueDim)) {
llvm::errs() << " " << index << "\t";
if (valueDim) {
if (valueDim->second == kIndexValue) {
llvm::errs() << "n/a\t";
} else {
llvm::errs() << valueDim->second << "\t";
}
llvm::errs() << getOwnerOfValue(valueDim->first)->getName() << " ";
if (OpResult result = dyn_cast<OpResult>(valueDim->first)) {
llvm::errs() << "(result " << result.getResultNumber() << ")";
} else {
llvm::errs() << "(bbarg "
<< cast<BlockArgument>(valueDim->first).getArgNumber()
<< ")";
}
llvm::errs() << "\n";
} else {
llvm::errs() << "n/a\tn/a\n";
}
}
llvm::errs() << "\nConstraint set:\n";
cstr.dump();
llvm::errs() << "==========\n";
}
ValueBoundsConstraintSet::BoundBuilder &
ValueBoundsConstraintSet::BoundBuilder::operator[](int64_t dim) {
assert(!this->dim.has_value() && "dim was already set");
this->dim = dim;
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
return *this;
}
void ValueBoundsConstraintSet::BoundBuilder::operator<(AffineExpr expr) {
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
cstr.addBound(BoundType::UB, cstr.getPos(value, this->dim), expr);
}
void ValueBoundsConstraintSet::BoundBuilder::operator<=(AffineExpr expr) {
operator<(expr + 1);
}
void ValueBoundsConstraintSet::BoundBuilder::operator>(AffineExpr expr) {
operator>=(expr + 1);
}
void ValueBoundsConstraintSet::BoundBuilder::operator>=(AffineExpr expr) {
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
cstr.addBound(BoundType::LB, cstr.getPos(value, this->dim), expr);
}
void ValueBoundsConstraintSet::BoundBuilder::operator==(AffineExpr expr) {
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
cstr.addBound(BoundType::EQ, cstr.getPos(value, this->dim), expr);
}
void ValueBoundsConstraintSet::BoundBuilder::operator<(OpFoldResult ofr) {
operator<(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator<=(OpFoldResult ofr) {
operator<=(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>(OpFoldResult ofr) {
operator>(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>=(OpFoldResult ofr) {
operator>=(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator==(OpFoldResult ofr) {
operator==(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator<(int64_t i) {
operator<(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator<=(int64_t i) {
operator<=(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>(int64_t i) {
operator>(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>=(int64_t i) {
operator>=(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator==(int64_t i) {
operator==(cstr.getExpr(i));
}
|