File: ShapedTypeTest.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 1,998,520 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (287 lines) | stat: -rw-r--r-- 11,049 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
//===- ShapedTypeTest.cpp - ShapedType unit tests -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/DialectInterface.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/SmallVector.h"
#include "gtest/gtest.h"
#include <cstdint>

using namespace mlir;
using namespace mlir::detail;

namespace {
TEST(ShapedTypeTest, CloneMemref) {
  MLIRContext context;

  Type i32 = IntegerType::get(&context, 32);
  Type f32 = FloatType::getF32(&context);
  Attribute memSpace = IntegerAttr::get(IntegerType::get(&context, 64), 7);
  Type memrefOriginalType = i32;
  llvm::SmallVector<int64_t> memrefOriginalShape({10, 20});
  AffineMap map = makeStridedLinearLayoutMap({2, 3}, 5, &context);

  ShapedType memrefType =
      (ShapedType)MemRefType::Builder(memrefOriginalShape, memrefOriginalType)
          .setMemorySpace(memSpace)
          .setLayout(AffineMapAttr::get(map));
  // Update shape.
  llvm::SmallVector<int64_t> memrefNewShape({30, 40});
  ASSERT_NE(memrefOriginalShape, memrefNewShape);
  ASSERT_EQ(memrefType.clone(memrefNewShape),
            (ShapedType)MemRefType::Builder(memrefNewShape, memrefOriginalType)
                .setMemorySpace(memSpace)
                .setLayout(AffineMapAttr::get(map)));
  // Update type.
  Type memrefNewType = f32;
  ASSERT_NE(memrefOriginalType, memrefNewType);
  ASSERT_EQ(memrefType.clone(memrefNewType),
            (MemRefType)MemRefType::Builder(memrefOriginalShape, memrefNewType)
                .setMemorySpace(memSpace)
                .setLayout(AffineMapAttr::get(map)));
  // Update both.
  ASSERT_EQ(memrefType.clone(memrefNewShape, memrefNewType),
            (MemRefType)MemRefType::Builder(memrefNewShape, memrefNewType)
                .setMemorySpace(memSpace)
                .setLayout(AffineMapAttr::get(map)));

  // Test unranked memref cloning.
  ShapedType unrankedTensorType =
      UnrankedMemRefType::get(memrefOriginalType, memSpace);
  ASSERT_EQ(unrankedTensorType.clone(memrefNewShape),
            (MemRefType)MemRefType::Builder(memrefNewShape, memrefOriginalType)
                .setMemorySpace(memSpace));
  ASSERT_EQ(unrankedTensorType.clone(memrefNewType),
            UnrankedMemRefType::get(memrefNewType, memSpace));
  ASSERT_EQ(unrankedTensorType.clone(memrefNewShape, memrefNewType),
            (MemRefType)MemRefType::Builder(memrefNewShape, memrefNewType)
                .setMemorySpace(memSpace));
}

TEST(ShapedTypeTest, CloneTensor) {
  MLIRContext context;

  Type i32 = IntegerType::get(&context, 32);
  Type f32 = FloatType::getF32(&context);

  Type tensorOriginalType = i32;
  llvm::SmallVector<int64_t> tensorOriginalShape({10, 20});

  // Test ranked tensor cloning.
  ShapedType tensorType =
      RankedTensorType::get(tensorOriginalShape, tensorOriginalType);
  // Update shape.
  llvm::SmallVector<int64_t> tensorNewShape({30, 40});
  ASSERT_NE(tensorOriginalShape, tensorNewShape);
  ASSERT_EQ(
      tensorType.clone(tensorNewShape),
      (ShapedType)RankedTensorType::get(tensorNewShape, tensorOriginalType));
  // Update type.
  Type tensorNewType = f32;
  ASSERT_NE(tensorOriginalType, tensorNewType);
  ASSERT_EQ(
      tensorType.clone(tensorNewType),
      (ShapedType)RankedTensorType::get(tensorOriginalShape, tensorNewType));
  // Update both.
  ASSERT_EQ(tensorType.clone(tensorNewShape, tensorNewType),
            (ShapedType)RankedTensorType::get(tensorNewShape, tensorNewType));

  // Test unranked tensor cloning.
  ShapedType unrankedTensorType = UnrankedTensorType::get(tensorOriginalType);
  ASSERT_EQ(
      unrankedTensorType.clone(tensorNewShape),
      (ShapedType)RankedTensorType::get(tensorNewShape, tensorOriginalType));
  ASSERT_EQ(unrankedTensorType.clone(tensorNewType),
            (ShapedType)UnrankedTensorType::get(tensorNewType));
  ASSERT_EQ(
      unrankedTensorType.clone(tensorNewShape),
      (ShapedType)RankedTensorType::get(tensorNewShape, tensorOriginalType));
}

TEST(ShapedTypeTest, CloneVector) {
  MLIRContext context;

  Type i32 = IntegerType::get(&context, 32);
  Type f32 = FloatType::getF32(&context);

  Type vectorOriginalType = i32;
  llvm::SmallVector<int64_t> vectorOriginalShape({10, 20});
  ShapedType vectorType =
      VectorType::get(vectorOriginalShape, vectorOriginalType);
  // Update shape.
  llvm::SmallVector<int64_t> vectorNewShape({30, 40});
  ASSERT_NE(vectorOriginalShape, vectorNewShape);
  ASSERT_EQ(vectorType.clone(vectorNewShape),
            VectorType::get(vectorNewShape, vectorOriginalType));
  // Update type.
  Type vectorNewType = f32;
  ASSERT_NE(vectorOriginalType, vectorNewType);
  ASSERT_EQ(vectorType.clone(vectorNewType),
            VectorType::get(vectorOriginalShape, vectorNewType));
  // Update both.
  ASSERT_EQ(vectorType.clone(vectorNewShape, vectorNewType),
            VectorType::get(vectorNewShape, vectorNewType));
}

TEST(ShapedTypeTest, VectorTypeBuilder) {
  MLIRContext context;
  Type f32 = FloatType::getF32(&context);

  SmallVector<int64_t> shape{2, 4, 8, 9, 1};
  SmallVector<bool> scalableDims{true, false, true, false, false};
  VectorType vectorType = VectorType::get(shape, f32, scalableDims);

  {
    // Drop some dims.
    VectorType dropFrontTwoDims =
        VectorType::Builder(vectorType).dropDim(0).dropDim(0);
    ASSERT_EQ(vectorType.getElementType(), dropFrontTwoDims.getElementType());
    ASSERT_EQ(vectorType.getShape().drop_front(2), dropFrontTwoDims.getShape());
    ASSERT_EQ(vectorType.getScalableDims().drop_front(2),
              dropFrontTwoDims.getScalableDims());
  }

  {
    // Set some dims.
    VectorType setTwoDims =
        VectorType::Builder(vectorType).setDim(0, 10).setDim(3, 12);
    ASSERT_EQ(setTwoDims.getShape(), ArrayRef<int64_t>({10, 4, 8, 12, 1}));
    ASSERT_EQ(vectorType.getElementType(), setTwoDims.getElementType());
    ASSERT_EQ(vectorType.getScalableDims(), setTwoDims.getScalableDims());
  }

  {
    // Test for bug from:
    // https://github.com/llvm/llvm-project/commit/b44b3494f60296db6aca38a14cab061d9b747a0a
    // Constructs a temporary builder, modifies it, copies it to `builder`.
    // This used to lead to a use-after-free. Running under sanitizers will
    // catch any issues.
    VectorType::Builder builder = VectorType::Builder(vectorType).setDim(0, 16);
    VectorType newVectorType = VectorType(builder);
    ASSERT_EQ(newVectorType.getDimSize(0), 16);
  }

  {
    // Make builder from scratch (without scalable dims) -- this use to lead to
    // a use-after-free see: https://github.com/llvm/llvm-project/pull/68969.
    // Running under sanitizers will catch any issues.
    SmallVector<int64_t> shape{1, 2, 3, 4};
    VectorType::Builder builder(shape, f32);
    ASSERT_EQ(VectorType(builder).getShape(), ArrayRef(shape));
  }

  {
    // Set vector shape (without scalable dims) -- this use to lead to
    // a use-after-free see: https://github.com/llvm/llvm-project/pull/68969.
    // Running under sanitizers will catch any issues.
    VectorType::Builder builder(vectorType);
    SmallVector<int64_t> newShape{2, 2};
    builder.setShape(newShape);
    ASSERT_EQ(VectorType(builder).getShape(), ArrayRef(newShape));
  }
}

TEST(ShapedTypeTest, RankedTensorTypeBuilder) {
  MLIRContext context;
  Type f32 = FloatType::getF32(&context);

  SmallVector<int64_t> shape{2, 4, 8, 16, 32};
  RankedTensorType tensorType = RankedTensorType::get(shape, f32);

  {
    // Drop some dims.
    RankedTensorType dropFrontTwoDims =
        RankedTensorType::Builder(tensorType).dropDim(0).dropDim(1).dropDim(0);
    ASSERT_EQ(tensorType.getElementType(), dropFrontTwoDims.getElementType());
    ASSERT_EQ(dropFrontTwoDims.getShape(), ArrayRef<int64_t>({16, 32}));
  }

  {
    // Insert some dims.
    RankedTensorType insertTwoDims =
        RankedTensorType::Builder(tensorType).insertDim(7, 2).insertDim(9, 3);
    ASSERT_EQ(tensorType.getElementType(), insertTwoDims.getElementType());
    ASSERT_EQ(insertTwoDims.getShape(),
              ArrayRef<int64_t>({2, 4, 7, 9, 8, 16, 32}));
  }

  {
    // Test for bug from:
    // https://github.com/llvm/llvm-project/commit/b44b3494f60296db6aca38a14cab061d9b747a0a
    // Constructs a temporary builder, modifies it, copies it to `builder`.
    // This used to lead to a use-after-free. Running under sanitizers will
    // catch any issues.
    RankedTensorType::Builder builder =
        RankedTensorType::Builder(tensorType).dropDim(0);
    RankedTensorType newTensorType = RankedTensorType(builder);
    ASSERT_EQ(tensorType.getShape().drop_front(), newTensorType.getShape());
  }
}

/// Simple wrapper class to enable "isa querying" and simple accessing of
/// encoding.
class TensorWithString : public RankedTensorType {
public:
  using RankedTensorType::RankedTensorType;

  static TensorWithString get(ArrayRef<int64_t> shape, Type elementType,
                              StringRef name) {
    return mlir::cast<TensorWithString>(RankedTensorType::get(
        shape, elementType, StringAttr::get(elementType.getContext(), name)));
  }

  StringRef getName() const {
    if (Attribute enc = getEncoding())
      return mlir::cast<StringAttr>(enc).getValue();
    return {};
  }

  static bool classof(Type type) {
    if (auto rt = mlir::dyn_cast_or_null<RankedTensorType>(type))
      return mlir::isa_and_present<StringAttr>(rt.getEncoding());
    return false;
  }
};

TEST(ShapedTypeTest, RankedTensorTypeView) {
  MLIRContext context;
  Type f32 = FloatType::getF32(&context);

  Type noEncodingRankedTensorType = RankedTensorType::get({10, 20}, f32);

  UnitAttr unitAttr = UnitAttr::get(&context);
  Type unitEncodingRankedTensorType =
      RankedTensorType::get({10, 20}, f32, unitAttr);

  StringAttr stringAttr = StringAttr::get(&context, "app");
  Type stringEncodingRankedTensorType =
      RankedTensorType::get({10, 20}, f32, stringAttr);

  EXPECT_FALSE(mlir::isa<TensorWithString>(noEncodingRankedTensorType));
  EXPECT_FALSE(mlir::isa<TensorWithString>(unitEncodingRankedTensorType));
  ASSERT_TRUE(mlir::isa<TensorWithString>(stringEncodingRankedTensorType));

  // Cast to TensorWithString view.
  auto view = mlir::cast<TensorWithString>(stringEncodingRankedTensorType);
  ASSERT_TRUE(mlir::isa<TensorWithString>(view));
  EXPECT_EQ(view.getName(), "app");
  // Verify one could cast view type back to base type.
  ASSERT_TRUE(mlir::isa<RankedTensorType>(view));

  Type viewCreated = TensorWithString::get({10, 20}, f32, "bob");
  ASSERT_TRUE(mlir::isa<TensorWithString>(viewCreated));
  ASSERT_TRUE(mlir::isa<RankedTensorType>(viewCreated));
  view = mlir::cast<TensorWithString>(viewCreated);
  EXPECT_EQ(view.getName(), "bob");
}

} // namespace