1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
|
//===- Deserializer.cpp - MLIR SPIR-V Deserializer ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the SPIR-V binary to MLIR SPIR-V module deserializer.
//
//===----------------------------------------------------------------------===//
#include "Deserializer.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVAttributes.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVTypes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Location.h"
#include "mlir/Target/SPIRV/SPIRVBinaryUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
using namespace mlir;
#define DEBUG_TYPE "spirv-deserialization"
//===----------------------------------------------------------------------===//
// Utility Functions
//===----------------------------------------------------------------------===//
/// Returns true if the given `block` is a function entry block.
static inline bool isFnEntryBlock(Block *block) {
return block->isEntryBlock() &&
isa_and_nonnull<spirv::FuncOp>(block->getParentOp());
}
//===----------------------------------------------------------------------===//
// Deserializer Method Definitions
//===----------------------------------------------------------------------===//
spirv::Deserializer::Deserializer(ArrayRef<uint32_t> binary,
MLIRContext *context)
: binary(binary), context(context), unknownLoc(UnknownLoc::get(context)),
module(createModuleOp()), opBuilder(module->getRegion())
#ifndef NDEBUG
,
logger(llvm::dbgs())
#endif
{
}
LogicalResult spirv::Deserializer::deserialize() {
LLVM_DEBUG({
logger.resetIndent();
logger.startLine()
<< "//+++---------- start deserialization ----------+++//\n";
});
if (failed(processHeader()))
return failure();
spirv::Opcode opcode = spirv::Opcode::OpNop;
ArrayRef<uint32_t> operands;
auto binarySize = binary.size();
while (curOffset < binarySize) {
// Slice the next instruction out and populate `opcode` and `operands`.
// Internally this also updates `curOffset`.
if (failed(sliceInstruction(opcode, operands)))
return failure();
if (failed(processInstruction(opcode, operands)))
return failure();
}
assert(curOffset == binarySize &&
"deserializer should never index beyond the binary end");
for (auto &deferred : deferredInstructions) {
if (failed(processInstruction(deferred.first, deferred.second, false))) {
return failure();
}
}
attachVCETriple();
LLVM_DEBUG(logger.startLine()
<< "//+++-------- completed deserialization --------+++//\n");
return success();
}
OwningOpRef<spirv::ModuleOp> spirv::Deserializer::collect() {
return std::move(module);
}
//===----------------------------------------------------------------------===//
// Module structure
//===----------------------------------------------------------------------===//
OwningOpRef<spirv::ModuleOp> spirv::Deserializer::createModuleOp() {
OpBuilder builder(context);
OperationState state(unknownLoc, spirv::ModuleOp::getOperationName());
spirv::ModuleOp::build(builder, state);
return cast<spirv::ModuleOp>(Operation::create(state));
}
LogicalResult spirv::Deserializer::processHeader() {
if (binary.size() < spirv::kHeaderWordCount)
return emitError(unknownLoc,
"SPIR-V binary module must have a 5-word header");
if (binary[0] != spirv::kMagicNumber)
return emitError(unknownLoc, "incorrect magic number");
// Version number bytes: 0 | major number | minor number | 0
uint32_t majorVersion = (binary[1] << 8) >> 24;
uint32_t minorVersion = (binary[1] << 16) >> 24;
if (majorVersion == 1) {
switch (minorVersion) {
#define MIN_VERSION_CASE(v) \
case v: \
version = spirv::Version::V_1_##v; \
break
MIN_VERSION_CASE(0);
MIN_VERSION_CASE(1);
MIN_VERSION_CASE(2);
MIN_VERSION_CASE(3);
MIN_VERSION_CASE(4);
MIN_VERSION_CASE(5);
#undef MIN_VERSION_CASE
default:
return emitError(unknownLoc, "unsupported SPIR-V minor version: ")
<< minorVersion;
}
} else {
return emitError(unknownLoc, "unsupported SPIR-V major version: ")
<< majorVersion;
}
// TODO: generator number, bound, schema
curOffset = spirv::kHeaderWordCount;
return success();
}
LogicalResult
spirv::Deserializer::processCapability(ArrayRef<uint32_t> operands) {
if (operands.size() != 1)
return emitError(unknownLoc, "OpMemoryModel must have one parameter");
auto cap = spirv::symbolizeCapability(operands[0]);
if (!cap)
return emitError(unknownLoc, "unknown capability: ") << operands[0];
capabilities.insert(*cap);
return success();
}
LogicalResult spirv::Deserializer::processExtension(ArrayRef<uint32_t> words) {
if (words.empty()) {
return emitError(
unknownLoc,
"OpExtension must have a literal string for the extension name");
}
unsigned wordIndex = 0;
StringRef extName = decodeStringLiteral(words, wordIndex);
if (wordIndex != words.size())
return emitError(unknownLoc,
"unexpected trailing words in OpExtension instruction");
auto ext = spirv::symbolizeExtension(extName);
if (!ext)
return emitError(unknownLoc, "unknown extension: ") << extName;
extensions.insert(*ext);
return success();
}
LogicalResult
spirv::Deserializer::processExtInstImport(ArrayRef<uint32_t> words) {
if (words.size() < 2) {
return emitError(unknownLoc,
"OpExtInstImport must have a result <id> and a literal "
"string for the extended instruction set name");
}
unsigned wordIndex = 1;
extendedInstSets[words[0]] = decodeStringLiteral(words, wordIndex);
if (wordIndex != words.size()) {
return emitError(unknownLoc,
"unexpected trailing words in OpExtInstImport");
}
return success();
}
void spirv::Deserializer::attachVCETriple() {
(*module)->setAttr(
spirv::ModuleOp::getVCETripleAttrName(),
spirv::VerCapExtAttr::get(version, capabilities.getArrayRef(),
extensions.getArrayRef(), context));
}
LogicalResult
spirv::Deserializer::processMemoryModel(ArrayRef<uint32_t> operands) {
if (operands.size() != 2)
return emitError(unknownLoc, "OpMemoryModel must have two operands");
(*module)->setAttr(
module->getAddressingModelAttrName(),
opBuilder.getAttr<spirv::AddressingModelAttr>(
static_cast<spirv::AddressingModel>(operands.front())));
(*module)->setAttr(module->getMemoryModelAttrName(),
opBuilder.getAttr<spirv::MemoryModelAttr>(
static_cast<spirv::MemoryModel>(operands.back())));
return success();
}
LogicalResult spirv::Deserializer::processDecoration(ArrayRef<uint32_t> words) {
// TODO: This function should also be auto-generated. For now, since only a
// few decorations are processed/handled in a meaningful manner, going with a
// manual implementation.
if (words.size() < 2) {
return emitError(
unknownLoc, "OpDecorate must have at least result <id> and Decoration");
}
auto decorationName =
stringifyDecoration(static_cast<spirv::Decoration>(words[1]));
if (decorationName.empty()) {
return emitError(unknownLoc, "invalid Decoration code : ") << words[1];
}
auto symbol = getSymbolDecoration(decorationName);
switch (static_cast<spirv::Decoration>(words[1])) {
case spirv::Decoration::FPFastMathMode:
if (words.size() != 3) {
return emitError(unknownLoc, "OpDecorate with ")
<< decorationName << " needs a single integer literal";
}
decorations[words[0]].set(
symbol, FPFastMathModeAttr::get(opBuilder.getContext(),
static_cast<FPFastMathMode>(words[2])));
break;
case spirv::Decoration::DescriptorSet:
case spirv::Decoration::Binding:
if (words.size() != 3) {
return emitError(unknownLoc, "OpDecorate with ")
<< decorationName << " needs a single integer literal";
}
decorations[words[0]].set(
symbol, opBuilder.getI32IntegerAttr(static_cast<int32_t>(words[2])));
break;
case spirv::Decoration::BuiltIn:
if (words.size() != 3) {
return emitError(unknownLoc, "OpDecorate with ")
<< decorationName << " needs a single integer literal";
}
decorations[words[0]].set(
symbol, opBuilder.getStringAttr(
stringifyBuiltIn(static_cast<spirv::BuiltIn>(words[2]))));
break;
case spirv::Decoration::ArrayStride:
if (words.size() != 3) {
return emitError(unknownLoc, "OpDecorate with ")
<< decorationName << " needs a single integer literal";
}
typeDecorations[words[0]] = words[2];
break;
case spirv::Decoration::LinkageAttributes: {
if (words.size() < 4) {
return emitError(unknownLoc, "OpDecorate with ")
<< decorationName
<< " needs at least 1 string and 1 integer literal";
}
// LinkageAttributes has two parameters ["linkageName", linkageType]
// e.g., OpDecorate %imported_func LinkageAttributes "outside.func" Import
// "linkageName" is a stringliteral encoded as uint32_t,
// hence the size of name is variable length which results in words.size()
// being variable length, words.size() = 3 + strlen(name)/4 + 1 or
// 3 + ceildiv(strlen(name), 4).
unsigned wordIndex = 2;
auto linkageName = spirv::decodeStringLiteral(words, wordIndex).str();
auto linkageTypeAttr = opBuilder.getAttr<::mlir::spirv::LinkageTypeAttr>(
static_cast<::mlir::spirv::LinkageType>(words[wordIndex++]));
auto linkageAttr = opBuilder.getAttr<::mlir::spirv::LinkageAttributesAttr>(
StringAttr::get(context, linkageName), linkageTypeAttr);
decorations[words[0]].set(symbol, llvm::dyn_cast<Attribute>(linkageAttr));
break;
}
case spirv::Decoration::Aliased:
case spirv::Decoration::AliasedPointer:
case spirv::Decoration::Block:
case spirv::Decoration::BufferBlock:
case spirv::Decoration::Flat:
case spirv::Decoration::NonReadable:
case spirv::Decoration::NonWritable:
case spirv::Decoration::NoPerspective:
case spirv::Decoration::NoSignedWrap:
case spirv::Decoration::NoUnsignedWrap:
case spirv::Decoration::RelaxedPrecision:
case spirv::Decoration::Restrict:
case spirv::Decoration::RestrictPointer:
case spirv::Decoration::NoContraction:
if (words.size() != 2) {
return emitError(unknownLoc, "OpDecoration with ")
<< decorationName << "needs a single target <id>";
}
// Block decoration does not affect spirv.struct type, but is still stored
// for verification.
// TODO: Update StructType to contain this information since
// it is needed for many validation rules.
decorations[words[0]].set(symbol, opBuilder.getUnitAttr());
break;
case spirv::Decoration::Location:
case spirv::Decoration::SpecId:
if (words.size() != 3) {
return emitError(unknownLoc, "OpDecoration with ")
<< decorationName << "needs a single integer literal";
}
decorations[words[0]].set(
symbol, opBuilder.getI32IntegerAttr(static_cast<int32_t>(words[2])));
break;
default:
return emitError(unknownLoc, "unhandled Decoration : '") << decorationName;
}
return success();
}
LogicalResult
spirv::Deserializer::processMemberDecoration(ArrayRef<uint32_t> words) {
// The binary layout of OpMemberDecorate is different comparing to OpDecorate
if (words.size() < 3) {
return emitError(unknownLoc,
"OpMemberDecorate must have at least 3 operands");
}
auto decoration = static_cast<spirv::Decoration>(words[2]);
if (decoration == spirv::Decoration::Offset && words.size() != 4) {
return emitError(unknownLoc,
" missing offset specification in OpMemberDecorate with "
"Offset decoration");
}
ArrayRef<uint32_t> decorationOperands;
if (words.size() > 3) {
decorationOperands = words.slice(3);
}
memberDecorationMap[words[0]][words[1]][decoration] = decorationOperands;
return success();
}
LogicalResult spirv::Deserializer::processMemberName(ArrayRef<uint32_t> words) {
if (words.size() < 3) {
return emitError(unknownLoc, "OpMemberName must have at least 3 operands");
}
unsigned wordIndex = 2;
auto name = decodeStringLiteral(words, wordIndex);
if (wordIndex != words.size()) {
return emitError(unknownLoc,
"unexpected trailing words in OpMemberName instruction");
}
memberNameMap[words[0]][words[1]] = name;
return success();
}
LogicalResult spirv::Deserializer::setFunctionArgAttrs(
uint32_t argID, SmallVectorImpl<Attribute> &argAttrs, size_t argIndex) {
if (!decorations.contains(argID)) {
argAttrs[argIndex] = DictionaryAttr::get(context, {});
return success();
}
spirv::DecorationAttr foundDecorationAttr;
for (NamedAttribute decAttr : decorations[argID]) {
for (auto decoration :
{spirv::Decoration::Aliased, spirv::Decoration::Restrict,
spirv::Decoration::AliasedPointer,
spirv::Decoration::RestrictPointer}) {
if (decAttr.getName() !=
getSymbolDecoration(stringifyDecoration(decoration)))
continue;
if (foundDecorationAttr)
return emitError(unknownLoc,
"more than one Aliased/Restrict decorations for "
"function argument with result <id> ")
<< argID;
foundDecorationAttr = spirv::DecorationAttr::get(context, decoration);
break;
}
}
if (!foundDecorationAttr)
return emitError(unknownLoc, "unimplemented decoration support for "
"function argument with result <id> ")
<< argID;
NamedAttribute attr(StringAttr::get(context, spirv::DecorationAttr::name),
foundDecorationAttr);
argAttrs[argIndex] = DictionaryAttr::get(context, attr);
return success();
}
LogicalResult
spirv::Deserializer::processFunction(ArrayRef<uint32_t> operands) {
if (curFunction) {
return emitError(unknownLoc, "found function inside function");
}
// Get the result type
if (operands.size() != 4) {
return emitError(unknownLoc, "OpFunction must have 4 parameters");
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
uint32_t fnID = operands[1];
if (funcMap.count(fnID)) {
return emitError(unknownLoc, "duplicate function definition/declaration");
}
auto fnControl = spirv::symbolizeFunctionControl(operands[2]);
if (!fnControl) {
return emitError(unknownLoc, "unknown Function Control: ") << operands[2];
}
Type fnType = getType(operands[3]);
if (!fnType || !isa<FunctionType>(fnType)) {
return emitError(unknownLoc, "unknown function type from <id> ")
<< operands[3];
}
auto functionType = cast<FunctionType>(fnType);
if ((isVoidType(resultType) && functionType.getNumResults() != 0) ||
(functionType.getNumResults() == 1 &&
functionType.getResult(0) != resultType)) {
return emitError(unknownLoc, "mismatch in function type ")
<< functionType << " and return type " << resultType << " specified";
}
std::string fnName = getFunctionSymbol(fnID);
auto funcOp = opBuilder.create<spirv::FuncOp>(
unknownLoc, fnName, functionType, fnControl.value());
// Processing other function attributes.
if (decorations.count(fnID)) {
for (auto attr : decorations[fnID].getAttrs()) {
funcOp->setAttr(attr.getName(), attr.getValue());
}
}
curFunction = funcMap[fnID] = funcOp;
auto *entryBlock = funcOp.addEntryBlock();
LLVM_DEBUG({
logger.startLine()
<< "//===-------------------------------------------===//\n";
logger.startLine() << "[fn] name: " << fnName << "\n";
logger.startLine() << "[fn] type: " << fnType << "\n";
logger.startLine() << "[fn] ID: " << fnID << "\n";
logger.startLine() << "[fn] entry block: " << entryBlock << "\n";
logger.indent();
});
SmallVector<Attribute> argAttrs;
argAttrs.resize(functionType.getNumInputs());
// Parse the op argument instructions
if (functionType.getNumInputs()) {
for (size_t i = 0, e = functionType.getNumInputs(); i != e; ++i) {
auto argType = functionType.getInput(i);
spirv::Opcode opcode = spirv::Opcode::OpNop;
ArrayRef<uint32_t> operands;
if (failed(sliceInstruction(opcode, operands,
spirv::Opcode::OpFunctionParameter))) {
return failure();
}
if (opcode != spirv::Opcode::OpFunctionParameter) {
return emitError(
unknownLoc,
"missing OpFunctionParameter instruction for argument ")
<< i;
}
if (operands.size() != 2) {
return emitError(
unknownLoc,
"expected result type and result <id> for OpFunctionParameter");
}
auto argDefinedType = getType(operands[0]);
if (!argDefinedType || argDefinedType != argType) {
return emitError(unknownLoc,
"mismatch in argument type between function type "
"definition ")
<< functionType << " and argument type definition "
<< argDefinedType << " at argument " << i;
}
if (getValue(operands[1])) {
return emitError(unknownLoc, "duplicate definition of result <id> ")
<< operands[1];
}
if (failed(setFunctionArgAttrs(operands[1], argAttrs, i))) {
return failure();
}
auto argValue = funcOp.getArgument(i);
valueMap[operands[1]] = argValue;
}
}
if (llvm::any_of(argAttrs, [](Attribute attr) {
auto argAttr = cast<DictionaryAttr>(attr);
return !argAttr.empty();
}))
funcOp.setArgAttrsAttr(ArrayAttr::get(context, argAttrs));
// entryBlock is needed to access the arguments, Once that is done, we can
// erase the block for functions with 'Import' LinkageAttributes, since these
// are essentially function declarations, so they have no body.
auto linkageAttr = funcOp.getLinkageAttributes();
auto hasImportLinkage =
linkageAttr && (linkageAttr.value().getLinkageType().getValue() ==
spirv::LinkageType::Import);
if (hasImportLinkage)
funcOp.eraseBody();
// RAII guard to reset the insertion point to the module's region after
// deserializing the body of this function.
OpBuilder::InsertionGuard moduleInsertionGuard(opBuilder);
spirv::Opcode opcode = spirv::Opcode::OpNop;
ArrayRef<uint32_t> instOperands;
// Special handling for the entry block. We need to make sure it starts with
// an OpLabel instruction. The entry block takes the same parameters as the
// function. All other blocks do not take any parameter. We have already
// created the entry block, here we need to register it to the correct label
// <id>.
if (failed(sliceInstruction(opcode, instOperands,
spirv::Opcode::OpFunctionEnd))) {
return failure();
}
if (opcode == spirv::Opcode::OpFunctionEnd) {
return processFunctionEnd(instOperands);
}
if (opcode != spirv::Opcode::OpLabel) {
return emitError(unknownLoc, "a basic block must start with OpLabel");
}
if (instOperands.size() != 1) {
return emitError(unknownLoc, "OpLabel should only have result <id>");
}
blockMap[instOperands[0]] = entryBlock;
if (failed(processLabel(instOperands))) {
return failure();
}
// Then process all the other instructions in the function until we hit
// OpFunctionEnd.
while (succeeded(sliceInstruction(opcode, instOperands,
spirv::Opcode::OpFunctionEnd)) &&
opcode != spirv::Opcode::OpFunctionEnd) {
if (failed(processInstruction(opcode, instOperands))) {
return failure();
}
}
if (opcode != spirv::Opcode::OpFunctionEnd) {
return failure();
}
return processFunctionEnd(instOperands);
}
LogicalResult
spirv::Deserializer::processFunctionEnd(ArrayRef<uint32_t> operands) {
// Process OpFunctionEnd.
if (!operands.empty()) {
return emitError(unknownLoc, "unexpected operands for OpFunctionEnd");
}
// Wire up block arguments from OpPhi instructions.
// Put all structured control flow in spirv.mlir.selection/spirv.mlir.loop
// ops.
if (failed(wireUpBlockArgument()) || failed(structurizeControlFlow())) {
return failure();
}
curBlock = nullptr;
curFunction = std::nullopt;
LLVM_DEBUG({
logger.unindent();
logger.startLine()
<< "//===-------------------------------------------===//\n";
});
return success();
}
std::optional<std::pair<Attribute, Type>>
spirv::Deserializer::getConstant(uint32_t id) {
auto constIt = constantMap.find(id);
if (constIt == constantMap.end())
return std::nullopt;
return constIt->getSecond();
}
std::optional<spirv::SpecConstOperationMaterializationInfo>
spirv::Deserializer::getSpecConstantOperation(uint32_t id) {
auto constIt = specConstOperationMap.find(id);
if (constIt == specConstOperationMap.end())
return std::nullopt;
return constIt->getSecond();
}
std::string spirv::Deserializer::getFunctionSymbol(uint32_t id) {
auto funcName = nameMap.lookup(id).str();
if (funcName.empty()) {
funcName = "spirv_fn_" + std::to_string(id);
}
return funcName;
}
std::string spirv::Deserializer::getSpecConstantSymbol(uint32_t id) {
auto constName = nameMap.lookup(id).str();
if (constName.empty()) {
constName = "spirv_spec_const_" + std::to_string(id);
}
return constName;
}
spirv::SpecConstantOp
spirv::Deserializer::createSpecConstant(Location loc, uint32_t resultID,
TypedAttr defaultValue) {
auto symName = opBuilder.getStringAttr(getSpecConstantSymbol(resultID));
auto op = opBuilder.create<spirv::SpecConstantOp>(unknownLoc, symName,
defaultValue);
if (decorations.count(resultID)) {
for (auto attr : decorations[resultID].getAttrs())
op->setAttr(attr.getName(), attr.getValue());
}
specConstMap[resultID] = op;
return op;
}
LogicalResult
spirv::Deserializer::processGlobalVariable(ArrayRef<uint32_t> operands) {
unsigned wordIndex = 0;
if (operands.size() < 3) {
return emitError(
unknownLoc,
"OpVariable needs at least 3 operands, type, <id> and storage class");
}
// Result Type.
auto type = getType(operands[wordIndex]);
if (!type) {
return emitError(unknownLoc, "unknown result type <id> : ")
<< operands[wordIndex];
}
auto ptrType = dyn_cast<spirv::PointerType>(type);
if (!ptrType) {
return emitError(unknownLoc,
"expected a result type <id> to be a spirv.ptr, found : ")
<< type;
}
wordIndex++;
// Result <id>.
auto variableID = operands[wordIndex];
auto variableName = nameMap.lookup(variableID).str();
if (variableName.empty()) {
variableName = "spirv_var_" + std::to_string(variableID);
}
wordIndex++;
// Storage class.
auto storageClass = static_cast<spirv::StorageClass>(operands[wordIndex]);
if (ptrType.getStorageClass() != storageClass) {
return emitError(unknownLoc, "mismatch in storage class of pointer type ")
<< type << " and that specified in OpVariable instruction : "
<< stringifyStorageClass(storageClass);
}
wordIndex++;
// Initializer.
FlatSymbolRefAttr initializer = nullptr;
if (wordIndex < operands.size()) {
Operation *op = nullptr;
if (auto initOp = getGlobalVariable(operands[wordIndex]))
op = initOp;
else if (auto initOp = getSpecConstant(operands[wordIndex]))
op = initOp;
else if (auto initOp = getSpecConstantComposite(operands[wordIndex]))
op = initOp;
else
return emitError(unknownLoc, "unknown <id> ")
<< operands[wordIndex] << "used as initializer";
initializer = SymbolRefAttr::get(op);
wordIndex++;
}
if (wordIndex != operands.size()) {
return emitError(unknownLoc,
"found more operands than expected when deserializing "
"OpVariable instruction, only ")
<< wordIndex << " of " << operands.size() << " processed";
}
auto loc = createFileLineColLoc(opBuilder);
auto varOp = opBuilder.create<spirv::GlobalVariableOp>(
loc, TypeAttr::get(type), opBuilder.getStringAttr(variableName),
initializer);
// Decorations.
if (decorations.count(variableID)) {
for (auto attr : decorations[variableID].getAttrs())
varOp->setAttr(attr.getName(), attr.getValue());
}
globalVariableMap[variableID] = varOp;
return success();
}
IntegerAttr spirv::Deserializer::getConstantInt(uint32_t id) {
auto constInfo = getConstant(id);
if (!constInfo) {
return nullptr;
}
return dyn_cast<IntegerAttr>(constInfo->first);
}
LogicalResult spirv::Deserializer::processName(ArrayRef<uint32_t> operands) {
if (operands.size() < 2) {
return emitError(unknownLoc, "OpName needs at least 2 operands");
}
if (!nameMap.lookup(operands[0]).empty()) {
return emitError(unknownLoc, "duplicate name found for result <id> ")
<< operands[0];
}
unsigned wordIndex = 1;
StringRef name = decodeStringLiteral(operands, wordIndex);
if (wordIndex != operands.size()) {
return emitError(unknownLoc,
"unexpected trailing words in OpName instruction");
}
nameMap[operands[0]] = name;
return success();
}
//===----------------------------------------------------------------------===//
// Type
//===----------------------------------------------------------------------===//
LogicalResult spirv::Deserializer::processType(spirv::Opcode opcode,
ArrayRef<uint32_t> operands) {
if (operands.empty()) {
return emitError(unknownLoc, "type instruction with opcode ")
<< spirv::stringifyOpcode(opcode) << " needs at least one <id>";
}
/// TODO: Types might be forward declared in some instructions and need to be
/// handled appropriately.
if (typeMap.count(operands[0])) {
return emitError(unknownLoc, "duplicate definition for result <id> ")
<< operands[0];
}
switch (opcode) {
case spirv::Opcode::OpTypeVoid:
if (operands.size() != 1)
return emitError(unknownLoc, "OpTypeVoid must have no parameters");
typeMap[operands[0]] = opBuilder.getNoneType();
break;
case spirv::Opcode::OpTypeBool:
if (operands.size() != 1)
return emitError(unknownLoc, "OpTypeBool must have no parameters");
typeMap[operands[0]] = opBuilder.getI1Type();
break;
case spirv::Opcode::OpTypeInt: {
if (operands.size() != 3)
return emitError(
unknownLoc, "OpTypeInt must have bitwidth and signedness parameters");
// SPIR-V OpTypeInt "Signedness specifies whether there are signed semantics
// to preserve or validate.
// 0 indicates unsigned, or no signedness semantics
// 1 indicates signed semantics."
//
// So we cannot differentiate signless and unsigned integers; always use
// signless semantics for such cases.
auto sign = operands[2] == 1 ? IntegerType::SignednessSemantics::Signed
: IntegerType::SignednessSemantics::Signless;
typeMap[operands[0]] = IntegerType::get(context, operands[1], sign);
} break;
case spirv::Opcode::OpTypeFloat: {
if (operands.size() != 2)
return emitError(unknownLoc, "OpTypeFloat must have bitwidth parameter");
Type floatTy;
switch (operands[1]) {
case 16:
floatTy = opBuilder.getF16Type();
break;
case 32:
floatTy = opBuilder.getF32Type();
break;
case 64:
floatTy = opBuilder.getF64Type();
break;
default:
return emitError(unknownLoc, "unsupported OpTypeFloat bitwidth: ")
<< operands[1];
}
typeMap[operands[0]] = floatTy;
} break;
case spirv::Opcode::OpTypeVector: {
if (operands.size() != 3) {
return emitError(
unknownLoc,
"OpTypeVector must have element type and count parameters");
}
Type elementTy = getType(operands[1]);
if (!elementTy) {
return emitError(unknownLoc, "OpTypeVector references undefined <id> ")
<< operands[1];
}
typeMap[operands[0]] = VectorType::get({operands[2]}, elementTy);
} break;
case spirv::Opcode::OpTypePointer: {
return processOpTypePointer(operands);
} break;
case spirv::Opcode::OpTypeArray:
return processArrayType(operands);
case spirv::Opcode::OpTypeCooperativeMatrixKHR:
return processCooperativeMatrixTypeKHR(operands);
case spirv::Opcode::OpTypeFunction:
return processFunctionType(operands);
case spirv::Opcode::OpTypeJointMatrixINTEL:
return processJointMatrixType(operands);
case spirv::Opcode::OpTypeImage:
return processImageType(operands);
case spirv::Opcode::OpTypeSampledImage:
return processSampledImageType(operands);
case spirv::Opcode::OpTypeRuntimeArray:
return processRuntimeArrayType(operands);
case spirv::Opcode::OpTypeStruct:
return processStructType(operands);
case spirv::Opcode::OpTypeMatrix:
return processMatrixType(operands);
default:
return emitError(unknownLoc, "unhandled type instruction");
}
return success();
}
LogicalResult
spirv::Deserializer::processOpTypePointer(ArrayRef<uint32_t> operands) {
if (operands.size() != 3)
return emitError(unknownLoc, "OpTypePointer must have two parameters");
auto pointeeType = getType(operands[2]);
if (!pointeeType)
return emitError(unknownLoc, "unknown OpTypePointer pointee type <id> ")
<< operands[2];
uint32_t typePointerID = operands[0];
auto storageClass = static_cast<spirv::StorageClass>(operands[1]);
typeMap[typePointerID] = spirv::PointerType::get(pointeeType, storageClass);
for (auto *deferredStructIt = std::begin(deferredStructTypesInfos);
deferredStructIt != std::end(deferredStructTypesInfos);) {
for (auto *unresolvedMemberIt =
std::begin(deferredStructIt->unresolvedMemberTypes);
unresolvedMemberIt !=
std::end(deferredStructIt->unresolvedMemberTypes);) {
if (unresolvedMemberIt->first == typePointerID) {
// The newly constructed pointer type can resolve one of the
// deferred struct type members; update the memberTypes list and
// clean the unresolvedMemberTypes list accordingly.
deferredStructIt->memberTypes[unresolvedMemberIt->second] =
typeMap[typePointerID];
unresolvedMemberIt =
deferredStructIt->unresolvedMemberTypes.erase(unresolvedMemberIt);
} else {
++unresolvedMemberIt;
}
}
if (deferredStructIt->unresolvedMemberTypes.empty()) {
// All deferred struct type members are now resolved, set the struct body.
auto structType = deferredStructIt->deferredStructType;
assert(structType && "expected a spirv::StructType");
assert(structType.isIdentified() && "expected an indentified struct");
if (failed(structType.trySetBody(
deferredStructIt->memberTypes, deferredStructIt->offsetInfo,
deferredStructIt->memberDecorationsInfo)))
return failure();
deferredStructIt = deferredStructTypesInfos.erase(deferredStructIt);
} else {
++deferredStructIt;
}
}
return success();
}
LogicalResult
spirv::Deserializer::processArrayType(ArrayRef<uint32_t> operands) {
if (operands.size() != 3) {
return emitError(unknownLoc,
"OpTypeArray must have element type and count parameters");
}
Type elementTy = getType(operands[1]);
if (!elementTy) {
return emitError(unknownLoc, "OpTypeArray references undefined <id> ")
<< operands[1];
}
unsigned count = 0;
// TODO: The count can also come frome a specialization constant.
auto countInfo = getConstant(operands[2]);
if (!countInfo) {
return emitError(unknownLoc, "OpTypeArray count <id> ")
<< operands[2] << "can only come from normal constant right now";
}
if (auto intVal = dyn_cast<IntegerAttr>(countInfo->first)) {
count = intVal.getValue().getZExtValue();
} else {
return emitError(unknownLoc, "OpTypeArray count must come from a "
"scalar integer constant instruction");
}
typeMap[operands[0]] = spirv::ArrayType::get(
elementTy, count, typeDecorations.lookup(operands[0]));
return success();
}
LogicalResult
spirv::Deserializer::processFunctionType(ArrayRef<uint32_t> operands) {
assert(!operands.empty() && "No operands for processing function type");
if (operands.size() == 1) {
return emitError(unknownLoc, "missing return type for OpTypeFunction");
}
auto returnType = getType(operands[1]);
if (!returnType) {
return emitError(unknownLoc, "unknown return type in OpTypeFunction");
}
SmallVector<Type, 1> argTypes;
for (size_t i = 2, e = operands.size(); i < e; ++i) {
auto ty = getType(operands[i]);
if (!ty) {
return emitError(unknownLoc, "unknown argument type in OpTypeFunction");
}
argTypes.push_back(ty);
}
ArrayRef<Type> returnTypes;
if (!isVoidType(returnType)) {
returnTypes = llvm::ArrayRef(returnType);
}
typeMap[operands[0]] = FunctionType::get(context, argTypes, returnTypes);
return success();
}
LogicalResult spirv::Deserializer::processCooperativeMatrixTypeKHR(
ArrayRef<uint32_t> operands) {
if (operands.size() != 6) {
return emitError(unknownLoc,
"OpTypeCooperativeMatrixKHR must have element type, "
"scope, row and column parameters, and use");
}
Type elementTy = getType(operands[1]);
if (!elementTy) {
return emitError(unknownLoc,
"OpTypeCooperativeMatrixKHR references undefined <id> ")
<< operands[1];
}
std::optional<spirv::Scope> scope =
spirv::symbolizeScope(getConstantInt(operands[2]).getInt());
if (!scope) {
return emitError(
unknownLoc,
"OpTypeCooperativeMatrixKHR references undefined scope <id> ")
<< operands[2];
}
unsigned rows = getConstantInt(operands[3]).getInt();
unsigned columns = getConstantInt(operands[4]).getInt();
std::optional<spirv::CooperativeMatrixUseKHR> use =
spirv::symbolizeCooperativeMatrixUseKHR(
getConstantInt(operands[5]).getInt());
if (!use) {
return emitError(
unknownLoc,
"OpTypeCooperativeMatrixKHR references undefined use <id> ")
<< operands[5];
}
typeMap[operands[0]] =
spirv::CooperativeMatrixType::get(elementTy, rows, columns, *scope, *use);
return success();
}
LogicalResult
spirv::Deserializer::processJointMatrixType(ArrayRef<uint32_t> operands) {
if (operands.size() != 6) {
return emitError(unknownLoc, "OpTypeJointMatrix must have element "
"type and row x column parameters");
}
Type elementTy = getType(operands[1]);
if (!elementTy) {
return emitError(unknownLoc, "OpTypeJointMatrix references undefined <id> ")
<< operands[1];
}
auto scope = spirv::symbolizeScope(getConstantInt(operands[5]).getInt());
if (!scope) {
return emitError(unknownLoc,
"OpTypeJointMatrix references undefined scope <id> ")
<< operands[5];
}
auto matrixLayout =
spirv::symbolizeMatrixLayout(getConstantInt(operands[4]).getInt());
if (!matrixLayout) {
return emitError(unknownLoc,
"OpTypeJointMatrix references undefined scope <id> ")
<< operands[4];
}
unsigned rows = getConstantInt(operands[2]).getInt();
unsigned columns = getConstantInt(operands[3]).getInt();
typeMap[operands[0]] = spirv::JointMatrixINTELType::get(
elementTy, scope.value(), rows, columns, matrixLayout.value());
return success();
}
LogicalResult
spirv::Deserializer::processRuntimeArrayType(ArrayRef<uint32_t> operands) {
if (operands.size() != 2) {
return emitError(unknownLoc, "OpTypeRuntimeArray must have two operands");
}
Type memberType = getType(operands[1]);
if (!memberType) {
return emitError(unknownLoc,
"OpTypeRuntimeArray references undefined <id> ")
<< operands[1];
}
typeMap[operands[0]] = spirv::RuntimeArrayType::get(
memberType, typeDecorations.lookup(operands[0]));
return success();
}
LogicalResult
spirv::Deserializer::processStructType(ArrayRef<uint32_t> operands) {
// TODO: Find a way to handle identified structs when debug info is stripped.
if (operands.empty()) {
return emitError(unknownLoc, "OpTypeStruct must have at least result <id>");
}
if (operands.size() == 1) {
// Handle empty struct.
typeMap[operands[0]] =
spirv::StructType::getEmpty(context, nameMap.lookup(operands[0]).str());
return success();
}
// First element is operand ID, second element is member index in the struct.
SmallVector<std::pair<uint32_t, unsigned>, 0> unresolvedMemberTypes;
SmallVector<Type, 4> memberTypes;
for (auto op : llvm::drop_begin(operands, 1)) {
Type memberType = getType(op);
bool typeForwardPtr = (typeForwardPointerIDs.count(op) != 0);
if (!memberType && !typeForwardPtr)
return emitError(unknownLoc, "OpTypeStruct references undefined <id> ")
<< op;
if (!memberType)
unresolvedMemberTypes.emplace_back(op, memberTypes.size());
memberTypes.push_back(memberType);
}
SmallVector<spirv::StructType::OffsetInfo, 0> offsetInfo;
SmallVector<spirv::StructType::MemberDecorationInfo, 0> memberDecorationsInfo;
if (memberDecorationMap.count(operands[0])) {
auto &allMemberDecorations = memberDecorationMap[operands[0]];
for (auto memberIndex : llvm::seq<uint32_t>(0, memberTypes.size())) {
if (allMemberDecorations.count(memberIndex)) {
for (auto &memberDecoration : allMemberDecorations[memberIndex]) {
// Check for offset.
if (memberDecoration.first == spirv::Decoration::Offset) {
// If offset info is empty, resize to the number of members;
if (offsetInfo.empty()) {
offsetInfo.resize(memberTypes.size());
}
offsetInfo[memberIndex] = memberDecoration.second[0];
} else {
if (!memberDecoration.second.empty()) {
memberDecorationsInfo.emplace_back(memberIndex, /*hasValue=*/1,
memberDecoration.first,
memberDecoration.second[0]);
} else {
memberDecorationsInfo.emplace_back(memberIndex, /*hasValue=*/0,
memberDecoration.first, 0);
}
}
}
}
}
}
uint32_t structID = operands[0];
std::string structIdentifier = nameMap.lookup(structID).str();
if (structIdentifier.empty()) {
assert(unresolvedMemberTypes.empty() &&
"didn't expect unresolved member types");
typeMap[structID] =
spirv::StructType::get(memberTypes, offsetInfo, memberDecorationsInfo);
} else {
auto structTy = spirv::StructType::getIdentified(context, structIdentifier);
typeMap[structID] = structTy;
if (!unresolvedMemberTypes.empty())
deferredStructTypesInfos.push_back({structTy, unresolvedMemberTypes,
memberTypes, offsetInfo,
memberDecorationsInfo});
else if (failed(structTy.trySetBody(memberTypes, offsetInfo,
memberDecorationsInfo)))
return failure();
}
// TODO: Update StructType to have member name as attribute as
// well.
return success();
}
LogicalResult
spirv::Deserializer::processMatrixType(ArrayRef<uint32_t> operands) {
if (operands.size() != 3) {
// Three operands are needed: result_id, column_type, and column_count
return emitError(unknownLoc, "OpTypeMatrix must have 3 operands"
" (result_id, column_type, and column_count)");
}
// Matrix columns must be of vector type
Type elementTy = getType(operands[1]);
if (!elementTy) {
return emitError(unknownLoc,
"OpTypeMatrix references undefined column type.")
<< operands[1];
}
uint32_t colsCount = operands[2];
typeMap[operands[0]] = spirv::MatrixType::get(elementTy, colsCount);
return success();
}
LogicalResult
spirv::Deserializer::processTypeForwardPointer(ArrayRef<uint32_t> operands) {
if (operands.size() != 2)
return emitError(unknownLoc,
"OpTypeForwardPointer instruction must have two operands");
typeForwardPointerIDs.insert(operands[0]);
// TODO: Use the 2nd operand (Storage Class) to validate the OpTypePointer
// instruction that defines the actual type.
return success();
}
LogicalResult
spirv::Deserializer::processImageType(ArrayRef<uint32_t> operands) {
// TODO: Add support for Access Qualifier.
if (operands.size() != 8)
return emitError(
unknownLoc,
"OpTypeImage with non-eight operands are not supported yet");
Type elementTy = getType(operands[1]);
if (!elementTy)
return emitError(unknownLoc, "OpTypeImage references undefined <id>: ")
<< operands[1];
auto dim = spirv::symbolizeDim(operands[2]);
if (!dim)
return emitError(unknownLoc, "unknown Dim for OpTypeImage: ")
<< operands[2];
auto depthInfo = spirv::symbolizeImageDepthInfo(operands[3]);
if (!depthInfo)
return emitError(unknownLoc, "unknown Depth for OpTypeImage: ")
<< operands[3];
auto arrayedInfo = spirv::symbolizeImageArrayedInfo(operands[4]);
if (!arrayedInfo)
return emitError(unknownLoc, "unknown Arrayed for OpTypeImage: ")
<< operands[4];
auto samplingInfo = spirv::symbolizeImageSamplingInfo(operands[5]);
if (!samplingInfo)
return emitError(unknownLoc, "unknown MS for OpTypeImage: ") << operands[5];
auto samplerUseInfo = spirv::symbolizeImageSamplerUseInfo(operands[6]);
if (!samplerUseInfo)
return emitError(unknownLoc, "unknown Sampled for OpTypeImage: ")
<< operands[6];
auto format = spirv::symbolizeImageFormat(operands[7]);
if (!format)
return emitError(unknownLoc, "unknown Format for OpTypeImage: ")
<< operands[7];
typeMap[operands[0]] = spirv::ImageType::get(
elementTy, dim.value(), depthInfo.value(), arrayedInfo.value(),
samplingInfo.value(), samplerUseInfo.value(), format.value());
return success();
}
LogicalResult
spirv::Deserializer::processSampledImageType(ArrayRef<uint32_t> operands) {
if (operands.size() != 2)
return emitError(unknownLoc, "OpTypeSampledImage must have two operands");
Type elementTy = getType(operands[1]);
if (!elementTy)
return emitError(unknownLoc,
"OpTypeSampledImage references undefined <id>: ")
<< operands[1];
typeMap[operands[0]] = spirv::SampledImageType::get(elementTy);
return success();
}
//===----------------------------------------------------------------------===//
// Constant
//===----------------------------------------------------------------------===//
LogicalResult spirv::Deserializer::processConstant(ArrayRef<uint32_t> operands,
bool isSpec) {
StringRef opname = isSpec ? "OpSpecConstant" : "OpConstant";
if (operands.size() < 2) {
return emitError(unknownLoc)
<< opname << " must have type <id> and result <id>";
}
if (operands.size() < 3) {
return emitError(unknownLoc)
<< opname << " must have at least 1 more parameter";
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
auto checkOperandSizeForBitwidth = [&](unsigned bitwidth) -> LogicalResult {
if (bitwidth == 64) {
if (operands.size() == 4) {
return success();
}
return emitError(unknownLoc)
<< opname << " should have 2 parameters for 64-bit values";
}
if (bitwidth <= 32) {
if (operands.size() == 3) {
return success();
}
return emitError(unknownLoc)
<< opname
<< " should have 1 parameter for values with no more than 32 bits";
}
return emitError(unknownLoc, "unsupported OpConstant bitwidth: ")
<< bitwidth;
};
auto resultID = operands[1];
if (auto intType = dyn_cast<IntegerType>(resultType)) {
auto bitwidth = intType.getWidth();
if (failed(checkOperandSizeForBitwidth(bitwidth))) {
return failure();
}
APInt value;
if (bitwidth == 64) {
// 64-bit integers are represented with two SPIR-V words. According to
// SPIR-V spec: "When the type’s bit width is larger than one word, the
// literal’s low-order words appear first."
struct DoubleWord {
uint32_t word1;
uint32_t word2;
} words = {operands[2], operands[3]};
value = APInt(64, llvm::bit_cast<uint64_t>(words), /*isSigned=*/true);
} else if (bitwidth <= 32) {
value = APInt(bitwidth, operands[2], /*isSigned=*/true);
}
auto attr = opBuilder.getIntegerAttr(intType, value);
if (isSpec) {
createSpecConstant(unknownLoc, resultID, attr);
} else {
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, intType);
}
return success();
}
if (auto floatType = dyn_cast<FloatType>(resultType)) {
auto bitwidth = floatType.getWidth();
if (failed(checkOperandSizeForBitwidth(bitwidth))) {
return failure();
}
APFloat value(0.f);
if (floatType.isF64()) {
// Double values are represented with two SPIR-V words. According to
// SPIR-V spec: "When the type’s bit width is larger than one word, the
// literal’s low-order words appear first."
struct DoubleWord {
uint32_t word1;
uint32_t word2;
} words = {operands[2], operands[3]};
value = APFloat(llvm::bit_cast<double>(words));
} else if (floatType.isF32()) {
value = APFloat(llvm::bit_cast<float>(operands[2]));
} else if (floatType.isF16()) {
APInt data(16, operands[2]);
value = APFloat(APFloat::IEEEhalf(), data);
}
auto attr = opBuilder.getFloatAttr(floatType, value);
if (isSpec) {
createSpecConstant(unknownLoc, resultID, attr);
} else {
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, floatType);
}
return success();
}
return emitError(unknownLoc, "OpConstant can only generate values of "
"scalar integer or floating-point type");
}
LogicalResult spirv::Deserializer::processConstantBool(
bool isTrue, ArrayRef<uint32_t> operands, bool isSpec) {
if (operands.size() != 2) {
return emitError(unknownLoc, "Op")
<< (isSpec ? "Spec" : "") << "Constant"
<< (isTrue ? "True" : "False")
<< " must have type <id> and result <id>";
}
auto attr = opBuilder.getBoolAttr(isTrue);
auto resultID = operands[1];
if (isSpec) {
createSpecConstant(unknownLoc, resultID, attr);
} else {
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, opBuilder.getI1Type());
}
return success();
}
LogicalResult
spirv::Deserializer::processConstantComposite(ArrayRef<uint32_t> operands) {
if (operands.size() < 2) {
return emitError(unknownLoc,
"OpConstantComposite must have type <id> and result <id>");
}
if (operands.size() < 3) {
return emitError(unknownLoc,
"OpConstantComposite must have at least 1 parameter");
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
SmallVector<Attribute, 4> elements;
elements.reserve(operands.size() - 2);
for (unsigned i = 2, e = operands.size(); i < e; ++i) {
auto elementInfo = getConstant(operands[i]);
if (!elementInfo) {
return emitError(unknownLoc, "OpConstantComposite component <id> ")
<< operands[i] << " must come from a normal constant";
}
elements.push_back(elementInfo->first);
}
auto resultID = operands[1];
if (auto vectorType = dyn_cast<VectorType>(resultType)) {
auto attr = DenseElementsAttr::get(vectorType, elements);
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, resultType);
} else if (auto arrayType = dyn_cast<spirv::ArrayType>(resultType)) {
auto attr = opBuilder.getArrayAttr(elements);
constantMap.try_emplace(resultID, attr, resultType);
} else {
return emitError(unknownLoc, "unsupported OpConstantComposite type: ")
<< resultType;
}
return success();
}
LogicalResult
spirv::Deserializer::processSpecConstantComposite(ArrayRef<uint32_t> operands) {
if (operands.size() < 2) {
return emitError(unknownLoc,
"OpConstantComposite must have type <id> and result <id>");
}
if (operands.size() < 3) {
return emitError(unknownLoc,
"OpConstantComposite must have at least 1 parameter");
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
auto resultID = operands[1];
auto symName = opBuilder.getStringAttr(getSpecConstantSymbol(resultID));
SmallVector<Attribute, 4> elements;
elements.reserve(operands.size() - 2);
for (unsigned i = 2, e = operands.size(); i < e; ++i) {
auto elementInfo = getSpecConstant(operands[i]);
elements.push_back(SymbolRefAttr::get(elementInfo));
}
auto op = opBuilder.create<spirv::SpecConstantCompositeOp>(
unknownLoc, TypeAttr::get(resultType), symName,
opBuilder.getArrayAttr(elements));
specConstCompositeMap[resultID] = op;
return success();
}
LogicalResult
spirv::Deserializer::processSpecConstantOperation(ArrayRef<uint32_t> operands) {
if (operands.size() < 3)
return emitError(unknownLoc, "OpConstantOperation must have type <id>, "
"result <id>, and operand opcode");
uint32_t resultTypeID = operands[0];
if (!getType(resultTypeID))
return emitError(unknownLoc, "undefined result type from <id> ")
<< resultTypeID;
uint32_t resultID = operands[1];
spirv::Opcode enclosedOpcode = static_cast<spirv::Opcode>(operands[2]);
auto emplaceResult = specConstOperationMap.try_emplace(
resultID,
SpecConstOperationMaterializationInfo{
enclosedOpcode, resultTypeID,
SmallVector<uint32_t>{operands.begin() + 3, operands.end()}});
if (!emplaceResult.second)
return emitError(unknownLoc, "value with <id>: ")
<< resultID << " is probably defined before.";
return success();
}
Value spirv::Deserializer::materializeSpecConstantOperation(
uint32_t resultID, spirv::Opcode enclosedOpcode, uint32_t resultTypeID,
ArrayRef<uint32_t> enclosedOpOperands) {
Type resultType = getType(resultTypeID);
// Instructions wrapped by OpSpecConstantOp need an ID for their
// Deserializer::processOp<op_name>(...) to emit the corresponding SPIR-V
// dialect wrapped op. For that purpose, a new value map is created and "fake"
// ID in that map is assigned to the result of the enclosed instruction. Note
// that there is no need to update this fake ID since we only need to
// reference the created Value for the enclosed op from the spv::YieldOp
// created later in this method (both of which are the only values in their
// region: the SpecConstantOperation's region). If we encounter another
// SpecConstantOperation in the module, we simply re-use the fake ID since the
// previous Value assigned to it isn't visible in the current scope anyway.
DenseMap<uint32_t, Value> newValueMap;
llvm::SaveAndRestore valueMapGuard(valueMap, newValueMap);
constexpr uint32_t fakeID = static_cast<uint32_t>(-3);
SmallVector<uint32_t, 4> enclosedOpResultTypeAndOperands;
enclosedOpResultTypeAndOperands.push_back(resultTypeID);
enclosedOpResultTypeAndOperands.push_back(fakeID);
enclosedOpResultTypeAndOperands.append(enclosedOpOperands.begin(),
enclosedOpOperands.end());
// Process enclosed instruction before creating the enclosing
// specConstantOperation (and its region). This way, references to constants,
// global variables, and spec constants will be materialized outside the new
// op's region. For more info, see Deserializer::getValue's implementation.
if (failed(
processInstruction(enclosedOpcode, enclosedOpResultTypeAndOperands)))
return Value();
// Since the enclosed op is emitted in the current block, split it in a
// separate new block.
Block *enclosedBlock = curBlock->splitBlock(&curBlock->back());
auto loc = createFileLineColLoc(opBuilder);
auto specConstOperationOp =
opBuilder.create<spirv::SpecConstantOperationOp>(loc, resultType);
Region &body = specConstOperationOp.getBody();
// Move the new block into SpecConstantOperation's body.
body.getBlocks().splice(body.end(), curBlock->getParent()->getBlocks(),
Region::iterator(enclosedBlock));
Block &block = body.back();
// RAII guard to reset the insertion point to the module's region after
// deserializing the body of the specConstantOperation.
OpBuilder::InsertionGuard moduleInsertionGuard(opBuilder);
opBuilder.setInsertionPointToEnd(&block);
opBuilder.create<spirv::YieldOp>(loc, block.front().getResult(0));
return specConstOperationOp.getResult();
}
LogicalResult
spirv::Deserializer::processConstantNull(ArrayRef<uint32_t> operands) {
if (operands.size() != 2) {
return emitError(unknownLoc,
"OpConstantNull must have type <id> and result <id>");
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
auto resultID = operands[1];
if (resultType.isIntOrFloat() || isa<VectorType>(resultType)) {
auto attr = opBuilder.getZeroAttr(resultType);
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, resultType);
return success();
}
return emitError(unknownLoc, "unsupported OpConstantNull type: ")
<< resultType;
}
//===----------------------------------------------------------------------===//
// Control flow
//===----------------------------------------------------------------------===//
Block *spirv::Deserializer::getOrCreateBlock(uint32_t id) {
if (auto *block = getBlock(id)) {
LLVM_DEBUG(logger.startLine() << "[block] got exiting block for id = " << id
<< " @ " << block << "\n");
return block;
}
// We don't know where this block will be placed finally (in a
// spirv.mlir.selection or spirv.mlir.loop or function). Create it into the
// function for now and sort out the proper place later.
auto *block = curFunction->addBlock();
LLVM_DEBUG(logger.startLine() << "[block] created block for id = " << id
<< " @ " << block << "\n");
return blockMap[id] = block;
}
LogicalResult spirv::Deserializer::processBranch(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc, "OpBranch must appear inside a block");
}
if (operands.size() != 1) {
return emitError(unknownLoc, "OpBranch must take exactly one target label");
}
auto *target = getOrCreateBlock(operands[0]);
auto loc = createFileLineColLoc(opBuilder);
// The preceding instruction for the OpBranch instruction could be an
// OpLoopMerge or an OpSelectionMerge instruction, in this case they will have
// the same OpLine information.
opBuilder.create<spirv::BranchOp>(loc, target);
clearDebugLine();
return success();
}
LogicalResult
spirv::Deserializer::processBranchConditional(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc,
"OpBranchConditional must appear inside a block");
}
if (operands.size() != 3 && operands.size() != 5) {
return emitError(unknownLoc,
"OpBranchConditional must have condition, true label, "
"false label, and optionally two branch weights");
}
auto condition = getValue(operands[0]);
auto *trueBlock = getOrCreateBlock(operands[1]);
auto *falseBlock = getOrCreateBlock(operands[2]);
std::optional<std::pair<uint32_t, uint32_t>> weights;
if (operands.size() == 5) {
weights = std::make_pair(operands[3], operands[4]);
}
// The preceding instruction for the OpBranchConditional instruction could be
// an OpSelectionMerge instruction, in this case they will have the same
// OpLine information.
auto loc = createFileLineColLoc(opBuilder);
opBuilder.create<spirv::BranchConditionalOp>(
loc, condition, trueBlock,
/*trueArguments=*/ArrayRef<Value>(), falseBlock,
/*falseArguments=*/ArrayRef<Value>(), weights);
clearDebugLine();
return success();
}
LogicalResult spirv::Deserializer::processLabel(ArrayRef<uint32_t> operands) {
if (!curFunction) {
return emitError(unknownLoc, "OpLabel must appear inside a function");
}
if (operands.size() != 1) {
return emitError(unknownLoc, "OpLabel should only have result <id>");
}
auto labelID = operands[0];
// We may have forward declared this block.
auto *block = getOrCreateBlock(labelID);
LLVM_DEBUG(logger.startLine()
<< "[block] populating block " << block << "\n");
// If we have seen this block, make sure it was just a forward declaration.
assert(block->empty() && "re-deserialize the same block!");
opBuilder.setInsertionPointToStart(block);
blockMap[labelID] = curBlock = block;
return success();
}
LogicalResult
spirv::Deserializer::processSelectionMerge(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc, "OpSelectionMerge must appear in a block");
}
if (operands.size() < 2) {
return emitError(
unknownLoc,
"OpSelectionMerge must specify merge target and selection control");
}
auto *mergeBlock = getOrCreateBlock(operands[0]);
auto loc = createFileLineColLoc(opBuilder);
auto selectionControl = operands[1];
if (!blockMergeInfo.try_emplace(curBlock, loc, selectionControl, mergeBlock)
.second) {
return emitError(
unknownLoc,
"a block cannot have more than one OpSelectionMerge instruction");
}
return success();
}
LogicalResult
spirv::Deserializer::processLoopMerge(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc, "OpLoopMerge must appear in a block");
}
if (operands.size() < 3) {
return emitError(unknownLoc, "OpLoopMerge must specify merge target, "
"continue target and loop control");
}
auto *mergeBlock = getOrCreateBlock(operands[0]);
auto *continueBlock = getOrCreateBlock(operands[1]);
auto loc = createFileLineColLoc(opBuilder);
uint32_t loopControl = operands[2];
if (!blockMergeInfo
.try_emplace(curBlock, loc, loopControl, mergeBlock, continueBlock)
.second) {
return emitError(
unknownLoc,
"a block cannot have more than one OpLoopMerge instruction");
}
return success();
}
LogicalResult spirv::Deserializer::processPhi(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc, "OpPhi must appear in a block");
}
if (operands.size() < 4) {
return emitError(unknownLoc, "OpPhi must specify result type, result <id>, "
"and variable-parent pairs");
}
// Create a block argument for this OpPhi instruction.
Type blockArgType = getType(operands[0]);
BlockArgument blockArg = curBlock->addArgument(blockArgType, unknownLoc);
valueMap[operands[1]] = blockArg;
LLVM_DEBUG(logger.startLine()
<< "[phi] created block argument " << blockArg
<< " id = " << operands[1] << " of type " << blockArgType << "\n");
// For each (value, predecessor) pair, insert the value to the predecessor's
// blockPhiInfo entry so later we can fix the block argument there.
for (unsigned i = 2, e = operands.size(); i < e; i += 2) {
uint32_t value = operands[i];
Block *predecessor = getOrCreateBlock(operands[i + 1]);
std::pair<Block *, Block *> predecessorTargetPair{predecessor, curBlock};
blockPhiInfo[predecessorTargetPair].push_back(value);
LLVM_DEBUG(logger.startLine() << "[phi] predecessor @ " << predecessor
<< " with arg id = " << value << "\n");
}
return success();
}
namespace {
/// A class for putting all blocks in a structured selection/loop in a
/// spirv.mlir.selection/spirv.mlir.loop op.
class ControlFlowStructurizer {
public:
#ifndef NDEBUG
ControlFlowStructurizer(Location loc, uint32_t control,
spirv::BlockMergeInfoMap &mergeInfo, Block *header,
Block *merge, Block *cont,
llvm::ScopedPrinter &logger)
: location(loc), control(control), blockMergeInfo(mergeInfo),
headerBlock(header), mergeBlock(merge), continueBlock(cont),
logger(logger) {}
#else
ControlFlowStructurizer(Location loc, uint32_t control,
spirv::BlockMergeInfoMap &mergeInfo, Block *header,
Block *merge, Block *cont)
: location(loc), control(control), blockMergeInfo(mergeInfo),
headerBlock(header), mergeBlock(merge), continueBlock(cont) {}
#endif
/// Structurizes the loop at the given `headerBlock`.
///
/// This method will create an spirv.mlir.loop op in the `mergeBlock` and move
/// all blocks in the structured loop into the spirv.mlir.loop's region. All
/// branches to the `headerBlock` will be redirected to the `mergeBlock`. This
/// method will also update `mergeInfo` by remapping all blocks inside to the
/// newly cloned ones inside structured control flow op's regions.
LogicalResult structurize();
private:
/// Creates a new spirv.mlir.selection op at the beginning of the
/// `mergeBlock`.
spirv::SelectionOp createSelectionOp(uint32_t selectionControl);
/// Creates a new spirv.mlir.loop op at the beginning of the `mergeBlock`.
spirv::LoopOp createLoopOp(uint32_t loopControl);
/// Collects all blocks reachable from `headerBlock` except `mergeBlock`.
void collectBlocksInConstruct();
Location location;
uint32_t control;
spirv::BlockMergeInfoMap &blockMergeInfo;
Block *headerBlock;
Block *mergeBlock;
Block *continueBlock; // nullptr for spirv.mlir.selection
SetVector<Block *> constructBlocks;
#ifndef NDEBUG
/// A logger used to emit information during the deserialzation process.
llvm::ScopedPrinter &logger;
#endif
};
} // namespace
spirv::SelectionOp
ControlFlowStructurizer::createSelectionOp(uint32_t selectionControl) {
// Create a builder and set the insertion point to the beginning of the
// merge block so that the newly created SelectionOp will be inserted there.
OpBuilder builder(&mergeBlock->front());
auto control = static_cast<spirv::SelectionControl>(selectionControl);
auto selectionOp = builder.create<spirv::SelectionOp>(location, control);
selectionOp.addMergeBlock(builder);
return selectionOp;
}
spirv::LoopOp ControlFlowStructurizer::createLoopOp(uint32_t loopControl) {
// Create a builder and set the insertion point to the beginning of the
// merge block so that the newly created LoopOp will be inserted there.
OpBuilder builder(&mergeBlock->front());
auto control = static_cast<spirv::LoopControl>(loopControl);
auto loopOp = builder.create<spirv::LoopOp>(location, control);
loopOp.addEntryAndMergeBlock(builder);
return loopOp;
}
void ControlFlowStructurizer::collectBlocksInConstruct() {
assert(constructBlocks.empty() && "expected empty constructBlocks");
// Put the header block in the work list first.
constructBlocks.insert(headerBlock);
// For each item in the work list, add its successors excluding the merge
// block.
for (unsigned i = 0; i < constructBlocks.size(); ++i) {
for (auto *successor : constructBlocks[i]->getSuccessors())
if (successor != mergeBlock)
constructBlocks.insert(successor);
}
}
LogicalResult ControlFlowStructurizer::structurize() {
Operation *op = nullptr;
bool isLoop = continueBlock != nullptr;
if (isLoop) {
if (auto loopOp = createLoopOp(control))
op = loopOp.getOperation();
} else {
if (auto selectionOp = createSelectionOp(control))
op = selectionOp.getOperation();
}
if (!op)
return failure();
Region &body = op->getRegion(0);
IRMapping mapper;
// All references to the old merge block should be directed to the
// selection/loop merge block in the SelectionOp/LoopOp's region.
mapper.map(mergeBlock, &body.back());
collectBlocksInConstruct();
// We've identified all blocks belonging to the selection/loop's region. Now
// need to "move" them into the selection/loop. Instead of really moving the
// blocks, in the following we copy them and remap all values and branches.
// This is because:
// * Inserting a block into a region requires the block not in any region
// before. But selections/loops can nest so we can create selection/loop ops
// in a nested manner, which means some blocks may already be in a
// selection/loop region when to be moved again.
// * It's much trickier to fix up the branches into and out of the loop's
// region: we need to treat not-moved blocks and moved blocks differently:
// Not-moved blocks jumping to the loop header block need to jump to the
// merge point containing the new loop op but not the loop continue block's
// back edge. Moved blocks jumping out of the loop need to jump to the
// merge block inside the loop region but not other not-moved blocks.
// We cannot use replaceAllUsesWith clearly and it's harder to follow the
// logic.
// Create a corresponding block in the SelectionOp/LoopOp's region for each
// block in this loop construct.
OpBuilder builder(body);
for (auto *block : constructBlocks) {
// Create a block and insert it before the selection/loop merge block in the
// SelectionOp/LoopOp's region.
auto *newBlock = builder.createBlock(&body.back());
mapper.map(block, newBlock);
LLVM_DEBUG(logger.startLine() << "[cf] cloned block " << newBlock
<< " from block " << block << "\n");
if (!isFnEntryBlock(block)) {
for (BlockArgument blockArg : block->getArguments()) {
auto newArg =
newBlock->addArgument(blockArg.getType(), blockArg.getLoc());
mapper.map(blockArg, newArg);
LLVM_DEBUG(logger.startLine() << "[cf] remapped block argument "
<< blockArg << " to " << newArg << "\n");
}
} else {
LLVM_DEBUG(logger.startLine()
<< "[cf] block " << block << " is a function entry block\n");
}
for (auto &op : *block)
newBlock->push_back(op.clone(mapper));
}
// Go through all ops and remap the operands.
auto remapOperands = [&](Operation *op) {
for (auto &operand : op->getOpOperands())
if (Value mappedOp = mapper.lookupOrNull(operand.get()))
operand.set(mappedOp);
for (auto &succOp : op->getBlockOperands())
if (Block *mappedOp = mapper.lookupOrNull(succOp.get()))
succOp.set(mappedOp);
};
for (auto &block : body)
block.walk(remapOperands);
// We have created the SelectionOp/LoopOp and "moved" all blocks belonging to
// the selection/loop construct into its region. Next we need to fix the
// connections between this new SelectionOp/LoopOp with existing blocks.
// All existing incoming branches should go to the merge block, where the
// SelectionOp/LoopOp resides right now.
headerBlock->replaceAllUsesWith(mergeBlock);
LLVM_DEBUG({
logger.startLine() << "[cf] after cloning and fixing references:\n";
headerBlock->getParentOp()->print(logger.getOStream());
logger.startLine() << "\n";
});
if (isLoop) {
if (!mergeBlock->args_empty()) {
return mergeBlock->getParentOp()->emitError(
"OpPhi in loop merge block unsupported");
}
// The loop header block may have block arguments. Since now we place the
// loop op inside the old merge block, we need to make sure the old merge
// block has the same block argument list.
for (BlockArgument blockArg : headerBlock->getArguments())
mergeBlock->addArgument(blockArg.getType(), blockArg.getLoc());
// If the loop header block has block arguments, make sure the spirv.Branch
// op matches.
SmallVector<Value, 4> blockArgs;
if (!headerBlock->args_empty())
blockArgs = {mergeBlock->args_begin(), mergeBlock->args_end()};
// The loop entry block should have a unconditional branch jumping to the
// loop header block.
builder.setInsertionPointToEnd(&body.front());
builder.create<spirv::BranchOp>(location, mapper.lookupOrNull(headerBlock),
ArrayRef<Value>(blockArgs));
}
// All the blocks cloned into the SelectionOp/LoopOp's region can now be
// cleaned up.
LLVM_DEBUG(logger.startLine() << "[cf] cleaning up blocks after clone\n");
// First we need to drop all operands' references inside all blocks. This is
// needed because we can have blocks referencing SSA values from one another.
for (auto *block : constructBlocks)
block->dropAllReferences();
// Check that whether some op in the to-be-erased blocks still has uses. Those
// uses come from blocks that won't be sinked into the SelectionOp/LoopOp's
// region. We cannot handle such cases given that once a value is sinked into
// the SelectionOp/LoopOp's region, there is no escape for it:
// SelectionOp/LooOp does not support yield values right now.
for (auto *block : constructBlocks) {
for (Operation &op : *block)
if (!op.use_empty())
return op.emitOpError(
"failed control flow structurization: it has uses outside of the "
"enclosing selection/loop construct");
}
// Then erase all old blocks.
for (auto *block : constructBlocks) {
// We've cloned all blocks belonging to this construct into the structured
// control flow op's region. Among these blocks, some may compose another
// selection/loop. If so, they will be recorded within blockMergeInfo.
// We need to update the pointers there to the newly remapped ones so we can
// continue structurizing them later.
// TODO: The asserts in the following assumes input SPIR-V blob forms
// correctly nested selection/loop constructs. We should relax this and
// support error cases better.
auto it = blockMergeInfo.find(block);
if (it != blockMergeInfo.end()) {
// Use the original location for nested selection/loop ops.
Location loc = it->second.loc;
Block *newHeader = mapper.lookupOrNull(block);
if (!newHeader)
return emitError(loc, "failed control flow structurization: nested "
"loop header block should be remapped!");
Block *newContinue = it->second.continueBlock;
if (newContinue) {
newContinue = mapper.lookupOrNull(newContinue);
if (!newContinue)
return emitError(loc, "failed control flow structurization: nested "
"loop continue block should be remapped!");
}
Block *newMerge = it->second.mergeBlock;
if (Block *mappedTo = mapper.lookupOrNull(newMerge))
newMerge = mappedTo;
// The iterator should be erased before adding a new entry into
// blockMergeInfo to avoid iterator invalidation.
blockMergeInfo.erase(it);
blockMergeInfo.try_emplace(newHeader, loc, it->second.control, newMerge,
newContinue);
}
// The structured selection/loop's entry block does not have arguments.
// If the function's header block is also part of the structured control
// flow, we cannot just simply erase it because it may contain arguments
// matching the function signature and used by the cloned blocks.
if (isFnEntryBlock(block)) {
LLVM_DEBUG(logger.startLine() << "[cf] changing entry block " << block
<< " to only contain a spirv.Branch op\n");
// Still keep the function entry block for the potential block arguments,
// but replace all ops inside with a branch to the merge block.
block->clear();
builder.setInsertionPointToEnd(block);
builder.create<spirv::BranchOp>(location, mergeBlock);
} else {
LLVM_DEBUG(logger.startLine() << "[cf] erasing block " << block << "\n");
block->erase();
}
}
LLVM_DEBUG(logger.startLine()
<< "[cf] after structurizing construct with header block "
<< headerBlock << ":\n"
<< *op << "\n");
return success();
}
LogicalResult spirv::Deserializer::wireUpBlockArgument() {
LLVM_DEBUG({
logger.startLine()
<< "//----- [phi] start wiring up block arguments -----//\n";
logger.indent();
});
OpBuilder::InsertionGuard guard(opBuilder);
for (const auto &info : blockPhiInfo) {
Block *block = info.first.first;
Block *target = info.first.second;
const BlockPhiInfo &phiInfo = info.second;
LLVM_DEBUG({
logger.startLine() << "[phi] block " << block << "\n";
logger.startLine() << "[phi] before creating block argument:\n";
block->getParentOp()->print(logger.getOStream());
logger.startLine() << "\n";
});
// Set insertion point to before this block's terminator early because we
// may materialize ops via getValue() call.
auto *op = block->getTerminator();
opBuilder.setInsertionPoint(op);
SmallVector<Value, 4> blockArgs;
blockArgs.reserve(phiInfo.size());
for (uint32_t valueId : phiInfo) {
if (Value value = getValue(valueId)) {
blockArgs.push_back(value);
LLVM_DEBUG(logger.startLine() << "[phi] block argument " << value
<< " id = " << valueId << "\n");
} else {
return emitError(unknownLoc, "OpPhi references undefined value!");
}
}
if (auto branchOp = dyn_cast<spirv::BranchOp>(op)) {
// Replace the previous branch op with a new one with block arguments.
opBuilder.create<spirv::BranchOp>(branchOp.getLoc(), branchOp.getTarget(),
blockArgs);
branchOp.erase();
} else if (auto branchCondOp = dyn_cast<spirv::BranchConditionalOp>(op)) {
assert((branchCondOp.getTrueBlock() == target ||
branchCondOp.getFalseBlock() == target) &&
"expected target to be either the true or false target");
if (target == branchCondOp.getTrueTarget())
opBuilder.create<spirv::BranchConditionalOp>(
branchCondOp.getLoc(), branchCondOp.getCondition(), blockArgs,
branchCondOp.getFalseBlockArguments(),
branchCondOp.getBranchWeightsAttr(), branchCondOp.getTrueTarget(),
branchCondOp.getFalseTarget());
else
opBuilder.create<spirv::BranchConditionalOp>(
branchCondOp.getLoc(), branchCondOp.getCondition(),
branchCondOp.getTrueBlockArguments(), blockArgs,
branchCondOp.getBranchWeightsAttr(), branchCondOp.getTrueBlock(),
branchCondOp.getFalseBlock());
branchCondOp.erase();
} else {
return emitError(unknownLoc, "unimplemented terminator for Phi creation");
}
LLVM_DEBUG({
logger.startLine() << "[phi] after creating block argument:\n";
block->getParentOp()->print(logger.getOStream());
logger.startLine() << "\n";
});
}
blockPhiInfo.clear();
LLVM_DEBUG({
logger.unindent();
logger.startLine()
<< "//--- [phi] completed wiring up block arguments ---//\n";
});
return success();
}
LogicalResult spirv::Deserializer::structurizeControlFlow() {
LLVM_DEBUG({
logger.startLine()
<< "//----- [cf] start structurizing control flow -----//\n";
logger.indent();
});
while (!blockMergeInfo.empty()) {
Block *headerBlock = blockMergeInfo.begin()->first;
BlockMergeInfo mergeInfo = blockMergeInfo.begin()->second;
LLVM_DEBUG({
logger.startLine() << "[cf] header block " << headerBlock << ":\n";
headerBlock->print(logger.getOStream());
logger.startLine() << "\n";
});
auto *mergeBlock = mergeInfo.mergeBlock;
assert(mergeBlock && "merge block cannot be nullptr");
if (!mergeBlock->args_empty())
return emitError(unknownLoc, "OpPhi in loop merge block unimplemented");
LLVM_DEBUG({
logger.startLine() << "[cf] merge block " << mergeBlock << ":\n";
mergeBlock->print(logger.getOStream());
logger.startLine() << "\n";
});
auto *continueBlock = mergeInfo.continueBlock;
LLVM_DEBUG(if (continueBlock) {
logger.startLine() << "[cf] continue block " << continueBlock << ":\n";
continueBlock->print(logger.getOStream());
logger.startLine() << "\n";
});
// Erase this case before calling into structurizer, who will update
// blockMergeInfo.
blockMergeInfo.erase(blockMergeInfo.begin());
ControlFlowStructurizer structurizer(mergeInfo.loc, mergeInfo.control,
blockMergeInfo, headerBlock,
mergeBlock, continueBlock
#ifndef NDEBUG
,
logger
#endif
);
if (failed(structurizer.structurize()))
return failure();
}
LLVM_DEBUG({
logger.unindent();
logger.startLine()
<< "//--- [cf] completed structurizing control flow ---//\n";
});
return success();
}
//===----------------------------------------------------------------------===//
// Debug
//===----------------------------------------------------------------------===//
Location spirv::Deserializer::createFileLineColLoc(OpBuilder opBuilder) {
if (!debugLine)
return unknownLoc;
auto fileName = debugInfoMap.lookup(debugLine->fileID).str();
if (fileName.empty())
fileName = "<unknown>";
return FileLineColLoc::get(opBuilder.getStringAttr(fileName), debugLine->line,
debugLine->column);
}
LogicalResult
spirv::Deserializer::processDebugLine(ArrayRef<uint32_t> operands) {
// According to SPIR-V spec:
// "This location information applies to the instructions physically
// following this instruction, up to the first occurrence of any of the
// following: the next end of block, the next OpLine instruction, or the next
// OpNoLine instruction."
if (operands.size() != 3)
return emitError(unknownLoc, "OpLine must have 3 operands");
debugLine = DebugLine{operands[0], operands[1], operands[2]};
return success();
}
void spirv::Deserializer::clearDebugLine() { debugLine = std::nullopt; }
LogicalResult
spirv::Deserializer::processDebugString(ArrayRef<uint32_t> operands) {
if (operands.size() < 2)
return emitError(unknownLoc, "OpString needs at least 2 operands");
if (!debugInfoMap.lookup(operands[0]).empty())
return emitError(unknownLoc,
"duplicate debug string found for result <id> ")
<< operands[0];
unsigned wordIndex = 1;
StringRef debugString = decodeStringLiteral(operands, wordIndex);
if (wordIndex != operands.size())
return emitError(unknownLoc,
"unexpected trailing words in OpString instruction");
debugInfoMap[operands[0]] = debugString;
return success();
}
|