1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
// RUN: mlir-opt %s -test-affine-reify-value-bounds -cse -verify-diagnostics \
// RUN: -verify-diagnostics -split-input-file | FileCheck %s
#map_dim_i = affine_map<(d0)[s0] -> (-d0 + 32400, s0)>
#map_dim_j = affine_map<(d0)[s0] -> (-d0 + 16, s0)>
// Here the upper bound for min_i is 4 x vscale, as we know 4 x vscale is
// always less than 32400. The bound for min_j is 16, as 16 is always less
// 4 x vscale_max (vscale_max is the UB for vscale).
// CHECK: #[[$SCALABLE_BOUND_MAP_0:.*]] = affine_map<()[s0] -> (s0 * 4)>
// CHECK-LABEL: @fixed_size_loop_nest
// CHECK-DAG: %[[VSCALE:.*]] = vector.vscale
// CHECK-DAG: %[[UB_i:.*]] = affine.apply #[[$SCALABLE_BOUND_MAP_0]]()[%[[VSCALE]]]
// CHECK-DAG: %[[UB_j:.*]] = arith.constant 16 : index
// CHECK: "test.some_use"(%[[UB_i]], %[[UB_j]]) : (index, index) -> ()
func.func @fixed_size_loop_nest() {
%c16 = arith.constant 16 : index
%c32400 = arith.constant 32400 : index
%c4 = arith.constant 4 : index
%c0 = arith.constant 0 : index
%vscale = vector.vscale
%c4_vscale = arith.muli %vscale, %c4 : index
scf.for %i = %c0 to %c32400 step %c4_vscale {
%min_i = affine.min #map_dim_i(%i)[%c4_vscale]
scf.for %j = %c0 to %c16 step %c4_vscale {
%min_j = affine.min #map_dim_j(%j)[%c4_vscale]
%bound_i = "test.reify_bound"(%min_i) {type = "UB", vscale_min = 1, vscale_max = 16, scalable} : (index) -> index
%bound_j = "test.reify_bound"(%min_j) {type = "UB", vscale_min = 1, vscale_max = 16, scalable} : (index) -> index
"test.some_use"(%bound_i, %bound_j) : (index, index) -> ()
}
}
return
}
// -----
#map_dynamic_dim = affine_map<(d0)[s0, s1] -> (-d0 + s1, s0)>
// Here upper bounds for both min_i and min_j are both (conservatively)
// 4 x vscale, as we know that is always the largest value they could take. As
// if `dim < 4 x vscale` then 4 x vscale is an overestimate, and if
// `dim > 4 x vscale` then the min will be clamped to 4 x vscale.
// CHECK: #[[$SCALABLE_BOUND_MAP_1:.*]] = affine_map<()[s0] -> (s0 * 4)>
// CHECK-LABEL: @dynamic_size_loop_nest
// CHECK: %[[VSCALE:.*]] = vector.vscale
// CHECK: %[[UB_ij:.*]] = affine.apply #[[$SCALABLE_BOUND_MAP_1]]()[%[[VSCALE]]]
// CHECK: "test.some_use"(%[[UB_ij]], %[[UB_ij]]) : (index, index) -> ()
func.func @dynamic_size_loop_nest(%dim0: index, %dim1: index) {
%c4 = arith.constant 4 : index
%c0 = arith.constant 0 : index
%vscale = vector.vscale
%c4_vscale = arith.muli %vscale, %c4 : index
scf.for %i = %c0 to %dim0 step %c4_vscale {
%min_i = affine.min #map_dynamic_dim(%i)[%c4_vscale, %dim0]
scf.for %j = %c0 to %dim1 step %c4_vscale {
%min_j = affine.min #map_dynamic_dim(%j)[%c4_vscale, %dim1]
%bound_i = "test.reify_bound"(%min_i) {type = "UB", vscale_min = 1, vscale_max = 16, scalable} : (index) -> index
%bound_j = "test.reify_bound"(%min_j) {type = "UB", vscale_min = 1, vscale_max = 16, scalable} : (index) -> index
"test.some_use"(%bound_i, %bound_j) : (index, index) -> ()
}
}
return
}
// -----
// Here the bound is just a value + a constant.
// CHECK: #[[$SCALABLE_BOUND_MAP_2:.*]] = affine_map<()[s0] -> (s0 + 8)>
// CHECK-LABEL: @add_to_vscale
// CHECK: %[[VSCALE:.*]] = vector.vscale
// CHECK: %[[SCALABLE_BOUND:.*]] = affine.apply #[[$SCALABLE_BOUND_MAP_2]]()[%[[VSCALE]]]
// CHECK: "test.some_use"(%[[SCALABLE_BOUND]]) : (index) -> ()
func.func @add_to_vscale() {
%vscale = vector.vscale
%c8 = arith.constant 8 : index
%vscale_plus_c8 = arith.addi %vscale, %c8 : index
%bound = "test.reify_bound"(%vscale_plus_c8) {type = "EQ", vscale_min = 1, vscale_max = 16, scalable} : (index) -> index
"test.some_use"(%bound) : (index) -> ()
return
}
// -----
// Here we know vscale is always 2 so we get a constant bound.
// CHECK-LABEL: @vscale_fixed_size
// CHECK: %[[C2:.*]] = arith.constant 2 : index
// CHECK: "test.some_use"(%[[C2]]) : (index) -> ()
func.func @vscale_fixed_size() {
%vscale = vector.vscale
%bound = "test.reify_bound"(%vscale) {type = "EQ", vscale_min = 2, vscale_max = 2, scalable} : (index) -> index
"test.some_use"(%bound) : (index) -> ()
return
}
// -----
// Here we don't know the upper bound (%a is underspecified)
func.func @unknown_bound(%a: index) {
%vscale = vector.vscale
%vscale_plus_a = arith.muli %vscale, %a : index
// expected-error @below{{could not reify bound}}
%bound = "test.reify_bound"(%vscale_plus_a) {type = "UB", vscale_min = 1, vscale_max = 16, scalable} : (index) -> index
"test.some_use"(%bound) : (index) -> ()
return
}
// -----
// Here we have two vscale values (that have not been CSE'd), but they should
// still be treated as equivalent.
// CHECK: #[[$SCALABLE_BOUND_MAP_3:.*]] = affine_map<()[s0] -> (s0 * 6)>
// CHECK-LABEL: @duplicate_vscale_values
// CHECK: %[[VSCALE:.*]] = vector.vscale
// CHECK: %[[SCALABLE_BOUND:.*]] = affine.apply #[[$SCALABLE_BOUND_MAP_3]]()[%[[VSCALE]]]
// CHECK: "test.some_use"(%[[SCALABLE_BOUND]]) : (index) -> ()
func.func @duplicate_vscale_values() {
%c4 = arith.constant 4 : index
%vscale_0 = vector.vscale
%c2 = arith.constant 2 : index
%vscale_1 = vector.vscale
%c4_vscale = arith.muli %vscale_0, %c4 : index
%c2_vscale = arith.muli %vscale_1, %c2 : index
%add = arith.addi %c2_vscale, %c4_vscale : index
%bound = "test.reify_bound"(%add) {type = "EQ", vscale_min = 1, vscale_max = 16, scalable} : (index) -> index
"test.some_use"(%bound) : (index) -> ()
return
}
// -----
// Test some non-scalable code to ensure that works too:
#map_dim_i = affine_map<(d0)[s0] -> (-d0 + 1024, s0)>
// CHECK-LABEL: @non_scalable_code
// CHECK: %[[C4:.*]] = arith.constant 4 : index
// CHECK: "test.some_use"(%[[C4]]) : (index) -> ()
func.func @non_scalable_code() {
%c1024 = arith.constant 1024 : index
%c4 = arith.constant 4 : index
%c0 = arith.constant 0 : index
scf.for %i = %c0 to %c1024 step %c4 {
%min_i = affine.min #map_dim_i(%i)[%c4]
%bound_i = "test.reify_bound"(%min_i) {type = "UB", vscale_min = 1, vscale_max = 16, scalable} : (index) -> index
"test.some_use"(%bound_i) : (index) -> ()
}
return
}
// -----
#remainder_start_index = affine_map<()[s0] -> (-(1000 mod s0) + 1000)>
#remaining_iterations = affine_map<(d0) -> (-d0 + 1000)>
// CHECK: #[[$REMAINDER_START_MAP:.*]] = affine_map<()[s0] -> (-(1000 mod s0) + 1000)>
// CHECK: #[[$SCALABLE_BOUND_MAP_4:.*]] = affine_map<()[s0] -> (s0 * 8 - 1)>
// CHECK-LABEL: @test_scalable_remainder_loop
// CHECK: %[[VSCALE:.*]] = vector.vscale
// CHECK: %[[SCALABLE_BOUND:.*]] = affine.apply #[[$SCALABLE_BOUND_MAP_4]]()[%[[VSCALE]]]
// CHECK: "test.some_use"(%[[SCALABLE_BOUND]]) : (index) -> ()
func.func @test_scalable_remainder_loop() {
%c8 = arith.constant 8 : index
%c1000 = arith.constant 1000 : index
%vscale = vector.vscale
%c8_vscale = arith.muli %vscale, %c8 : index
%0 = affine.apply #remainder_start_index()[%c8_vscale]
scf.for %arg1 = %0 to %c1000 step %c8_vscale {
%remaining_iterations = affine.apply #remaining_iterations(%arg1)
// The upper bound for the remainder loop iterations should be: %c8_vscale - 1
// (expressed as an affine map, affine_map<()[s0] -> (s0 * 8 - 1)>, where s0 is vscale)
%bound = "test.reify_bound"(%remaining_iterations) <{scalable, type = "UB", vscale_min = 1 : i64, vscale_max = 16 : i64}> : (index) -> index
"test.some_use"(%bound) : (index) -> ()
}
return
}
// -----
#unsupported_semi_affine = affine_map<()[s0] -> (s0 * s0)>
func.func @unsupported_semi_affine() {
%vscale = vector.vscale
%0 = affine.apply #unsupported_semi_affine()[%vscale]
// expected-error @below{{could not reify bound}}
%bound = "test.reify_bound"(%0) <{scalable, type = "UB", vscale_min = 1 : i64, vscale_max = 16 : i64}> : (index) -> index
"test.some_use"(%bound) : (index) -> ()
return
}
// -----
#map_mod = affine_map<()[s0] -> (1000 mod s0)>
func.func @unsupported_negative_mod() {
%c_minus_1 = arith.constant -1 : index
%vscale = vector.vscale
%negative_vscale = arith.muli %vscale, %c_minus_1 : index
%0 = affine.apply #map_mod()[%negative_vscale]
// expected-error @below{{could not reify bound}}
%bound = "test.reify_bound"(%0) <{scalable, type = "UB", vscale_min = 1 : i64, vscale_max = 16 : i64}> : (index) -> index
"test.some_use"(%bound) : (index) -> ()
return
}
// -----
// CHECK: #[[$SCALABLE_BOUND_MAP_5:.*]] = affine_map<()[s0] -> (s0 * 4)>
// CHECK-LABEL: @extract_slice_loop
// CHECK: %[[VSCALE:.*]] = vector.vscale
// CHECK: %[[SCALABLE_BOUND:.*]] = affine.apply #[[$SCALABLE_BOUND_MAP_5]]()[%[[VSCALE]]]
// CHECK: "test.some_use"(%[[SCALABLE_BOUND]]) : (index) -> ()
func.func @extract_slice_loop(%tensor: tensor<1x1x3x?xf32>) {
%vscale = vector.vscale
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%c2 = arith.constant 2 : index
%c3 = arith.constant 3 : index
%c4 = arith.constant 4 : index
%cst = arith.constant 0.0 : f32
%c4_vscale = arith.muli %c4, %vscale : index
%slice = tensor.extract_slice %tensor[0, 0, 0, 0] [1, 1, 3, %c4_vscale] [1, 1, 1, 1] : tensor<1x1x3x?xf32> to tensor<1x3x?xf32>
%15 = scf.for %arg6 = %c0 to %c3 step %c1 iter_args(%arg = %slice) -> (tensor<1x3x?xf32>) {
%dim = tensor.dim %arg, %c2 : tensor<1x3x?xf32>
%bound = "test.reify_bound"(%dim) {type = "LB", vscale_min = 1, vscale_max = 16, scalable} : (index) -> index
"test.some_use"(%bound) : (index) -> ()
scf.yield %arg : tensor<1x3x?xf32>
}
return
}
|