1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
|
//===- AffineExprTest.cpp - unit tests for affine expression API ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <cstdint>
#include <limits>
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "gtest/gtest.h"
using namespace mlir;
// Test creating AffineExprs using the overloaded binary operators.
TEST(AffineExprTest, constructFromBinaryOperators) {
MLIRContext ctx;
OpBuilder b(&ctx);
auto d0 = b.getAffineDimExpr(0);
auto d1 = b.getAffineDimExpr(1);
auto sum = d0 + d1;
auto difference = d0 - d1;
auto product = d0 * d1;
auto remainder = d0 % d1;
ASSERT_EQ(sum.getKind(), AffineExprKind::Add);
ASSERT_EQ(difference.getKind(), AffineExprKind::Add);
ASSERT_EQ(product.getKind(), AffineExprKind::Mul);
ASSERT_EQ(remainder.getKind(), AffineExprKind::Mod);
}
TEST(AffineExprTest, constantFolding) {
MLIRContext ctx;
OpBuilder b(&ctx);
auto cn1 = b.getAffineConstantExpr(-1);
auto c0 = b.getAffineConstantExpr(0);
auto c1 = b.getAffineConstantExpr(1);
auto c2 = b.getAffineConstantExpr(2);
auto c3 = b.getAffineConstantExpr(3);
auto c6 = b.getAffineConstantExpr(6);
auto cmax = b.getAffineConstantExpr(std::numeric_limits<int64_t>::max());
auto cmin = b.getAffineConstantExpr(std::numeric_limits<int64_t>::min());
ASSERT_EQ(getAffineBinaryOpExpr(AffineExprKind::Add, c1, c2), c3);
ASSERT_EQ(getAffineBinaryOpExpr(AffineExprKind::Mul, c2, c3), c6);
ASSERT_EQ(getAffineBinaryOpExpr(AffineExprKind::FloorDiv, c3, c2), c1);
ASSERT_EQ(getAffineBinaryOpExpr(AffineExprKind::CeilDiv, c3, c2), c2);
// Test division by zero:
auto c3ceildivc0 = getAffineBinaryOpExpr(AffineExprKind::CeilDiv, c3, c0);
ASSERT_EQ(c3ceildivc0.getKind(), AffineExprKind::CeilDiv);
auto c3floordivc0 = getAffineBinaryOpExpr(AffineExprKind::FloorDiv, c3, c0);
ASSERT_EQ(c3floordivc0.getKind(), AffineExprKind::FloorDiv);
auto c3modc0 = getAffineBinaryOpExpr(AffineExprKind::Mod, c3, c0);
ASSERT_EQ(c3modc0.getKind(), AffineExprKind::Mod);
// Test overflow:
auto cmaxplusc1 = getAffineBinaryOpExpr(AffineExprKind::Add, cmax, c1);
ASSERT_EQ(cmaxplusc1.getKind(), AffineExprKind::Add);
auto cmaxtimesc2 = getAffineBinaryOpExpr(AffineExprKind::Mul, cmax, c2);
ASSERT_EQ(cmaxtimesc2.getKind(), AffineExprKind::Mul);
auto cminceildivcn1 =
getAffineBinaryOpExpr(AffineExprKind::CeilDiv, cmin, cn1);
ASSERT_EQ(cminceildivcn1.getKind(), AffineExprKind::CeilDiv);
auto cminfloordivcn1 =
getAffineBinaryOpExpr(AffineExprKind::FloorDiv, cmin, cn1);
ASSERT_EQ(cminfloordivcn1.getKind(), AffineExprKind::FloorDiv);
}
TEST(AffineExprTest, divisionSimplification) {
MLIRContext ctx;
OpBuilder b(&ctx);
auto cn6 = b.getAffineConstantExpr(-6);
auto c6 = b.getAffineConstantExpr(6);
auto d0 = b.getAffineDimExpr(0);
auto d1 = b.getAffineDimExpr(1);
ASSERT_EQ(c6.floorDiv(-1), cn6);
ASSERT_EQ((d0 * 6).floorDiv(2), d0 * 3);
ASSERT_EQ((d0 * 6).floorDiv(4).getKind(), AffineExprKind::FloorDiv);
ASSERT_EQ((d0 * 6).floorDiv(-2), d0 * -3);
ASSERT_EQ((d0 * 6 + d1).floorDiv(2), d0 * 3 + d1.floorDiv(2));
ASSERT_EQ((d0 * 6 + d1).floorDiv(-2), d0 * -3 + d1.floorDiv(-2));
ASSERT_EQ((d0 * 6 + d1).floorDiv(4).getKind(), AffineExprKind::FloorDiv);
ASSERT_EQ(c6.ceilDiv(-1), cn6);
ASSERT_EQ((d0 * 6).ceilDiv(2), d0 * 3);
ASSERT_EQ((d0 * 6).ceilDiv(4).getKind(), AffineExprKind::CeilDiv);
ASSERT_EQ((d0 * 6).ceilDiv(-2), d0 * -3);
}
TEST(AffineExprTest, modSimplificationRegression) {
MLIRContext ctx;
OpBuilder b(&ctx);
auto d0 = b.getAffineDimExpr(0);
auto sum = d0 + d0.floorDiv(3).floorDiv(-3);
ASSERT_EQ(sum.getKind(), AffineExprKind::Add);
}
TEST(AffineExprTest, divisorOfNegativeFloorDiv) {
MLIRContext ctx;
OpBuilder b(&ctx);
ASSERT_EQ(b.getAffineDimExpr(0).floorDiv(-1).getLargestKnownDivisor(), 1);
}
|