1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
|
//===- CFGToSCF.h - Control Flow Graph to Structured Control Flow *- C++ -*===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This code is an implementation of:
// Helge Bahmann, Nico Reissmann, Magnus Jahre, and Jan Christian Meyer. 2015.
// Perfect Reconstructability of Control Flow from Demand Dependence Graphs. ACM
// Trans. Archit. Code Optim. 11, 4, Article 66 (January 2015), 25 pages.
// https://doi.org/10.1145/2693261
//
// It defines an algorithm to translate any control flow graph with a single
// entry and single exit block into structured control flow operations
// consisting of regions of do-while loops and operations conditionally
// dispatching to one out of multiple regions before continuing after the
// operation. This includes control flow graphs containing irreducible
// control flow.
//
// The implementation here additionally supports the transformation on
// regions with multiple exit blocks. This is implemented by first
// transforming all occurrences of return-like operations to branch to a
// single exit block containing an instance of that return-like operation.
// If there are multiple kinds of return-like operations, multiple exit
// blocks are created. In that case the transformation leaves behind a
// conditional control flow graph operation that dispatches to the given regions
// terminating with different kinds of return-like operations each.
//
// If the function only contains a single kind of return-like operations,
// it is guaranteed that all control flow graph ops will be lifted to structured
// control flow, and that no more control flow graph ops remain after the
// operation.
//
// The algorithm to lift CFGs consists of two transformations applied after each
// other on any single-entry, single-exit region:
// 1) Lifting cycles to structured control flow loops
// 2) Lifting conditional branches to structured control flow branches
// These are then applied recursively on any new single-entry single-exit
// regions created by the transformation until no more CFG operations remain.
//
// The first part of cycle lifting is to detect any cycles in the CFG.
// This is done using an algorithm for iterating over SCCs. Every SCC
// representing a cycle is then transformed into a structured loop with a single
// entry block and a single latch containing the only back edge to the entry
// block and the only edge to an exit block outside the loop. Rerouting control
// flow to create single entry and exit blocks is achieved via a multiplexer
// construct that can be visualized as follows:
// +-----+ +-----+ +-----+
// | bb0 | | bb1 |...| bbN |
// +--+--+ +--+--+ +-+---+
// | | |
// | v |
// | +------+ |
// | ++ ++<----+
// | | Region |
// +>| |<----+
// ++ ++ |
// +------+------+
//
// The above transforms to:
// +-----+ +-----+ +-----+
// | bb0 | | bb1 |...| bbN |
// +-----+ +--|--+ ++----+
// | v |
// +->+-----+<---+
// | bbM |<-------+
// +---+-+ |
// +---+ | +----+ |
// | v | |
// | +------+ | |
// | ++ ++<-+ |
// +->| Region | |
// ++ ++ |
// +------+-------+
//
// bbM in the above is the multiplexer block, and any block previously branching
// to an entry block of the region are redirected to it. This includes any
// branches from within the region. Using a block argument, bbM then dispatches
// to the correct entry block of the region dependent on the predecessor.
//
// A similar transformation is done to create the latch block with the single
// back edge and loop exit edge.
//
// The above form has the advantage that bbM now acts as the loop header
// of the loop body. After the transformation on the latch, this results in a
// structured loop that can then be lifted to structured control flow. The
// conditional branches created in bbM are later lifted to conditional
// branches.
//
// Lifting conditional branches is done by analyzing the *first* conditional
// branch encountered in the entry region. The algorithm then identifies
// all blocks that are dominated by a specific control flow edge and
// the region where control flow continues:
// +-----+
// +-----+ bb0 +----+
// v +-----+ v
// Region 1 +-+-+ ... +-+-+ Region n
// +---+ +---+
// ... ...
// | |
// | +---+ |
// +---->++ ++<---+
// | |
// ++ ++ Region T
// +---+
// Every region following bb0 consists of 0 or more blocks that eventually
// branch to Region T. If there are multiple entry blocks into Region T, a
// single entry block is created using a multiplexer block as shown above.
// Region 1 to Region n are then lifted together with the conditional control
// flow operation terminating bb0 into a structured conditional operation
// followed by the operations of the entry block of Region T.
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/CFGToSCF.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace mlir;
/// Returns the mutable operand range used to transfer operands from `block` to
/// its successor with the given index. The returned range being mutable allows
/// us to modify the operands being transferred.
static MutableOperandRange
getMutableSuccessorOperands(Block *block, unsigned successorIndex) {
auto branchOpInterface = cast<BranchOpInterface>(block->getTerminator());
SuccessorOperands succOps =
branchOpInterface.getSuccessorOperands(successorIndex);
return succOps.getMutableForwardedOperands();
}
/// Return the operand range used to transfer operands from `block` to its
/// successor with the given index.
static OperandRange getSuccessorOperands(Block *block,
unsigned successorIndex) {
return getMutableSuccessorOperands(block, successorIndex);
}
/// Appends all the block arguments from `other` to the block arguments of
/// `block`, copying their types and locations.
static void addBlockArgumentsFromOther(Block *block, Block *other) {
for (BlockArgument arg : other->getArguments())
block->addArgument(arg.getType(), arg.getLoc());
}
namespace {
/// Class representing an edge in the CFG. Consists of a from-block, a successor
/// and corresponding successor operands passed to the block arguments of the
/// successor.
class Edge {
Block *fromBlock;
unsigned successorIndex;
public:
/// Constructs a new edge from `fromBlock` to the successor corresponding to
/// `successorIndex`.
Edge(Block *fromBlock, unsigned int successorIndex)
: fromBlock(fromBlock), successorIndex(successorIndex) {}
/// Returns the from-block.
Block *getFromBlock() const { return fromBlock; }
/// Returns the successor of the edge.
Block *getSuccessor() const {
return fromBlock->getSuccessor(successorIndex);
}
/// Sets the successor of the edge, adjusting the terminator in the
/// from-block.
void setSuccessor(Block *block) const {
fromBlock->getTerminator()->setSuccessor(block, successorIndex);
}
/// Returns the arguments of this edge that are passed to the block arguments
/// of the successor.
MutableOperandRange getMutableSuccessorOperands() const {
return ::getMutableSuccessorOperands(fromBlock, successorIndex);
}
/// Returns the arguments of this edge that are passed to the block arguments
/// of the successor.
OperandRange getSuccessorOperands() const {
return ::getSuccessorOperands(fromBlock, successorIndex);
}
};
/// Structure containing the entry, exit and back edges of a cycle. A cycle is a
/// generalization of a loop that may have multiple entry edges. See also
/// https://llvm.org/docs/CycleTerminology.html.
struct CycleEdges {
/// All edges from a block outside the cycle to a block inside the cycle.
/// The targets of these edges are entry blocks.
SmallVector<Edge> entryEdges;
/// All edges from a block inside the cycle to a block outside the cycle.
SmallVector<Edge> exitEdges;
/// All edges from a block inside the cycle to an entry block.
SmallVector<Edge> backEdges;
};
/// Class used to orchestrate creation of so-called edge multiplexers.
/// This class creates a new basic block and routes all inputs edges
/// to this basic block before branching to their original target.
/// The purpose of this transformation is to create single-entry,
/// single-exit regions.
class EdgeMultiplexer {
public:
/// Creates a new edge multiplexer capable of redirecting all edges to one of
/// the `entryBlocks`. This creates the multiplexer basic block with
/// appropriate block arguments after the first entry block. `extraArgs`
/// contains the types of possible extra block arguments passed to the
/// multiplexer block that are added to the successor operands of every
/// outgoing edge.
///
/// NOTE: This does not yet redirect edges to branch to the
/// multiplexer block nor code dispatching from the multiplexer code
/// to the original successors.
/// See `redirectEdge` and `createSwitch`.
static EdgeMultiplexer create(Location loc, ArrayRef<Block *> entryBlocks,
function_ref<Value(unsigned)> getSwitchValue,
function_ref<Value(Type)> getUndefValue,
TypeRange extraArgs = {}) {
assert(!entryBlocks.empty() && "Require at least one entry block");
auto *multiplexerBlock = new Block;
multiplexerBlock->insertAfter(entryBlocks.front());
// To implement the multiplexer block, we have to add the block arguments of
// every distinct successor block to the multiplexer block. When redirecting
// edges, block arguments designated for blocks that aren't branched to will
// be assigned the `getUndefValue`. The amount of block arguments and their
// offset is saved in the map for `redirectEdge` to transform the edges.
llvm::SmallMapVector<Block *, unsigned, 4> blockArgMapping;
for (Block *entryBlock : entryBlocks) {
auto [iter, inserted] = blockArgMapping.insert(
{entryBlock, multiplexerBlock->getNumArguments()});
if (inserted)
addBlockArgumentsFromOther(multiplexerBlock, entryBlock);
}
// If we have more than one successor, we have to additionally add a
// discriminator value, denoting which successor to jump to.
// When redirecting edges, an appropriate value will be passed using
// `getSwitchValue`.
Value discriminator;
if (blockArgMapping.size() > 1)
discriminator =
multiplexerBlock->addArgument(getSwitchValue(0).getType(), loc);
multiplexerBlock->addArguments(
extraArgs, SmallVector<Location>(extraArgs.size(), loc));
return EdgeMultiplexer(multiplexerBlock, getSwitchValue, getUndefValue,
std::move(blockArgMapping), discriminator);
}
/// Returns the created multiplexer block.
Block *getMultiplexerBlock() const { return multiplexerBlock; }
/// Redirects `edge` to branch to the multiplexer block before continuing to
/// its original target. The edges successor must have originally been part
/// of the entry blocks array passed to the `create` function. `extraArgs`
/// must be used to pass along any additional values corresponding to
/// `extraArgs` in `create`.
void redirectEdge(Edge edge, ValueRange extraArgs = {}) const {
const auto *result = blockArgMapping.find(edge.getSuccessor());
assert(result != blockArgMapping.end() &&
"Edge was not originally passed to `create` method.");
MutableOperandRange successorOperands = edge.getMutableSuccessorOperands();
// Extra arguments are always appended at the end of the block arguments.
unsigned extraArgsBeginIndex =
multiplexerBlock->getNumArguments() - extraArgs.size();
// If a discriminator exists, it is right before the extra arguments.
std::optional<unsigned> discriminatorIndex =
discriminator ? extraArgsBeginIndex - 1 : std::optional<unsigned>{};
SmallVector<Value> newSuccOperands(multiplexerBlock->getNumArguments());
for (BlockArgument argument : multiplexerBlock->getArguments()) {
unsigned index = argument.getArgNumber();
if (index >= result->second &&
index < result->second + edge.getSuccessor()->getNumArguments()) {
// Original block arguments to the entry block.
newSuccOperands[index] =
successorOperands[index - result->second].get();
continue;
}
// Discriminator value if it exists.
if (index == discriminatorIndex) {
newSuccOperands[index] =
getSwitchValue(result - blockArgMapping.begin());
continue;
}
// Followed by the extra arguments.
if (index >= extraArgsBeginIndex) {
newSuccOperands[index] = extraArgs[index - extraArgsBeginIndex];
continue;
}
// Otherwise undef values for any unused block arguments used by other
// entry blocks.
newSuccOperands[index] = getUndefValue(argument.getType());
}
edge.setSuccessor(multiplexerBlock);
successorOperands.assign(newSuccOperands);
}
/// Creates a switch op using `builder` which dispatches to the original
/// successors of the edges passed to `create` minus the ones in `excluded`.
/// The builder's insertion point has to be in a block dominated by the
/// multiplexer block. All edges to the multiplexer block must have already
/// been redirected using `redirectEdge`.
void createSwitch(
Location loc, OpBuilder &builder, CFGToSCFInterface &interface,
const SmallPtrSetImpl<Block *> &excluded = SmallPtrSet<Block *, 1>{}) {
// We create the switch by creating a case for all entries and then
// splitting of the last entry as a default case.
SmallVector<ValueRange> caseArguments;
SmallVector<unsigned> caseValues;
SmallVector<Block *> caseDestinations;
for (auto &&[index, pair] : llvm::enumerate(blockArgMapping)) {
auto &&[succ, offset] = pair;
if (excluded.contains(succ))
continue;
caseValues.push_back(index);
caseArguments.push_back(multiplexerBlock->getArguments().slice(
offset, succ->getNumArguments()));
caseDestinations.push_back(succ);
}
// If we don't have a discriminator due to only having one entry we have to
// create a dummy flag for the switch.
Value realDiscriminator = discriminator;
if (!realDiscriminator || caseArguments.size() == 1)
realDiscriminator = getSwitchValue(0);
caseValues.pop_back();
Block *defaultDest = caseDestinations.pop_back_val();
ValueRange defaultArgs = caseArguments.pop_back_val();
assert(!builder.getInsertionBlock()->hasNoPredecessors() &&
"Edges need to be redirected prior to creating switch.");
interface.createCFGSwitchOp(loc, builder, realDiscriminator, caseValues,
caseDestinations, caseArguments, defaultDest,
defaultArgs);
}
private:
/// Newly created multiplexer block.
Block *multiplexerBlock;
/// Callback used to create a constant suitable as flag for
/// the interfaces `createCFGSwitchOp`.
function_ref<Value(unsigned)> getSwitchValue;
/// Callback used to create undefined values of a given type.
function_ref<Value(Type)> getUndefValue;
/// Mapping of the block arguments of an entry block to the corresponding
/// block arguments in the multiplexer block. Block arguments of an entry
/// block are simply appended ot the multiplexer block. This map simply
/// contains the offset to the range in the multiplexer block.
llvm::SmallMapVector<Block *, unsigned, 4> blockArgMapping;
/// Discriminator value used in the multiplexer block to dispatch to the
/// correct entry block. Null value if not required due to only having one
/// entry block.
Value discriminator;
EdgeMultiplexer(Block *multiplexerBlock,
function_ref<Value(unsigned)> getSwitchValue,
function_ref<Value(Type)> getUndefValue,
llvm::SmallMapVector<Block *, unsigned, 4> &&entries,
Value dispatchFlag)
: multiplexerBlock(multiplexerBlock), getSwitchValue(getSwitchValue),
getUndefValue(getUndefValue), blockArgMapping(std::move(entries)),
discriminator(dispatchFlag) {}
};
/// Alternative implementation of DenseMapInfo<Operation*> using the operation
/// equivalence infrastructure to check whether two 'return-like' operations are
/// equivalent in the context of this transformation. This means that both
/// operations are of the same kind, have the same amount of operands and types
/// and the same attributes and properties. The operands themselves don't have
/// to be equivalent.
struct ReturnLikeOpEquivalence : public llvm::DenseMapInfo<Operation *> {
static unsigned getHashValue(const Operation *opC) {
return OperationEquivalence::computeHash(
const_cast<Operation *>(opC),
/*hashOperands=*/OperationEquivalence::ignoreHashValue,
/*hashResults=*/OperationEquivalence::ignoreHashValue,
OperationEquivalence::IgnoreLocations);
}
static bool isEqual(const Operation *lhs, const Operation *rhs) {
if (lhs == rhs)
return true;
if (lhs == getTombstoneKey() || lhs == getEmptyKey() ||
rhs == getTombstoneKey() || rhs == getEmptyKey())
return false;
return OperationEquivalence::isEquivalentTo(
const_cast<Operation *>(lhs), const_cast<Operation *>(rhs),
OperationEquivalence::ignoreValueEquivalence, nullptr,
OperationEquivalence::IgnoreLocations);
}
};
/// Utility-class for transforming a region to only have one single block for
/// every return-like operation.
class ReturnLikeExitCombiner {
public:
ReturnLikeExitCombiner(Region &topLevelRegion, CFGToSCFInterface &interface)
: topLevelRegion(topLevelRegion), interface(interface) {}
/// Transforms `returnLikeOp` to a branch to the only block in the
/// region with an instance of `returnLikeOp`s kind.
void combineExit(Operation *returnLikeOp,
function_ref<Value(unsigned)> getSwitchValue) {
auto [iter, inserted] =
returnLikeToCombinedExit.insert({returnLikeOp, nullptr});
if (!inserted && iter->first == returnLikeOp)
return;
Block *exitBlock = iter->second;
if (inserted) {
exitBlock = new Block;
iter->second = exitBlock;
topLevelRegion.push_back(exitBlock);
exitBlock->addArguments(
returnLikeOp->getOperandTypes(),
SmallVector<Location>(returnLikeOp->getNumOperands(),
returnLikeOp->getLoc()));
}
auto builder = OpBuilder::atBlockTerminator(returnLikeOp->getBlock());
interface.createSingleDestinationBranch(returnLikeOp->getLoc(), builder,
getSwitchValue(0), exitBlock,
returnLikeOp->getOperands());
if (!inserted) {
returnLikeOp->erase();
return;
}
returnLikeOp->moveBefore(exitBlock, exitBlock->end());
returnLikeOp->setOperands(exitBlock->getArguments());
}
private:
/// Mapping of return-like operation to block. All return-like operations
/// of the same kind with the same attributes, properties and types are seen
/// as equivalent. First occurrence seen is kept in the map.
llvm::SmallDenseMap<Operation *, Block *, 4, ReturnLikeOpEquivalence>
returnLikeToCombinedExit;
Region &topLevelRegion;
CFGToSCFInterface &interface;
};
} // namespace
/// Returns a range of all edges from `block` to each of its successors.
static auto successorEdges(Block *block) {
return llvm::map_range(llvm::seq(block->getNumSuccessors()),
[=](unsigned index) { return Edge(block, index); });
}
/// Calculates entry, exit and back edges of the given cycle.
static CycleEdges
calculateCycleEdges(const llvm::SmallSetVector<Block *, 4> &cycles) {
CycleEdges result;
SmallPtrSet<Block *, 8> entryBlocks;
// First identify all exit and entry edges by checking whether any successors
// or predecessors are from outside the cycles.
for (Block *block : cycles) {
for (auto pred = block->pred_begin(); pred != block->pred_end(); pred++) {
if (cycles.contains(*pred))
continue;
result.entryEdges.emplace_back(*pred, pred.getSuccessorIndex());
entryBlocks.insert(block);
}
for (auto &&[succIndex, succ] : llvm::enumerate(block->getSuccessors())) {
if (cycles.contains(succ))
continue;
result.exitEdges.emplace_back(block, succIndex);
}
}
// With the entry blocks identified, find all the back edges.
for (Block *block : cycles) {
for (auto &&[succIndex, succ] : llvm::enumerate(block->getSuccessors())) {
if (!entryBlocks.contains(succ))
continue;
result.backEdges.emplace_back(block, succIndex);
}
}
return result;
}
/// Creates a single entry block out of multiple entry edges using an edge
/// multiplexer and returns it.
static EdgeMultiplexer
createSingleEntryBlock(Location loc, ArrayRef<Edge> entryEdges,
function_ref<Value(unsigned)> getSwitchValue,
function_ref<Value(Type)> getUndefValue,
CFGToSCFInterface &interface) {
auto result = EdgeMultiplexer::create(
loc, llvm::map_to_vector(entryEdges, std::mem_fn(&Edge::getSuccessor)),
getSwitchValue, getUndefValue);
// Redirect the edges prior to creating the switch op.
// We guarantee that predecessors are up to date.
for (Edge edge : entryEdges)
result.redirectEdge(edge);
auto builder = OpBuilder::atBlockBegin(result.getMultiplexerBlock());
result.createSwitch(loc, builder, interface);
return result;
}
namespace {
/// Special loop properties of a structured loop.
/// A structured loop is a loop satisfying all of the following:
/// * Has at most one entry, one exit and one back edge.
/// * The back edge originates from the same block as the exit edge.
struct StructuredLoopProperties {
/// Block containing both the single exit edge and the single back edge.
Block *latch;
/// Loop condition of type equal to a value returned by `getSwitchValue`.
Value condition;
/// Exit block which is the only successor of the loop.
Block *exitBlock;
};
} // namespace
/// Transforms a loop into a structured loop with only a single back edge and
/// exiting edge, originating from the same block.
static FailureOr<StructuredLoopProperties> createSingleExitingLatch(
Location loc, ArrayRef<Edge> backEdges, ArrayRef<Edge> exitEdges,
function_ref<Value(unsigned)> getSwitchValue,
function_ref<Value(Type)> getUndefValue, CFGToSCFInterface &interface,
ReturnLikeExitCombiner &exitCombiner) {
assert(llvm::all_equal(
llvm::map_range(backEdges, std::mem_fn(&Edge::getSuccessor))) &&
"All repetition edges must lead to the single loop header");
// First create the multiplexer block, which will be our latch, for all back
// edges and exit edges. We pass an additional argument to the multiplexer
// block which indicates whether the latch was reached from what was
// originally a back edge or an exit block.
// This is later used to branch using the new only back edge.
SmallVector<Block *> successors;
llvm::append_range(
successors, llvm::map_range(backEdges, std::mem_fn(&Edge::getSuccessor)));
llvm::append_range(
successors, llvm::map_range(exitEdges, std::mem_fn(&Edge::getSuccessor)));
auto multiplexer =
EdgeMultiplexer::create(loc, successors, getSwitchValue, getUndefValue,
/*extraArgs=*/getSwitchValue(0).getType());
auto *latchBlock = multiplexer.getMultiplexerBlock();
// Create a separate exit block that comes right after the latch.
auto *exitBlock = new Block;
exitBlock->insertAfter(latchBlock);
// Since this is a loop, all back edges point to the same loop header.
Block *loopHeader = backEdges.front().getSuccessor();
// Redirect the edges prior to creating the switch op.
// We guarantee that predecessors are up to date.
// Redirecting back edges with `shouldRepeat` as 1.
for (Edge backEdge : backEdges)
multiplexer.redirectEdge(backEdge, /*extraArgs=*/getSwitchValue(1));
// Redirecting exits edges with `shouldRepeat` as 0.
for (Edge exitEdge : exitEdges)
multiplexer.redirectEdge(exitEdge, /*extraArgs=*/getSwitchValue(0));
// Create the new only back edge to the loop header. Branch to the
// exit block otherwise.
Value shouldRepeat = latchBlock->getArguments().back();
{
auto builder = OpBuilder::atBlockBegin(latchBlock);
interface.createConditionalBranch(
loc, builder, shouldRepeat, loopHeader,
latchBlock->getArguments().take_front(loopHeader->getNumArguments()),
/*falseDest=*/exitBlock,
/*falseArgs=*/{});
}
{
auto builder = OpBuilder::atBlockBegin(exitBlock);
if (!exitEdges.empty()) {
// Create the switch dispatching to what were originally the multiple exit
// blocks. The loop header has to explicitly be excluded in the below
// switch as we would otherwise be creating a new loop again. All back
// edges leading to the loop header have already been handled in the
// switch above. The remaining edges can only jump to blocks outside the
// loop.
SmallPtrSet<Block *, 1> excluded = {loopHeader};
multiplexer.createSwitch(loc, builder, interface, excluded);
} else {
// A loop without an exit edge is a statically known infinite loop.
// Since structured control flow ops are not terminator ops, the caller
// has to create a fitting return-like unreachable terminator operation.
FailureOr<Operation *> terminator = interface.createUnreachableTerminator(
loc, builder, *latchBlock->getParent());
if (failed(terminator))
return failure();
// Transform the just created transform operation in the case that an
// occurrence of it existed in input IR.
exitCombiner.combineExit(*terminator, getSwitchValue);
}
}
return StructuredLoopProperties{latchBlock, /*condition=*/shouldRepeat,
exitBlock};
}
/// Transforms a structured loop into a loop in reduce form.
///
/// Reduce form is defined as a structured loop where:
/// (0) No values defined within the loop body are used outside the loop body.
/// (1) The block arguments and successor operands of the exit block are equal
/// to the block arguments of the loop header and the successor operands
/// of the back edge.
///
/// This is required for many structured control flow ops as they tend
/// to not have separate "loop result arguments" and "loop iteration arguments"
/// at the end of the block. Rather, the "loop iteration arguments" from the
/// last iteration are the result of the loop.
///
/// Note that the requirement of (0) is shared with LCSSA form in LLVM. However,
/// due to this being a structured loop instead of a general loop, we do not
/// require complicated dominance algorithms nor SSA updating making this
/// implementation easier than creating a generic LCSSA transformation pass.
static SmallVector<Value>
transformToReduceLoop(Block *loopHeader, Block *exitBlock,
const llvm::SmallSetVector<Block *, 4> &loopBlocks,
function_ref<Value(Type)> getUndefValue,
DominanceInfo &dominanceInfo) {
Block *latch = exitBlock->getSinglePredecessor();
assert(latch &&
"Exit block must have only latch as predecessor at this point");
assert(exitBlock->getNumArguments() == 0 &&
"Exit block mustn't have any block arguments at this point");
unsigned loopHeaderIndex = 0;
unsigned exitBlockIndex = 1;
if (latch->getSuccessor(loopHeaderIndex) != loopHeader)
std::swap(loopHeaderIndex, exitBlockIndex);
assert(latch->getSuccessor(loopHeaderIndex) == loopHeader);
assert(latch->getSuccessor(exitBlockIndex) == exitBlock);
MutableOperandRange exitBlockSuccessorOperands =
getMutableSuccessorOperands(latch, exitBlockIndex);
// Save the values as a vector, not a `MutableOperandRange` as the latter gets
// invalidated when mutating the operands through a different
// `MutableOperandRange` of the same operation.
SmallVector<Value> loopHeaderSuccessorOperands =
llvm::to_vector(getSuccessorOperands(latch, loopHeaderIndex));
// Add all values used in the next iteration to the exit block. Replace
// any uses that are outside the loop with the newly created exit block.
for (Value arg : loopHeaderSuccessorOperands) {
BlockArgument exitArg = exitBlock->addArgument(arg.getType(), arg.getLoc());
exitBlockSuccessorOperands.append(arg);
arg.replaceUsesWithIf(exitArg, [&](OpOperand &use) {
return !loopBlocks.contains(use.getOwner()->getBlock());
});
}
// Loop below might add block arguments to the latch and loop header.
// Save the block arguments prior to the loop to not process these.
SmallVector<BlockArgument> latchBlockArgumentsPrior =
llvm::to_vector(latch->getArguments());
SmallVector<BlockArgument> loopHeaderArgumentsPrior =
llvm::to_vector(loopHeader->getArguments());
// Go over all values defined within the loop body. If any of them are used
// outside the loop body, create a block argument on the exit block and loop
// header and replace the outside uses with the exit block argument.
// The loop header block argument is added to satisfy requirement (1) in the
// reduce form condition.
for (Block *loopBlock : loopBlocks) {
// Cache dominance queries for loopBlock.
// There are likely to be many duplicate queries as there can be many value
// definitions within a block.
llvm::SmallDenseMap<Block *, bool> dominanceCache;
// Returns true if `loopBlock` dominates `block`.
auto loopBlockDominates = [&](Block *block) {
auto [iter, inserted] = dominanceCache.insert({block, false});
if (!inserted)
return iter->second;
iter->second = dominanceInfo.dominates(loopBlock, block);
return iter->second;
};
auto checkValue = [&](Value value) {
Value blockArgument;
for (OpOperand &use : llvm::make_early_inc_range(value.getUses())) {
// Go through all the parent blocks and find the one part of the region
// of the loop. If the block is part of the loop, then the value does
// not escape the loop through this use.
Block *currBlock = use.getOwner()->getBlock();
while (currBlock && currBlock->getParent() != loopHeader->getParent())
currBlock = currBlock->getParentOp()->getBlock();
if (loopBlocks.contains(currBlock))
continue;
// Block argument is only created the first time it is required.
if (!blockArgument) {
blockArgument =
exitBlock->addArgument(value.getType(), value.getLoc());
loopHeader->addArgument(value.getType(), value.getLoc());
// `value` might be defined in a block that does not dominate `latch`
// but previously dominated an exit block with a use.
// In this case, add a block argument to the latch and go through all
// predecessors. If the value dominates the predecessor, pass the
// value as a successor operand, otherwise pass undef.
// The above is unnecessary if the value is a block argument of the
// latch or if `value` dominates all predecessors.
Value argument = value;
if (value.getParentBlock() != latch &&
llvm::any_of(latch->getPredecessors(), [&](Block *pred) {
return !loopBlockDominates(pred);
})) {
argument = latch->addArgument(value.getType(), value.getLoc());
for (auto iter = latch->pred_begin(); iter != latch->pred_end();
++iter) {
Value succOperand = value;
if (!loopBlockDominates(*iter))
succOperand = getUndefValue(value.getType());
getMutableSuccessorOperands(*iter, iter.getSuccessorIndex())
.append(succOperand);
}
}
loopHeaderSuccessorOperands.push_back(argument);
for (Edge edge : successorEdges(latch))
edge.getMutableSuccessorOperands().append(argument);
}
use.set(blockArgument);
}
};
if (loopBlock == latch)
llvm::for_each(latchBlockArgumentsPrior, checkValue);
else if (loopBlock == loopHeader)
llvm::for_each(loopHeaderArgumentsPrior, checkValue);
else
llvm::for_each(loopBlock->getArguments(), checkValue);
for (Operation &op : *loopBlock)
llvm::for_each(op.getResults(), checkValue);
}
// New block arguments may have been added to the loop header.
// Adjust the entry edges to pass undef values to these.
for (auto iter = loopHeader->pred_begin(); iter != loopHeader->pred_end();
++iter) {
// Latch successor arguments have already been handled.
if (*iter == latch)
continue;
MutableOperandRange succOps =
getMutableSuccessorOperands(*iter, iter.getSuccessorIndex());
succOps.append(llvm::map_to_vector(
loopHeader->getArguments().drop_front(succOps.size()),
[&](BlockArgument arg) { return getUndefValue(arg.getType()); }));
}
return loopHeaderSuccessorOperands;
}
/// Transforms all outer-most cycles in the region with the region entry
/// `regionEntry` into structured loops. Returns the entry blocks of any newly
/// created regions potentially requiring further transformations.
static FailureOr<SmallVector<Block *>> transformCyclesToSCFLoops(
Block *regionEntry, function_ref<Value(unsigned)> getSwitchValue,
function_ref<Value(Type)> getUndefValue, CFGToSCFInterface &interface,
DominanceInfo &dominanceInfo, ReturnLikeExitCombiner &exitCombiner) {
SmallVector<Block *> newSubRegions;
auto scc = llvm::scc_begin(regionEntry);
while (!scc.isAtEnd()) {
if (!scc.hasCycle()) {
++scc;
continue;
}
// Save the set and increment the SCC iterator early to avoid our
// modifications breaking the SCC iterator.
llvm::SmallSetVector<Block *, 4> cycleBlockSet(scc->begin(), scc->end());
++scc;
CycleEdges edges = calculateCycleEdges(cycleBlockSet);
Block *loopHeader = edges.entryEdges.front().getSuccessor();
// First turn the cycle into a loop by creating a single entry block if
// needed.
if (edges.entryEdges.size() > 1) {
SmallVector<Edge> edgesToEntryBlocks;
llvm::append_range(edgesToEntryBlocks, edges.entryEdges);
llvm::append_range(edgesToEntryBlocks, edges.backEdges);
EdgeMultiplexer multiplexer = createSingleEntryBlock(
loopHeader->getTerminator()->getLoc(), edgesToEntryBlocks,
getSwitchValue, getUndefValue, interface);
loopHeader = multiplexer.getMultiplexerBlock();
}
cycleBlockSet.insert(loopHeader);
// Then turn it into a structured loop by creating a single latch.
FailureOr<StructuredLoopProperties> loopProperties =
createSingleExitingLatch(
edges.backEdges.front().getFromBlock()->getTerminator()->getLoc(),
edges.backEdges, edges.exitEdges, getSwitchValue, getUndefValue,
interface, exitCombiner);
if (failed(loopProperties))
return failure();
Block *latchBlock = loopProperties->latch;
Block *exitBlock = loopProperties->exitBlock;
cycleBlockSet.insert(latchBlock);
cycleBlockSet.insert(loopHeader);
// Finally, turn it into reduce form.
SmallVector<Value> iterationValues = transformToReduceLoop(
loopHeader, exitBlock, cycleBlockSet, getUndefValue, dominanceInfo);
// Create a block acting as replacement for the loop header and insert
// the structured loop into it.
auto *newLoopParentBlock = new Block;
newLoopParentBlock->insertBefore(loopHeader);
addBlockArgumentsFromOther(newLoopParentBlock, loopHeader);
Region::BlockListType &blocks = regionEntry->getParent()->getBlocks();
Region loopBody;
// Make sure the loop header is the entry block.
loopBody.push_back(blocks.remove(loopHeader));
for (Block *block : cycleBlockSet)
if (block != latchBlock && block != loopHeader)
loopBody.push_back(blocks.remove(block));
// And the latch is the last block.
loopBody.push_back(blocks.remove(latchBlock));
Operation *oldTerminator = latchBlock->getTerminator();
oldTerminator->remove();
auto builder = OpBuilder::atBlockBegin(newLoopParentBlock);
FailureOr<Operation *> structuredLoopOp =
interface.createStructuredDoWhileLoopOp(
builder, oldTerminator, newLoopParentBlock->getArguments(),
loopProperties->condition, iterationValues, std::move(loopBody));
if (failed(structuredLoopOp))
return failure();
oldTerminator->erase();
newSubRegions.push_back(loopHeader);
for (auto &&[oldValue, newValue] : llvm::zip(
exitBlock->getArguments(), (*structuredLoopOp)->getResults()))
oldValue.replaceAllUsesWith(newValue);
loopHeader->replaceAllUsesWith(newLoopParentBlock);
// Merge the exit block right after the loop operation.
newLoopParentBlock->getOperations().splice(newLoopParentBlock->end(),
exitBlock->getOperations());
exitBlock->erase();
}
return newSubRegions;
}
/// Makes sure the branch region only has a single exit. This is required by the
/// recursive part of the algorithm, as it expects the CFG to be single-entry
/// and single-exit. This is done by simply creating an empty block if there
/// is more than one block with an edge to the continuation block. All blocks
/// with edges to the continuation are then redirected to this block. A region
/// terminator is later placed into the block.
static void createSingleExitBranchRegion(
ArrayRef<Block *> branchRegion, Block *continuation,
SmallVectorImpl<std::pair<Block *, SmallVector<Value>>> &createdEmptyBlocks,
Region &conditionalRegion) {
Block *singleExitBlock = nullptr;
std::optional<Edge> previousEdgeToContinuation;
Region::BlockListType &parentBlockList =
branchRegion.front()->getParent()->getBlocks();
for (Block *block : branchRegion) {
for (Edge edge : successorEdges(block)) {
if (edge.getSuccessor() != continuation)
continue;
if (!previousEdgeToContinuation) {
previousEdgeToContinuation = edge;
continue;
}
// If this is not the first edge to the continuation we create the
// single exit block and redirect the edges.
if (!singleExitBlock) {
singleExitBlock = new Block;
addBlockArgumentsFromOther(singleExitBlock, continuation);
previousEdgeToContinuation->setSuccessor(singleExitBlock);
createdEmptyBlocks.emplace_back(singleExitBlock,
singleExitBlock->getArguments());
}
edge.setSuccessor(singleExitBlock);
}
conditionalRegion.push_back(parentBlockList.remove(block));
}
if (singleExitBlock)
conditionalRegion.push_back(singleExitBlock);
}
/// Returns true if this block is an exit block of the region.
static bool isRegionExitBlock(Block *block) {
return block->getNumSuccessors() == 0;
}
/// Transforms the first occurrence of conditional control flow in `regionEntry`
/// into conditionally executed regions. Returns the entry block of the created
/// regions and the region after the conditional control flow.
static FailureOr<SmallVector<Block *>> transformToStructuredCFBranches(
Block *regionEntry, function_ref<Value(unsigned)> getSwitchValue,
function_ref<Value(Type)> getUndefValue, CFGToSCFInterface &interface,
DominanceInfo &dominanceInfo) {
// Trivial region.
if (regionEntry->getNumSuccessors() == 0)
return SmallVector<Block *>{};
if (regionEntry->getNumSuccessors() == 1) {
// Single successor we can just splice together.
Block *successor = regionEntry->getSuccessor(0);
for (auto &&[oldValue, newValue] : llvm::zip(
successor->getArguments(), getSuccessorOperands(regionEntry, 0)))
oldValue.replaceAllUsesWith(newValue);
regionEntry->getTerminator()->erase();
regionEntry->getOperations().splice(regionEntry->end(),
successor->getOperations());
successor->erase();
return SmallVector<Block *>{regionEntry};
}
// Split the CFG into "#numSuccessor + 1" regions.
// For every edge to a successor, the blocks it solely dominates are
// determined and become the region following that edge.
// The last region is the continuation that follows the branch regions.
SmallPtrSet<Block *, 8> notContinuation;
notContinuation.insert(regionEntry);
SmallVector<SmallVector<Block *>> successorBranchRegions(
regionEntry->getNumSuccessors());
for (auto &&[blockList, succ] :
llvm::zip(successorBranchRegions, regionEntry->getSuccessors())) {
// If the region entry is not the only predecessor, then the edge does not
// dominate the block it leads to.
if (succ->getSinglePredecessor() != regionEntry)
continue;
// Otherwise get all blocks it dominates in DFS/pre-order.
DominanceInfoNode *node = dominanceInfo.getNode(succ);
for (DominanceInfoNode *curr : llvm::depth_first(node)) {
blockList.push_back(curr->getBlock());
notContinuation.insert(curr->getBlock());
}
}
// Finds all relevant edges and checks the shape of the control flow graph at
// this point.
// Branch regions may either:
// * Be post-dominated by the continuation
// * Be post-dominated by a return-like op
// * Dominate a return-like op and have an edge to the continuation.
//
// The control flow graph may then be one of three cases:
// 1) All branch regions are post-dominated by the continuation. This is the
// usual case. If there are multiple entry blocks into the continuation a
// single entry block has to be created. A structured control flow op
// can then be created from the branch regions.
//
// 2) No branch region has an edge to a continuation:
// +-----+
// +-----+ bb0 +----+
// v +-----+ v
// Region 1 +-+--+ ... +-+--+ Region n
// |ret1| |ret2|
// +----+ +----+
//
// This can only occur if every region ends with a different kind of
// return-like op. In that case the control flow operation must stay as we are
// unable to create a single exit-block. We can nevertheless process all its
// successors as they single-entry, single-exit regions.
//
// 3) Only some branch regions are post-dominated by the continuation.
// The other branch regions may either be post-dominated by a return-like op
// or lead to either the continuation or return-like op.
// In this case we also create a single entry block like in 1) that also
// includes all edges to the return-like op:
// +-----+
// +-----+ bb0 +----+
// v +-----+ v
// Region 1 +-+-+ ... +-+-+ Region n
// +---+ +---+
// +---+ |... ...
// |ret|<-+ | |
// +---+ | +---+ |
// +---->++ ++<---+
// | |
// ++ ++ Region T
// +---+
// This transforms to:
// +-----+
// +-----+ bb0 +----+
// v +-----+ v
// Region 1 +-+-+ ... +-+-+ Region n
// +---+ +---+
// ... +-----+ ...
// +---->+ bbM +<---+
// +-----+
// +-----+ |
// | v
// +---+ | +---+
// |ret+<---+ ++ ++
// +---+ | |
// ++ ++ Region T
// +---+
//
// bb0 to bbM is now a single-entry, single-exit region that applies to case
// 1). The control flow op at the end of bbM will trigger case 2.
SmallVector<Edge> continuationEdges;
bool continuationPostDominatesAllRegions = true;
bool noSuccessorHasContinuationEdge = true;
for (auto &&[entryEdge, branchRegion] :
llvm::zip(successorEdges(regionEntry), successorBranchRegions)) {
// If the branch region is empty then the branch target itself is part of
// the continuation.
if (branchRegion.empty()) {
continuationEdges.push_back(entryEdge);
noSuccessorHasContinuationEdge = false;
continue;
}
for (Block *block : branchRegion) {
if (isRegionExitBlock(block)) {
// If a return-like op is part of the branch region then the
// continuation no longer post-dominates the branch region.
// Add all its incoming edges to edge list to create the single-exit
// block for all branch regions.
continuationPostDominatesAllRegions = false;
for (auto iter = block->pred_begin(); iter != block->pred_end();
++iter) {
continuationEdges.emplace_back(*iter, iter.getSuccessorIndex());
}
continue;
}
for (Edge edge : successorEdges(block)) {
if (notContinuation.contains(edge.getSuccessor()))
continue;
continuationEdges.push_back(edge);
noSuccessorHasContinuationEdge = false;
}
}
}
// case 2) Keep the control flow op but process its successors further.
if (noSuccessorHasContinuationEdge)
return llvm::to_vector(regionEntry->getSuccessors());
Block *continuation = llvm::find_singleton<Block>(
continuationEdges, [](Edge edge, bool) { return edge.getSuccessor(); },
/*AllowRepeats=*/true);
// In case 3) or if not all continuation edges have the same entry block,
// create a single entry block as continuation for all branch regions.
if (!continuation || !continuationPostDominatesAllRegions) {
EdgeMultiplexer multiplexer = createSingleEntryBlock(
continuationEdges.front().getFromBlock()->getTerminator()->getLoc(),
continuationEdges, getSwitchValue, getUndefValue, interface);
continuation = multiplexer.getMultiplexerBlock();
}
// Trigger reprocess of case 3) after creating the single entry block.
if (!continuationPostDominatesAllRegions) {
// Unlike in the general case, we are explicitly revisiting the same region
// entry again after having changed its control flow edges and dominance.
// We have to therefore explicitly invalidate the dominance tree.
dominanceInfo.invalidate(regionEntry->getParent());
return SmallVector<Block *>{regionEntry};
}
SmallVector<Block *> newSubRegions;
// Empty blocks with the values they return to the parent op.
SmallVector<std::pair<Block *, SmallVector<Value>>> createdEmptyBlocks;
// Create the branch regions.
std::vector<Region> conditionalRegions(successorBranchRegions.size());
for (auto &&[branchRegion, entryEdge, conditionalRegion] :
llvm::zip(successorBranchRegions, successorEdges(regionEntry),
conditionalRegions)) {
if (branchRegion.empty()) {
// If no block is part of the branch region, we create a dummy block to
// place the region terminator into.
createdEmptyBlocks.emplace_back(
new Block, llvm::to_vector(entryEdge.getSuccessorOperands()));
conditionalRegion.push_back(createdEmptyBlocks.back().first);
continue;
}
createSingleExitBranchRegion(branchRegion, continuation, createdEmptyBlocks,
conditionalRegion);
// The entries of the branch regions may only have redundant block arguments
// since the edge to the branch region is always dominating.
Block *subRegionEntryBlock = &conditionalRegion.front();
for (auto &&[oldValue, newValue] :
llvm::zip(subRegionEntryBlock->getArguments(),
entryEdge.getSuccessorOperands()))
oldValue.replaceAllUsesWith(newValue);
subRegionEntryBlock->eraseArguments(0,
subRegionEntryBlock->getNumArguments());
newSubRegions.push_back(subRegionEntryBlock);
}
Operation *structuredCondOp;
{
auto opBuilder = OpBuilder::atBlockTerminator(regionEntry);
FailureOr<Operation *> result = interface.createStructuredBranchRegionOp(
opBuilder, regionEntry->getTerminator(),
continuation->getArgumentTypes(), conditionalRegions);
if (failed(result))
return failure();
structuredCondOp = *result;
regionEntry->getTerminator()->erase();
}
for (auto &&[block, valueRange] : createdEmptyBlocks) {
auto builder = OpBuilder::atBlockEnd(block);
LogicalResult result = interface.createStructuredBranchRegionTerminatorOp(
structuredCondOp->getLoc(), builder, structuredCondOp, nullptr,
valueRange);
if (failed(result))
return failure();
}
// Any leftover users of the continuation must be from unconditional branches
// in a branch region. There can only be at most one per branch region as
// all branch regions have been made single-entry single-exit above.
// Replace them with the region terminator.
for (Operation *user : llvm::make_early_inc_range(continuation->getUsers())) {
assert(user->getNumSuccessors() == 1);
auto builder = OpBuilder::atBlockTerminator(user->getBlock());
LogicalResult result = interface.createStructuredBranchRegionTerminatorOp(
user->getLoc(), builder, structuredCondOp, user,
getMutableSuccessorOperands(user->getBlock(), 0).getAsOperandRange());
if (failed(result))
return failure();
user->erase();
}
for (auto &&[oldValue, newValue] :
llvm::zip(continuation->getArguments(), structuredCondOp->getResults()))
oldValue.replaceAllUsesWith(newValue);
// Splice together the continuations operations with the region entry.
regionEntry->getOperations().splice(regionEntry->end(),
continuation->getOperations());
continuation->erase();
// After splicing the continuation, the region has to be reprocessed as it has
// new successors.
newSubRegions.push_back(regionEntry);
return newSubRegions;
}
/// Transforms the region to only have a single block for every kind of
/// return-like operation that all previous occurrences of the return-like op
/// branch to. If the region only contains a single kind of return-like
/// operation, it creates a single-entry and single-exit region.
static ReturnLikeExitCombiner createSingleExitBlocksForReturnLike(
Region ®ion, function_ref<Value(unsigned)> getSwitchValue,
CFGToSCFInterface &interface) {
ReturnLikeExitCombiner exitCombiner(region, interface);
for (Block &block : region.getBlocks()) {
if (block.getNumSuccessors() != 0)
continue;
exitCombiner.combineExit(block.getTerminator(), getSwitchValue);
}
return exitCombiner;
}
/// Checks all preconditions of the transformation prior to any transformations.
/// Returns failure if any precondition is violated.
static LogicalResult checkTransformationPreconditions(Region ®ion) {
for (Block &block : region.getBlocks())
if (block.hasNoPredecessors() && !block.isEntryBlock())
return block.front().emitOpError(
"transformation does not support unreachable blocks");
WalkResult result = region.walk([](Operation *operation) {
if (operation->getNumSuccessors() == 0)
return WalkResult::advance();
// This transformation requires all ops with successors to implement the
// branch op interface. It is impossible to adjust their block arguments
// otherwise.
auto branchOpInterface = dyn_cast<BranchOpInterface>(operation);
if (!branchOpInterface) {
operation->emitOpError("transformation does not support terminators with "
"successors not implementing BranchOpInterface");
return WalkResult::interrupt();
}
// Branch operations must have no side effects. Replacing them would not be
// valid otherwise.
if (!isMemoryEffectFree(branchOpInterface)) {
branchOpInterface->emitOpError(
"transformation does not support terminators with side effects");
return WalkResult::interrupt();
}
for (unsigned index : llvm::seq(operation->getNumSuccessors())) {
SuccessorOperands succOps = branchOpInterface.getSuccessorOperands(index);
// We cannot support operations with operation-produced successor operands
// as it is currently not possible to pass them to any block arguments
// other than the first. This breaks creating multiplexer blocks and would
// likely need special handling elsewhere too.
if (succOps.getProducedOperandCount() == 0)
continue;
branchOpInterface->emitOpError("transformation does not support "
"operations with operation-produced "
"successor operands");
return WalkResult::interrupt();
}
return WalkResult::advance();
});
return failure(result.wasInterrupted());
}
FailureOr<bool> mlir::transformCFGToSCF(Region ®ion,
CFGToSCFInterface &interface,
DominanceInfo &dominanceInfo) {
if (region.empty() || region.hasOneBlock())
return false;
if (failed(checkTransformationPreconditions(region)))
return failure();
DenseMap<Type, Value> typedUndefCache;
auto getUndefValue = [&](Type type) {
auto [iter, inserted] = typedUndefCache.insert({type, nullptr});
if (!inserted)
return iter->second;
auto constantBuilder = OpBuilder::atBlockBegin(®ion.front());
iter->second =
interface.getUndefValue(region.getLoc(), constantBuilder, type);
return iter->second;
};
// The transformation only creates all values in the range of 0 to
// max(#numSuccessors). Therefore using a vector instead of a map.
SmallVector<Value> switchValueCache;
auto getSwitchValue = [&](unsigned value) {
if (value < switchValueCache.size())
if (switchValueCache[value])
return switchValueCache[value];
auto constantBuilder = OpBuilder::atBlockBegin(®ion.front());
switchValueCache.resize(
std::max<size_t>(switchValueCache.size(), value + 1));
switchValueCache[value] =
interface.getCFGSwitchValue(region.getLoc(), constantBuilder, value);
return switchValueCache[value];
};
ReturnLikeExitCombiner exitCombiner =
createSingleExitBlocksForReturnLike(region, getSwitchValue, interface);
// Invalidate any dominance tree on the region as the exit combiner has
// added new blocks and edges.
dominanceInfo.invalidate(®ion);
SmallVector<Block *> workList = {®ion.front()};
while (!workList.empty()) {
Block *current = workList.pop_back_val();
// Turn all top-level cycles in the CFG to structured control flow first.
// After this transformation, the remaining CFG ops form a DAG.
FailureOr<SmallVector<Block *>> newRegions =
transformCyclesToSCFLoops(current, getSwitchValue, getUndefValue,
interface, dominanceInfo, exitCombiner);
if (failed(newRegions))
return failure();
// Add the newly created subregions to the worklist. These are the
// bodies of the loops.
llvm::append_range(workList, *newRegions);
// Invalidate the dominance tree as blocks have been moved, created and
// added during the cycle to structured loop transformation.
if (!newRegions->empty())
dominanceInfo.invalidate(current->getParent());
newRegions = transformToStructuredCFBranches(
current, getSwitchValue, getUndefValue, interface, dominanceInfo);
if (failed(newRegions))
return failure();
// Invalidating the dominance tree is generally not required by the
// transformation above as the new region entries correspond to unaffected
// subtrees in the dominator tree. Only its parent nodes have changed but
// won't be visited again.
llvm::append_range(workList, *newRegions);
}
return true;
}
|