1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
// NOTE: Assertions have been autogenerated by utils/update_cc_test_checks.py
// RUN: %clang_cc1 -triple riscv64-none-linux-gnu -target-feature +f -target-feature +d -target-feature +zve64d -mvscale-min=4 -mvscale-max=4 -disable-llvm-passes -emit-llvm -o - %s | FileCheck %s
// REQUIRES: riscv-registered-target
#include <riscv_vector.h>
typedef __rvv_int8m1_t vint8m1_t;
typedef __rvv_uint8m1_t vuint8m1_t;
typedef __rvv_int16m1_t vint16m1_t;
typedef __rvv_uint16m1_t vuint16m1_t;
typedef __rvv_int32m1_t vint32m1_t;
typedef __rvv_uint32m1_t vuint32m1_t;
typedef __rvv_int64m1_t vint64m1_t;
typedef __rvv_uint64m1_t vuint64m1_t;
typedef __rvv_float32m1_t vfloat32m1_t;
typedef __rvv_float64m1_t vfloat64m1_t;
typedef __rvv_int8m2_t vint8m2_t;
typedef __rvv_uint8m2_t vuint8m2_t;
typedef __rvv_int16m2_t vint16m2_t;
typedef __rvv_uint16m2_t vuint16m2_t;
typedef __rvv_int32m2_t vint32m2_t;
typedef __rvv_uint32m2_t vuint32m2_t;
typedef __rvv_int64m2_t vint64m2_t;
typedef __rvv_uint64m2_t vuint64m2_t;
typedef __rvv_float32m2_t vfloat32m2_t;
typedef __rvv_float64m2_t vfloat64m2_t;
typedef __rvv_bool1_t vbool1_t;
typedef __rvv_bool4_t vbool4_t;
typedef __rvv_bool32_t vbool32_t;
typedef vint32m1_t fixed_int32m1_t __attribute__((riscv_rvv_vector_bits(__riscv_v_fixed_vlen)));
typedef vint32m2_t fixed_int32m2_t __attribute__((riscv_rvv_vector_bits(__riscv_v_fixed_vlen * 2)));
typedef vint16m4_t fixed_int16m4_t __attribute__((riscv_rvv_vector_bits(__riscv_v_fixed_vlen * 4)));
typedef vint8m8_t fixed_int8m8_t __attribute__((riscv_rvv_vector_bits(__riscv_v_fixed_vlen * 8)));
typedef vbool1_t fixed_bool1_t __attribute__((riscv_rvv_vector_bits(__riscv_v_fixed_vlen)));
typedef vbool4_t fixed_bool4_t __attribute__((riscv_rvv_vector_bits(__riscv_v_fixed_vlen/4)));
typedef vbool32_t fixed_bool32_t __attribute__((riscv_rvv_vector_bits(__riscv_v_fixed_vlen/32)));
fixed_int32m1_t global_vec;
fixed_int32m2_t global_vec_m2;
fixed_int8m8_t global_vec_int8m8;
fixed_int16m4_t global_vec_int16m4;
fixed_bool1_t global_bool1;
fixed_bool4_t global_bool4;
fixed_bool32_t global_bool32;
// CHECK-LABEL: @test_bool1(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <256 x i8>, align 8
// CHECK-NEXT: [[M_ADDR:%.*]] = alloca <vscale x 64 x i1>, align 1
// CHECK-NEXT: [[VEC_ADDR:%.*]] = alloca <vscale x 64 x i8>, align 1
// CHECK-NEXT: [[MASK:%.*]] = alloca <vscale x 64 x i1>, align 1
// CHECK-NEXT: store <vscale x 64 x i1> [[M:%.*]], ptr [[M_ADDR]], align 1
// CHECK-NEXT: store <vscale x 64 x i8> [[VEC:%.*]], ptr [[VEC_ADDR]], align 1
// CHECK-NEXT: [[TMP0:%.*]] = load <vscale x 64 x i1>, ptr [[M_ADDR]], align 1
// CHECK-NEXT: [[TMP1:%.*]] = load <32 x i8>, ptr @global_bool1, align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 8 x i8> @llvm.vector.insert.nxv8i8.v32i8(<vscale x 8 x i8> undef, <32 x i8> [[TMP1]], i64 0)
// CHECK-NEXT: [[TMP2:%.*]] = bitcast <vscale x 8 x i8> [[CAST_SCALABLE]] to <vscale x 64 x i1>
// CHECK-NEXT: [[TMP3:%.*]] = call <vscale x 64 x i1> @llvm.riscv.vmand.nxv64i1.i64(<vscale x 64 x i1> [[TMP0]], <vscale x 64 x i1> [[TMP2]], i64 256)
// CHECK-NEXT: store <vscale x 64 x i1> [[TMP3]], ptr [[MASK]], align 1
// CHECK-NEXT: [[TMP4:%.*]] = load <vscale x 64 x i1>, ptr [[MASK]], align 1
// CHECK-NEXT: [[TMP5:%.*]] = load <vscale x 64 x i8>, ptr [[VEC_ADDR]], align 1
// CHECK-NEXT: [[TMP6:%.*]] = load <256 x i8>, ptr @global_vec_int8m8, align 8
// CHECK-NEXT: [[CAST_SCALABLE1:%.*]] = call <vscale x 64 x i8> @llvm.vector.insert.nxv64i8.v256i8(<vscale x 64 x i8> undef, <256 x i8> [[TMP6]], i64 0)
// CHECK-NEXT: [[TMP7:%.*]] = call <vscale x 64 x i8> @llvm.riscv.vadd.mask.nxv64i8.nxv64i8.i64(<vscale x 64 x i8> poison, <vscale x 64 x i8> [[TMP5]], <vscale x 64 x i8> [[CAST_SCALABLE1]], <vscale x 64 x i1> [[TMP4]], i64 256, i64 3)
// CHECK-NEXT: [[CAST_FIXED:%.*]] = call <256 x i8> @llvm.vector.extract.v256i8.nxv64i8(<vscale x 64 x i8> [[TMP7]], i64 0)
// CHECK-NEXT: store <256 x i8> [[CAST_FIXED]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP8:%.*]] = load <256 x i8>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE2:%.*]] = call <vscale x 64 x i8> @llvm.vector.insert.nxv64i8.v256i8(<vscale x 64 x i8> undef, <256 x i8> [[TMP8]], i64 0)
// CHECK-NEXT: ret <vscale x 64 x i8> [[CAST_SCALABLE2]]
//
fixed_int8m8_t test_bool1(vbool1_t m, vint8m8_t vec) {
vbool1_t mask = __riscv_vmand(m, global_bool1, __riscv_v_fixed_vlen);
return __riscv_vadd(mask, vec, global_vec_int8m8, __riscv_v_fixed_vlen);
}
// CHECK-LABEL: @test_bool4(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <64 x i16>, align 8
// CHECK-NEXT: [[M_ADDR:%.*]] = alloca <vscale x 16 x i1>, align 1
// CHECK-NEXT: [[VEC_ADDR:%.*]] = alloca <vscale x 16 x i16>, align 2
// CHECK-NEXT: [[MASK:%.*]] = alloca <vscale x 16 x i1>, align 1
// CHECK-NEXT: store <vscale x 16 x i1> [[M:%.*]], ptr [[M_ADDR]], align 1
// CHECK-NEXT: store <vscale x 16 x i16> [[VEC:%.*]], ptr [[VEC_ADDR]], align 2
// CHECK-NEXT: [[TMP0:%.*]] = load <vscale x 16 x i1>, ptr [[M_ADDR]], align 1
// CHECK-NEXT: [[TMP1:%.*]] = load <8 x i8>, ptr @global_bool4, align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 2 x i8> @llvm.vector.insert.nxv2i8.v8i8(<vscale x 2 x i8> undef, <8 x i8> [[TMP1]], i64 0)
// CHECK-NEXT: [[TMP2:%.*]] = bitcast <vscale x 2 x i8> [[CAST_SCALABLE]] to <vscale x 16 x i1>
// CHECK-NEXT: [[TMP3:%.*]] = call <vscale x 16 x i1> @llvm.riscv.vmand.nxv16i1.i64(<vscale x 16 x i1> [[TMP0]], <vscale x 16 x i1> [[TMP2]], i64 64)
// CHECK-NEXT: store <vscale x 16 x i1> [[TMP3]], ptr [[MASK]], align 1
// CHECK-NEXT: [[TMP4:%.*]] = load <vscale x 16 x i1>, ptr [[MASK]], align 1
// CHECK-NEXT: [[TMP5:%.*]] = load <vscale x 16 x i16>, ptr [[VEC_ADDR]], align 2
// CHECK-NEXT: [[TMP6:%.*]] = load <64 x i16>, ptr @global_vec_int16m4, align 8
// CHECK-NEXT: [[CAST_SCALABLE1:%.*]] = call <vscale x 16 x i16> @llvm.vector.insert.nxv16i16.v64i16(<vscale x 16 x i16> undef, <64 x i16> [[TMP6]], i64 0)
// CHECK-NEXT: [[TMP7:%.*]] = call <vscale x 16 x i16> @llvm.riscv.vadd.mask.nxv16i16.nxv16i16.i64(<vscale x 16 x i16> poison, <vscale x 16 x i16> [[TMP5]], <vscale x 16 x i16> [[CAST_SCALABLE1]], <vscale x 16 x i1> [[TMP4]], i64 64, i64 3)
// CHECK-NEXT: [[CAST_FIXED:%.*]] = call <64 x i16> @llvm.vector.extract.v64i16.nxv16i16(<vscale x 16 x i16> [[TMP7]], i64 0)
// CHECK-NEXT: store <64 x i16> [[CAST_FIXED]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP8:%.*]] = load <64 x i16>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE2:%.*]] = call <vscale x 16 x i16> @llvm.vector.insert.nxv16i16.v64i16(<vscale x 16 x i16> undef, <64 x i16> [[TMP8]], i64 0)
// CHECK-NEXT: ret <vscale x 16 x i16> [[CAST_SCALABLE2]]
//
fixed_int16m4_t test_bool4(vbool4_t m, vint16m4_t vec) {
vbool4_t mask = __riscv_vmand(m, global_bool4, __riscv_v_fixed_vlen/4);
return __riscv_vadd(mask, vec, global_vec_int16m4, __riscv_v_fixed_vlen/4);
}
// CHECK-LABEL: @test_bool32(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <8 x i32>, align 8
// CHECK-NEXT: [[M_ADDR:%.*]] = alloca <vscale x 2 x i1>, align 1
// CHECK-NEXT: [[VEC_ADDR:%.*]] = alloca <vscale x 2 x i32>, align 4
// CHECK-NEXT: [[MASK:%.*]] = alloca <vscale x 2 x i1>, align 1
// CHECK-NEXT: [[SAVED_VALUE:%.*]] = alloca <1 x i8>, align 1
// CHECK-NEXT: store <vscale x 2 x i1> [[M:%.*]], ptr [[M_ADDR]], align 1
// CHECK-NEXT: store <vscale x 2 x i32> [[VEC:%.*]], ptr [[VEC_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load <vscale x 2 x i1>, ptr [[M_ADDR]], align 1
// CHECK-NEXT: [[TMP1:%.*]] = load <1 x i8>, ptr @global_bool32, align 1
// CHECK-NEXT: store <1 x i8> [[TMP1]], ptr [[SAVED_VALUE]], align 1
// CHECK-NEXT: [[TMP2:%.*]] = load <vscale x 2 x i1>, ptr [[SAVED_VALUE]], align 1
// CHECK-NEXT: [[TMP3:%.*]] = call <vscale x 2 x i1> @llvm.riscv.vmand.nxv2i1.i64(<vscale x 2 x i1> [[TMP0]], <vscale x 2 x i1> [[TMP2]], i64 8)
// CHECK-NEXT: store <vscale x 2 x i1> [[TMP3]], ptr [[MASK]], align 1
// CHECK-NEXT: [[TMP4:%.*]] = load <vscale x 2 x i1>, ptr [[MASK]], align 1
// CHECK-NEXT: [[TMP5:%.*]] = load <vscale x 2 x i32>, ptr [[VEC_ADDR]], align 4
// CHECK-NEXT: [[TMP6:%.*]] = load <8 x i32>, ptr @global_vec, align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 2 x i32> @llvm.vector.insert.nxv2i32.v8i32(<vscale x 2 x i32> undef, <8 x i32> [[TMP6]], i64 0)
// CHECK-NEXT: [[TMP7:%.*]] = call <vscale x 2 x i32> @llvm.riscv.vadd.mask.nxv2i32.nxv2i32.i64(<vscale x 2 x i32> poison, <vscale x 2 x i32> [[TMP5]], <vscale x 2 x i32> [[CAST_SCALABLE]], <vscale x 2 x i1> [[TMP4]], i64 8, i64 3)
// CHECK-NEXT: [[CAST_FIXED:%.*]] = call <8 x i32> @llvm.vector.extract.v8i32.nxv2i32(<vscale x 2 x i32> [[TMP7]], i64 0)
// CHECK-NEXT: store <8 x i32> [[CAST_FIXED]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP8:%.*]] = load <8 x i32>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE1:%.*]] = call <vscale x 2 x i32> @llvm.vector.insert.nxv2i32.v8i32(<vscale x 2 x i32> undef, <8 x i32> [[TMP8]], i64 0)
// CHECK-NEXT: ret <vscale x 2 x i32> [[CAST_SCALABLE1]]
//
fixed_int32m1_t test_bool32(vbool32_t m, vint32m1_t vec) {
vbool32_t mask = __riscv_vmand(m, global_bool32, __riscv_v_fixed_vlen/32);
return __riscv_vadd(mask, vec, global_vec, __riscv_v_fixed_vlen/32);
}
// CHECK-LABEL: @test_ptr_to_global(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <8 x i32>, align 8
// CHECK-NEXT: [[GLOBAL_VEC_PTR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: store ptr @global_vec, ptr [[GLOBAL_VEC_PTR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[GLOBAL_VEC_PTR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = load <8 x i32>, ptr [[TMP0]], align 8
// CHECK-NEXT: store <8 x i32> [[TMP1]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP2:%.*]] = load <8 x i32>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 2 x i32> @llvm.vector.insert.nxv2i32.v8i32(<vscale x 2 x i32> undef, <8 x i32> [[TMP2]], i64 0)
// CHECK-NEXT: ret <vscale x 2 x i32> [[CAST_SCALABLE]]
//
fixed_int32m1_t test_ptr_to_global() {
fixed_int32m1_t *global_vec_ptr;
global_vec_ptr = &global_vec;
return *global_vec_ptr;
}
//
// Test casting pointer from fixed-length array to scalable vector.
// CHECK-LABEL: @array_arg(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <8 x i32>, align 8
// CHECK-NEXT: [[ARR_ADDR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: store ptr [[ARR:%.*]], ptr [[ARR_ADDR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[ARR_ADDR]], align 8
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds <8 x i32>, ptr [[TMP0]], i64 0
// CHECK-NEXT: [[TMP1:%.*]] = load <8 x i32>, ptr [[ARRAYIDX]], align 8
// CHECK-NEXT: store <8 x i32> [[TMP1]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP2:%.*]] = load <8 x i32>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 2 x i32> @llvm.vector.insert.nxv2i32.v8i32(<vscale x 2 x i32> undef, <8 x i32> [[TMP2]], i64 0)
// CHECK-NEXT: ret <vscale x 2 x i32> [[CAST_SCALABLE]]
//
fixed_int32m1_t array_arg(fixed_int32m1_t arr[]) {
return arr[0];
}
// CHECK-LABEL: @address_of_array_idx_bool1(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <32 x i8>, align 8
// CHECK-NEXT: [[ARR:%.*]] = alloca [3 x <32 x i8>], align 8
// CHECK-NEXT: [[PARR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [3 x <32 x i8>], ptr [[ARR]], i64 0, i64 0
// CHECK-NEXT: store ptr [[ARRAYIDX]], ptr [[PARR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[PARR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = load <32 x i8>, ptr [[TMP0]], align 8
// CHECK-NEXT: store <32 x i8> [[TMP1]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP2:%.*]] = load <32 x i8>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 8 x i8> @llvm.vector.insert.nxv8i8.v32i8(<vscale x 8 x i8> undef, <32 x i8> [[TMP2]], i64 0)
// CHECK-NEXT: [[TMP3:%.*]] = bitcast <vscale x 8 x i8> [[CAST_SCALABLE]] to <vscale x 64 x i1>
// CHECK-NEXT: ret <vscale x 64 x i1> [[TMP3]]
//
fixed_bool1_t address_of_array_idx_bool1() {
fixed_bool1_t arr[3];
fixed_bool1_t *parr;
parr = &arr[0];
return *parr;
}
// CHECK-LABEL: @address_of_array_idx_bool4(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <8 x i8>, align 8
// CHECK-NEXT: [[ARR:%.*]] = alloca [3 x <8 x i8>], align 8
// CHECK-NEXT: [[PARR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [3 x <8 x i8>], ptr [[ARR]], i64 0, i64 0
// CHECK-NEXT: store ptr [[ARRAYIDX]], ptr [[PARR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[PARR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = load <8 x i8>, ptr [[TMP0]], align 8
// CHECK-NEXT: store <8 x i8> [[TMP1]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP2:%.*]] = load <8 x i8>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 2 x i8> @llvm.vector.insert.nxv2i8.v8i8(<vscale x 2 x i8> undef, <8 x i8> [[TMP2]], i64 0)
// CHECK-NEXT: [[TMP3:%.*]] = bitcast <vscale x 2 x i8> [[CAST_SCALABLE]] to <vscale x 16 x i1>
// CHECK-NEXT: ret <vscale x 16 x i1> [[TMP3]]
//
fixed_bool4_t address_of_array_idx_bool4() {
fixed_bool4_t arr[3];
fixed_bool4_t *parr;
parr = &arr[0];
return *parr;
}
// CHECK-LABEL: @address_of_array_idx_bool32(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <1 x i8>, align 1
// CHECK-NEXT: [[ARR:%.*]] = alloca [3 x <1 x i8>], align 1
// CHECK-NEXT: [[PARR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: [[RETVAL_COERCE:%.*]] = alloca <vscale x 2 x i1>, align 1
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [3 x <1 x i8>], ptr [[ARR]], i64 0, i64 0
// CHECK-NEXT: store ptr [[ARRAYIDX]], ptr [[PARR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[PARR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = load <1 x i8>, ptr [[TMP0]], align 1
// CHECK-NEXT: store <1 x i8> [[TMP1]], ptr [[RETVAL]], align 1
// CHECK-NEXT: call void @llvm.memcpy.p0.p0.i64(ptr align 1 [[RETVAL_COERCE]], ptr align 1 [[RETVAL]], i64 1, i1 false)
// CHECK-NEXT: [[TMP2:%.*]] = load <vscale x 2 x i1>, ptr [[RETVAL_COERCE]], align 1
// CHECK-NEXT: ret <vscale x 2 x i1> [[TMP2]]
//
fixed_bool32_t address_of_array_idx_bool32() {
fixed_bool32_t arr[3];
fixed_bool32_t *parr;
parr = &arr[0];
return *parr;
}
// CHECK-LABEL: @test_cast(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <8 x i32>, align 8
// CHECK-NEXT: [[VEC_ADDR:%.*]] = alloca <vscale x 2 x i32>, align 4
// CHECK-NEXT: store <vscale x 2 x i32> [[VEC:%.*]], ptr [[VEC_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load <8 x i32>, ptr @global_vec, align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 2 x i32> @llvm.vector.insert.nxv2i32.v8i32(<vscale x 2 x i32> undef, <8 x i32> [[TMP0]], i64 0)
// CHECK-NEXT: [[TMP1:%.*]] = load <vscale x 2 x i32>, ptr [[VEC_ADDR]], align 4
// CHECK-NEXT: [[TMP2:%.*]] = call <vscale x 2 x i32> @llvm.riscv.vadd.nxv2i32.nxv2i32.i64(<vscale x 2 x i32> poison, <vscale x 2 x i32> [[CAST_SCALABLE]], <vscale x 2 x i32> [[TMP1]], i64 8)
// CHECK-NEXT: [[CAST_FIXED:%.*]] = call <8 x i32> @llvm.vector.extract.v8i32.nxv2i32(<vscale x 2 x i32> [[TMP2]], i64 0)
// CHECK-NEXT: store <8 x i32> [[CAST_FIXED]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP3:%.*]] = load <8 x i32>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE1:%.*]] = call <vscale x 2 x i32> @llvm.vector.insert.nxv2i32.v8i32(<vscale x 2 x i32> undef, <8 x i32> [[TMP3]], i64 0)
// CHECK-NEXT: ret <vscale x 2 x i32> [[CAST_SCALABLE1]]
//
fixed_int32m1_t test_cast(vint32m1_t vec) {
return __riscv_vadd(global_vec, vec, __riscv_v_fixed_vlen/32);
}
// CHECK-LABEL: @test_ptr_to_global_m2(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <16 x i32>, align 8
// CHECK-NEXT: [[GLOBAL_VEC_PTR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: store ptr @global_vec_m2, ptr [[GLOBAL_VEC_PTR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[GLOBAL_VEC_PTR]], align 8
// CHECK-NEXT: [[TMP1:%.*]] = load <16 x i32>, ptr [[TMP0]], align 8
// CHECK-NEXT: store <16 x i32> [[TMP1]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP2:%.*]] = load <16 x i32>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 4 x i32> @llvm.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> undef, <16 x i32> [[TMP2]], i64 0)
// CHECK-NEXT: ret <vscale x 4 x i32> [[CAST_SCALABLE]]
//
fixed_int32m2_t test_ptr_to_global_m2() {
fixed_int32m2_t *global_vec_ptr;
global_vec_ptr = &global_vec_m2;
return *global_vec_ptr;
}
//
// Test casting pointer from fixed-length array to scalable vector.
// CHECK-LABEL: @array_arg_m2(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <16 x i32>, align 8
// CHECK-NEXT: [[ARR_ADDR:%.*]] = alloca ptr, align 8
// CHECK-NEXT: store ptr [[ARR:%.*]], ptr [[ARR_ADDR]], align 8
// CHECK-NEXT: [[TMP0:%.*]] = load ptr, ptr [[ARR_ADDR]], align 8
// CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds <16 x i32>, ptr [[TMP0]], i64 0
// CHECK-NEXT: [[TMP1:%.*]] = load <16 x i32>, ptr [[ARRAYIDX]], align 8
// CHECK-NEXT: store <16 x i32> [[TMP1]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP2:%.*]] = load <16 x i32>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 4 x i32> @llvm.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> undef, <16 x i32> [[TMP2]], i64 0)
// CHECK-NEXT: ret <vscale x 4 x i32> [[CAST_SCALABLE]]
//
fixed_int32m2_t array_arg_m2(fixed_int32m2_t arr[]) {
return arr[0];
}
// CHECK-LABEL: @test_cast_m2(
// CHECK-NEXT: entry:
// CHECK-NEXT: [[RETVAL:%.*]] = alloca <16 x i32>, align 8
// CHECK-NEXT: [[VEC_ADDR:%.*]] = alloca <vscale x 4 x i32>, align 4
// CHECK-NEXT: store <vscale x 4 x i32> [[VEC:%.*]], ptr [[VEC_ADDR]], align 4
// CHECK-NEXT: [[TMP0:%.*]] = load <16 x i32>, ptr @global_vec_m2, align 8
// CHECK-NEXT: [[CAST_SCALABLE:%.*]] = call <vscale x 4 x i32> @llvm.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> undef, <16 x i32> [[TMP0]], i64 0)
// CHECK-NEXT: [[TMP1:%.*]] = load <vscale x 4 x i32>, ptr [[VEC_ADDR]], align 4
// CHECK-NEXT: [[TMP2:%.*]] = call <vscale x 4 x i32> @llvm.riscv.vadd.nxv4i32.nxv4i32.i64(<vscale x 4 x i32> poison, <vscale x 4 x i32> [[CAST_SCALABLE]], <vscale x 4 x i32> [[TMP1]], i64 16)
// CHECK-NEXT: [[CAST_FIXED:%.*]] = call <16 x i32> @llvm.vector.extract.v16i32.nxv4i32(<vscale x 4 x i32> [[TMP2]], i64 0)
// CHECK-NEXT: store <16 x i32> [[CAST_FIXED]], ptr [[RETVAL]], align 8
// CHECK-NEXT: [[TMP3:%.*]] = load <16 x i32>, ptr [[RETVAL]], align 8
// CHECK-NEXT: [[CAST_SCALABLE1:%.*]] = call <vscale x 4 x i32> @llvm.vector.insert.nxv4i32.v16i32(<vscale x 4 x i32> undef, <16 x i32> [[TMP3]], i64 0)
// CHECK-NEXT: ret <vscale x 4 x i32> [[CAST_SCALABLE1]]
//
fixed_int32m2_t test_cast_m2(vint32m2_t vec) {
return __riscv_vadd(global_vec_m2, vec, __riscv_v_fixed_vlen/16);
}
|