File: cos.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,998,492 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (198 lines) | stat: -rw-r--r-- 6,980 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
//===-- Double-precision cos function -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "src/math/cos.h"
#include "hdr/errno_macros.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/dyadic_float.h"
#include "src/__support/FPUtil/except_value_utils.h"
#include "src/__support/common.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h"            // LIBC_UNLIKELY
#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
#include "src/math/generic/sincos_eval.h"

#ifdef LIBC_TARGET_CPU_HAS_FMA
#include "range_reduction_double_fma.h"

using LIBC_NAMESPACE::fma::FAST_PASS_EXPONENT;
using LIBC_NAMESPACE::fma::ONE_TWENTY_EIGHT_OVER_PI;
using LIBC_NAMESPACE::fma::range_reduction_small;
using LIBC_NAMESPACE::fma::SIN_K_PI_OVER_128;

LIBC_INLINE constexpr bool NO_FMA = false;
#else
#include "range_reduction_double_nofma.h"

using LIBC_NAMESPACE::nofma::FAST_PASS_EXPONENT;
using LIBC_NAMESPACE::nofma::ONE_TWENTY_EIGHT_OVER_PI;
using LIBC_NAMESPACE::nofma::range_reduction_small;
using LIBC_NAMESPACE::nofma::SIN_K_PI_OVER_128;

LIBC_INLINE constexpr bool NO_FMA = true;
#endif // LIBC_TARGET_CPU_HAS_FMA

// TODO: We might be able to improve the performance of large range reduction of
// non-FMA targets further by operating directly on 25-bit chunks of 128/pi and
// pre-split SIN_K_PI_OVER_128, but that might double the memory footprint of
// those lookup table.
#include "range_reduction_double_common.h"

#if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0)
#define LIBC_MATH_COS_SKIP_ACCURATE_PASS
#endif

namespace LIBC_NAMESPACE_DECL {

using DoubleDouble = fputil::DoubleDouble;
using Float128 = typename fputil::DyadicFloat<128>;

LLVM_LIBC_FUNCTION(double, cos, (double x)) {
  using FPBits = typename fputil::FPBits<double>;
  FPBits xbits(x);

  uint16_t x_e = xbits.get_biased_exponent();

  DoubleDouble y;
  unsigned k;
  generic::LargeRangeReduction<NO_FMA> range_reduction_large{};

  // |x| < 2^32 (with FMA) or |x| < 2^23 (w/o FMA)
  if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) {
    // |x| < 2^-27
    if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 27)) {
      // Signed zeros.
      if (LIBC_UNLIKELY(x == 0.0))
        return 1.0;

      // For |x| < 2^-27, |cos(x) - 1| < |x|^2/2 < 2^-54 = ulp(1 - 2^-53)/2.
      return fputil::round_result_slightly_down(1.0);
    }

    // // Small range reduction.
    k = range_reduction_small(x, y);
  } else {
    // Inf or NaN
    if (LIBC_UNLIKELY(x_e > 2 * FPBits::EXP_BIAS)) {
      // sin(+-Inf) = NaN
      if (xbits.get_mantissa() == 0) {
        fputil::set_errno_if_required(EDOM);
        fputil::raise_except_if_required(FE_INVALID);
      }
      return x + FPBits::quiet_nan().get_val();
    }

    // Large range reduction.
    k = range_reduction_large.compute_high_part(x);
    y = range_reduction_large.fast();
  }

  DoubleDouble sin_y, cos_y;

  generic::sincos_eval(y, sin_y, cos_y);

  // Look up sin(k * pi/128) and cos(k * pi/128)
  // Memory saving versions:

  // Use 128-entry table instead:
  // DoubleDouble sin_k = SIN_K_PI_OVER_128[k & 127];
  // uint64_t sin_s = static_cast<uint64_t>((k + 128) & 128) << (63 - 7);
  // sin_k.hi = FPBits(FPBits(sin_k.hi).uintval() ^ sin_s).get_val();
  // sin_k.lo = FPBits(FPBits(sin_k.hi).uintval() ^ sin_s).get_val();
  // DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 127];
  // uint64_t cos_s = static_cast<uint64_t>((k + 64) & 128) << (63 - 7);
  // cos_k.hi = FPBits(FPBits(cos_k.hi).uintval() ^ cos_s).get_val();
  // cos_k.lo = FPBits(FPBits(cos_k.hi).uintval() ^ cos_s).get_val();

  // Use 64-entry table instead:
  // auto get_idx_dd = [](unsigned kk) -> DoubleDouble {
  //   unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63);
  //   DoubleDouble ans = SIN_K_PI_OVER_128[idx];
  //   if (kk & 128) {
  //     ans.hi = -ans.hi;
  //     ans.lo = -ans.lo;
  //   }
  //   return ans;
  // };
  // DoubleDouble sin_k = get_idx_dd(k + 128);
  // DoubleDouble cos_k = get_idx_dd(k + 64);

  // Fast look up version, but needs 256-entry table.
  // -sin(k * pi/128) = sin((k + 128) * pi/128)
  // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
  DoubleDouble msin_k = SIN_K_PI_OVER_128[(k + 128) & 255];
  DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 255];

  // After range reduction, k = round(x * 128 / pi) and y = x - k * (pi / 128).
  // So k is an integer and -pi / 256 <= y <= pi / 256.
  // Then cos(x) = cos((k * pi/128 + y)
  //             = cos(y) * cos(k*pi/128) - sin(y) * sin(k*pi/128)
  DoubleDouble cos_k_cos_y = fputil::quick_mult<NO_FMA>(cos_y, cos_k);
  DoubleDouble msin_k_sin_y = fputil::quick_mult<NO_FMA>(sin_y, msin_k);

  DoubleDouble rr = fputil::exact_add<false>(cos_k_cos_y.hi, msin_k_sin_y.hi);
  rr.lo += msin_k_sin_y.lo + cos_k_cos_y.lo;

#ifdef LIBC_MATH_COS_SKIP_ACCURATE_PASS
  return rr.hi + rr.lo;
#else

  // Accurate test and pass for correctly rounded implementation.
#ifdef LIBC_TARGET_CPU_HAS_FMA
  constexpr double ERR = 0x1.0p-70;
#else
  // TODO: Improve non-FMA fast pass accuracy.
  constexpr double ERR = 0x1.0p-66;
#endif // LIBC_TARGET_CPU_HAS_FMA

  double rlp = rr.lo + ERR;
  double rlm = rr.lo - ERR;

  double r_upper = rr.hi + rlp; // (rr.lo + ERR);
  double r_lower = rr.hi + rlm; // (rr.lo - ERR);

  // Ziv's rounding test.
  if (LIBC_LIKELY(r_upper == r_lower))
    return r_upper;

  Float128 u_f128, sin_u, cos_u;
  if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT))
    u_f128 = generic::range_reduction_small_f128(x);
  else
    u_f128 = range_reduction_large.accurate();

  generic::sincos_eval(u_f128, sin_u, cos_u);

  auto get_sin_k = [](unsigned kk) -> Float128 {
    unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63);
    Float128 ans = generic::SIN_K_PI_OVER_128_F128[idx];
    if (kk & 128)
      ans.sign = Sign::NEG;
    return ans;
  };

  // -sin(k * pi/128) = sin((k + 128) * pi/128)
  // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
  Float128 msin_k_f128 = get_sin_k(k + 128);
  Float128 cos_k_f128 = get_sin_k(k + 64);

  // cos(x) = cos((k * pi/128 + u)
  //        = cos(u) * cos(k*pi/128) - sin(u) * sin(k*pi/128)
  Float128 r = fputil::quick_add(fputil::quick_mul(cos_k_f128, cos_u),
                                 fputil::quick_mul(msin_k_f128, sin_u));

  // TODO: Add assertion if Ziv's accuracy tests fail in debug mode.
  // https://github.com/llvm/llvm-project/issues/96452.

  return static_cast<double>(r);
#endif // !LIBC_MATH_COS_SKIP_ACCURATE_PASS
}

} // namespace LIBC_NAMESPACE_DECL