1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  
     | 
    
      //===-- Double-precision cos function -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/cos.h"
#include "hdr/errno_macros.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/dyadic_float.h"
#include "src/__support/FPUtil/except_value_utils.h"
#include "src/__support/common.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h"            // LIBC_UNLIKELY
#include "src/__support/macros/properties/cpu_features.h" // LIBC_TARGET_CPU_HAS_FMA
#include "src/math/generic/sincos_eval.h"
#ifdef LIBC_TARGET_CPU_HAS_FMA
#include "range_reduction_double_fma.h"
using LIBC_NAMESPACE::fma::FAST_PASS_EXPONENT;
using LIBC_NAMESPACE::fma::ONE_TWENTY_EIGHT_OVER_PI;
using LIBC_NAMESPACE::fma::range_reduction_small;
using LIBC_NAMESPACE::fma::SIN_K_PI_OVER_128;
LIBC_INLINE constexpr bool NO_FMA = false;
#else
#include "range_reduction_double_nofma.h"
using LIBC_NAMESPACE::nofma::FAST_PASS_EXPONENT;
using LIBC_NAMESPACE::nofma::ONE_TWENTY_EIGHT_OVER_PI;
using LIBC_NAMESPACE::nofma::range_reduction_small;
using LIBC_NAMESPACE::nofma::SIN_K_PI_OVER_128;
LIBC_INLINE constexpr bool NO_FMA = true;
#endif // LIBC_TARGET_CPU_HAS_FMA
// TODO: We might be able to improve the performance of large range reduction of
// non-FMA targets further by operating directly on 25-bit chunks of 128/pi and
// pre-split SIN_K_PI_OVER_128, but that might double the memory footprint of
// those lookup table.
#include "range_reduction_double_common.h"
#if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0)
#define LIBC_MATH_COS_SKIP_ACCURATE_PASS
#endif
namespace LIBC_NAMESPACE_DECL {
using DoubleDouble = fputil::DoubleDouble;
using Float128 = typename fputil::DyadicFloat<128>;
LLVM_LIBC_FUNCTION(double, cos, (double x)) {
  using FPBits = typename fputil::FPBits<double>;
  FPBits xbits(x);
  uint16_t x_e = xbits.get_biased_exponent();
  DoubleDouble y;
  unsigned k;
  generic::LargeRangeReduction<NO_FMA> range_reduction_large{};
  // |x| < 2^32 (with FMA) or |x| < 2^23 (w/o FMA)
  if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT)) {
    // |x| < 2^-27
    if (LIBC_UNLIKELY(x_e < FPBits::EXP_BIAS - 27)) {
      // Signed zeros.
      if (LIBC_UNLIKELY(x == 0.0))
        return 1.0;
      // For |x| < 2^-27, |cos(x) - 1| < |x|^2/2 < 2^-54 = ulp(1 - 2^-53)/2.
      return fputil::round_result_slightly_down(1.0);
    }
    // // Small range reduction.
    k = range_reduction_small(x, y);
  } else {
    // Inf or NaN
    if (LIBC_UNLIKELY(x_e > 2 * FPBits::EXP_BIAS)) {
      // sin(+-Inf) = NaN
      if (xbits.get_mantissa() == 0) {
        fputil::set_errno_if_required(EDOM);
        fputil::raise_except_if_required(FE_INVALID);
      }
      return x + FPBits::quiet_nan().get_val();
    }
    // Large range reduction.
    k = range_reduction_large.compute_high_part(x);
    y = range_reduction_large.fast();
  }
  DoubleDouble sin_y, cos_y;
  generic::sincos_eval(y, sin_y, cos_y);
  // Look up sin(k * pi/128) and cos(k * pi/128)
  // Memory saving versions:
  // Use 128-entry table instead:
  // DoubleDouble sin_k = SIN_K_PI_OVER_128[k & 127];
  // uint64_t sin_s = static_cast<uint64_t>((k + 128) & 128) << (63 - 7);
  // sin_k.hi = FPBits(FPBits(sin_k.hi).uintval() ^ sin_s).get_val();
  // sin_k.lo = FPBits(FPBits(sin_k.hi).uintval() ^ sin_s).get_val();
  // DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 127];
  // uint64_t cos_s = static_cast<uint64_t>((k + 64) & 128) << (63 - 7);
  // cos_k.hi = FPBits(FPBits(cos_k.hi).uintval() ^ cos_s).get_val();
  // cos_k.lo = FPBits(FPBits(cos_k.hi).uintval() ^ cos_s).get_val();
  // Use 64-entry table instead:
  // auto get_idx_dd = [](unsigned kk) -> DoubleDouble {
  //   unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63);
  //   DoubleDouble ans = SIN_K_PI_OVER_128[idx];
  //   if (kk & 128) {
  //     ans.hi = -ans.hi;
  //     ans.lo = -ans.lo;
  //   }
  //   return ans;
  // };
  // DoubleDouble sin_k = get_idx_dd(k + 128);
  // DoubleDouble cos_k = get_idx_dd(k + 64);
  // Fast look up version, but needs 256-entry table.
  // -sin(k * pi/128) = sin((k + 128) * pi/128)
  // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
  DoubleDouble msin_k = SIN_K_PI_OVER_128[(k + 128) & 255];
  DoubleDouble cos_k = SIN_K_PI_OVER_128[(k + 64) & 255];
  // After range reduction, k = round(x * 128 / pi) and y = x - k * (pi / 128).
  // So k is an integer and -pi / 256 <= y <= pi / 256.
  // Then cos(x) = cos((k * pi/128 + y)
  //             = cos(y) * cos(k*pi/128) - sin(y) * sin(k*pi/128)
  DoubleDouble cos_k_cos_y = fputil::quick_mult<NO_FMA>(cos_y, cos_k);
  DoubleDouble msin_k_sin_y = fputil::quick_mult<NO_FMA>(sin_y, msin_k);
  DoubleDouble rr = fputil::exact_add<false>(cos_k_cos_y.hi, msin_k_sin_y.hi);
  rr.lo += msin_k_sin_y.lo + cos_k_cos_y.lo;
#ifdef LIBC_MATH_COS_SKIP_ACCURATE_PASS
  return rr.hi + rr.lo;
#else
  // Accurate test and pass for correctly rounded implementation.
#ifdef LIBC_TARGET_CPU_HAS_FMA
  constexpr double ERR = 0x1.0p-70;
#else
  // TODO: Improve non-FMA fast pass accuracy.
  constexpr double ERR = 0x1.0p-66;
#endif // LIBC_TARGET_CPU_HAS_FMA
  double rlp = rr.lo + ERR;
  double rlm = rr.lo - ERR;
  double r_upper = rr.hi + rlp; // (rr.lo + ERR);
  double r_lower = rr.hi + rlm; // (rr.lo - ERR);
  // Ziv's rounding test.
  if (LIBC_LIKELY(r_upper == r_lower))
    return r_upper;
  Float128 u_f128, sin_u, cos_u;
  if (LIBC_LIKELY(x_e < FPBits::EXP_BIAS + FAST_PASS_EXPONENT))
    u_f128 = generic::range_reduction_small_f128(x);
  else
    u_f128 = range_reduction_large.accurate();
  generic::sincos_eval(u_f128, sin_u, cos_u);
  auto get_sin_k = [](unsigned kk) -> Float128 {
    unsigned idx = (kk & 64) ? 64 - (kk & 63) : (kk & 63);
    Float128 ans = generic::SIN_K_PI_OVER_128_F128[idx];
    if (kk & 128)
      ans.sign = Sign::NEG;
    return ans;
  };
  // -sin(k * pi/128) = sin((k + 128) * pi/128)
  // cos(k * pi/128) = sin(k * pi/128 + pi/2) = sin((k + 64) * pi/128).
  Float128 msin_k_f128 = get_sin_k(k + 128);
  Float128 cos_k_f128 = get_sin_k(k + 64);
  // cos(x) = cos((k * pi/128 + u)
  //        = cos(u) * cos(k*pi/128) - sin(u) * sin(k*pi/128)
  Float128 r = fputil::quick_add(fputil::quick_mul(cos_k_f128, cos_u),
                                 fputil::quick_mul(msin_k_f128, sin_u));
  // TODO: Add assertion if Ziv's accuracy tests fail in debug mode.
  // https://github.com/llvm/llvm-project/issues/96452.
  return static_cast<double>(r);
#endif // !LIBC_MATH_COS_SKIP_ACCURATE_PASS
}
} // namespace LIBC_NAMESPACE_DECL
 
     |