1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
//===-- Double-precision e^x - 1 function ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/expm1.h"
#include "common_constants.h" // Lookup tables EXP_M1 and EXP_M2.
#include "explogxf.h" // ziv_test_denorm.
#include "src/__support/CPP/bit.h"
#include "src/__support/CPP/optional.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/dyadic_float.h"
#include "src/__support/FPUtil/except_value_utils.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/FPUtil/rounding_mode.h"
#include "src/__support/FPUtil/triple_double.h"
#include "src/__support/common.h"
#include "src/__support/integer_literals.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#if ((LIBC_MATH & LIBC_MATH_SKIP_ACCURATE_PASS) != 0)
#define LIBC_MATH_EXPM1_SKIP_ACCURATE_PASS
#endif
namespace LIBC_NAMESPACE_DECL {
using fputil::DoubleDouble;
using fputil::TripleDouble;
using Float128 = typename fputil::DyadicFloat<128>;
using LIBC_NAMESPACE::operator""_u128;
// log2(e)
constexpr double LOG2_E = 0x1.71547652b82fep+0;
// Error bounds:
// Errors when using double precision.
// 0x1.8p-63;
constexpr uint64_t ERR_D = 0x3c08000000000000;
// Errors when using double-double precision.
// 0x1.0p-99
[[maybe_unused]] constexpr uint64_t ERR_DD = 0x39c0000000000000;
// -2^-12 * log(2)
// > a = -2^-12 * log(2);
// > b = round(a, 30, RN);
// > c = round(a - b, 30, RN);
// > d = round(a - b - c, D, RN);
// Errors < 1.5 * 2^-133
constexpr double MLOG_2_EXP2_M12_HI = -0x1.62e42ffp-13;
constexpr double MLOG_2_EXP2_M12_MID = 0x1.718432a1b0e26p-47;
constexpr double MLOG_2_EXP2_M12_MID_30 = 0x1.718432ap-47;
constexpr double MLOG_2_EXP2_M12_LO = 0x1.b0e2633fe0685p-79;
namespace {
// Polynomial approximations with double precision:
// Return expm1(dx) / x ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
// For |dx| < 2^-13 + 2^-30:
// | output - expm1(dx) / dx | < 2^-51.
LIBC_INLINE double poly_approx_d(double dx) {
// dx^2
double dx2 = dx * dx;
// c0 = 1 + dx / 2
double c0 = fputil::multiply_add(dx, 0.5, 1.0);
// c1 = 1/6 + dx / 24
double c1 =
fputil::multiply_add(dx, 0x1.5555555555555p-5, 0x1.5555555555555p-3);
// p = dx^2 * c1 + c0 = 1 + dx / 2 + dx^2 / 6 + dx^3 / 24
double p = fputil::multiply_add(dx2, c1, c0);
return p;
}
// Polynomial approximation with double-double precision:
// Return expm1(dx) / dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040
// For |dx| < 2^-13 + 2^-30:
// | output - expm1(dx) | < 2^-101
DoubleDouble poly_approx_dd(const DoubleDouble &dx) {
// Taylor polynomial.
constexpr DoubleDouble COEFFS[] = {
{0, 0x1p0}, // 1
{0, 0x1p-1}, // 1/2
{0x1.5555555555555p-57, 0x1.5555555555555p-3}, // 1/6
{0x1.5555555555555p-59, 0x1.5555555555555p-5}, // 1/24
{0x1.1111111111111p-63, 0x1.1111111111111p-7}, // 1/120
{-0x1.f49f49f49f49fp-65, 0x1.6c16c16c16c17p-10}, // 1/720
{0x1.a01a01a01a01ap-73, 0x1.a01a01a01a01ap-13}, // 1/5040
};
DoubleDouble p = fputil::polyeval(dx, COEFFS[0], COEFFS[1], COEFFS[2],
COEFFS[3], COEFFS[4], COEFFS[5], COEFFS[6]);
return p;
}
// Polynomial approximation with 128-bit precision:
// Return (exp(dx) - 1)/dx ~ 1 + dx / 2 + dx^2 / 6 + ... + dx^6 / 5040
// For |dx| < 2^-13 + 2^-30:
// | output - exp(dx) | < 2^-126.
[[maybe_unused]] Float128 poly_approx_f128(const Float128 &dx) {
constexpr Float128 COEFFS_128[]{
{Sign::POS, -127, 0x80000000'00000000'00000000'00000000_u128}, // 1.0
{Sign::POS, -128, 0x80000000'00000000'00000000'00000000_u128}, // 0.5
{Sign::POS, -130, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/6
{Sign::POS, -132, 0xaaaaaaaa'aaaaaaaa'aaaaaaaa'aaaaaaab_u128}, // 1/24
{Sign::POS, -134, 0x88888888'88888888'88888888'88888889_u128}, // 1/120
{Sign::POS, -137, 0xb60b60b6'0b60b60b'60b60b60'b60b60b6_u128}, // 1/720
{Sign::POS, -140, 0xd00d00d0'0d00d00d'00d00d00'd00d00d0_u128}, // 1/5040
};
Float128 p = fputil::polyeval(dx, COEFFS_128[0], COEFFS_128[1], COEFFS_128[2],
COEFFS_128[3], COEFFS_128[4], COEFFS_128[5],
COEFFS_128[6]);
return p;
}
#ifdef DEBUGDEBUG
std::ostream &operator<<(std::ostream &OS, const Float128 &r) {
OS << (r.sign == Sign::NEG ? "-(" : "(") << r.mantissa.val[0] << " + "
<< r.mantissa.val[1] << " * 2^64) * 2^" << r.exponent << "\n";
return OS;
}
std::ostream &operator<<(std::ostream &OS, const DoubleDouble &r) {
OS << std::hexfloat << "(" << r.hi << " + " << r.lo << ")"
<< std::defaultfloat << "\n";
return OS;
}
#endif
// Compute exp(x) - 1 using 128-bit precision.
// TODO(lntue): investigate triple-double precision implementation for this
// step.
[[maybe_unused]] Float128 expm1_f128(double x, double kd, int idx1, int idx2) {
// Recalculate dx:
double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact
double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-133
Float128 dx = fputil::quick_add(
Float128(t1), fputil::quick_add(Float128(t2), Float128(t3)));
// TODO: Skip recalculating exp_mid1 and exp_mid2.
Float128 exp_mid1 =
fputil::quick_add(Float128(EXP2_MID1[idx1].hi),
fputil::quick_add(Float128(EXP2_MID1[idx1].mid),
Float128(EXP2_MID1[idx1].lo)));
Float128 exp_mid2 =
fputil::quick_add(Float128(EXP2_MID2[idx2].hi),
fputil::quick_add(Float128(EXP2_MID2[idx2].mid),
Float128(EXP2_MID2[idx2].lo)));
Float128 exp_mid = fputil::quick_mul(exp_mid1, exp_mid2);
int hi = static_cast<int>(kd) >> 12;
Float128 minus_one{Sign::NEG, -127 - hi,
0x80000000'00000000'00000000'00000000_u128};
Float128 exp_mid_m1 = fputil::quick_add(exp_mid, minus_one);
Float128 p = poly_approx_f128(dx);
// r = exp_mid * (1 + dx * P) - 1
// = (exp_mid - 1) + (dx * exp_mid) * P
Float128 r =
fputil::multiply_add(fputil::quick_mul(exp_mid, dx), p, exp_mid_m1);
r.exponent += hi;
#ifdef DEBUGDEBUG
std::cout << "=== VERY SLOW PASS ===\n"
<< " kd: " << kd << "\n"
<< " hi: " << hi << "\n"
<< " minus_one: " << minus_one << " dx: " << dx
<< "exp_mid_m1: " << exp_mid_m1 << " exp_mid: " << exp_mid
<< " p: " << p << " r: " << r << std::endl;
#endif
return r;
}
// Compute exp(x) - 1 with double-double precision.
DoubleDouble exp_double_double(double x, double kd, const DoubleDouble &exp_mid,
const DoubleDouble &hi_part) {
// Recalculate dx:
// dx = x - k * 2^-12 * log(2)
double t1 = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
double t2 = kd * MLOG_2_EXP2_M12_MID_30; // exact
double t3 = kd * MLOG_2_EXP2_M12_LO; // Error < 2^-130
DoubleDouble dx = fputil::exact_add(t1, t2);
dx.lo += t3;
// Degree-6 Taylor polynomial approximation in double-double precision.
// | p - exp(x) | < 2^-100.
DoubleDouble p = poly_approx_dd(dx);
// Error bounds: 2^-99.
DoubleDouble r =
fputil::multiply_add(fputil::quick_mult(exp_mid, dx), p, hi_part);
#ifdef DEBUGDEBUG
std::cout << "=== SLOW PASS ===\n"
<< " dx: " << dx << " p: " << p << " r: " << r << std::endl;
#endif
return r;
}
// Check for exceptional cases when
// |x| <= 2^-53 or x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9
double set_exceptional(double x) {
using FPBits = typename fputil::FPBits<double>;
FPBits xbits(x);
uint64_t x_u = xbits.uintval();
uint64_t x_abs = xbits.abs().uintval();
// |x| <= 2^-53.
if (x_abs <= 0x3ca0'0000'0000'0000ULL) {
// expm1(x) ~ x.
if (LIBC_UNLIKELY(x_abs <= 0x0370'0000'0000'0000ULL)) {
if (LIBC_UNLIKELY(x_abs == 0))
return x;
// |x| <= 2^-968, need to scale up a bit before rounding, then scale it
// back down.
return 0x1.0p-200 * fputil::multiply_add(x, 0x1.0p+200, 0x1.0p-1022);
}
// 2^-968 < |x| <= 2^-53.
return fputil::round_result_slightly_up(x);
}
// x < log(2^-54) || x >= 0x1.6232bdd7abcd3p+9 or inf/nan.
// x < log(2^-54) or -inf/nan
if (x_u >= 0xc042'b708'8723'20e2ULL) {
// expm1(-Inf) = -1
if (xbits.is_inf())
return -1.0;
// exp(nan) = nan
if (xbits.is_nan())
return x;
return fputil::round_result_slightly_up(-1.0);
}
// x >= round(log(MAX_NORMAL), D, RU) = 0x1.62e42fefa39fp+9 or +inf/nan
// x is finite
if (x_u < 0x7ff0'0000'0000'0000ULL) {
int rounding = fputil::quick_get_round();
if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO)
return FPBits::max_normal().get_val();
fputil::set_errno_if_required(ERANGE);
fputil::raise_except_if_required(FE_OVERFLOW);
}
// x is +inf or nan
return x + FPBits::inf().get_val();
}
} // namespace
LLVM_LIBC_FUNCTION(double, expm1, (double x)) {
using FPBits = typename fputil::FPBits<double>;
FPBits xbits(x);
bool x_is_neg = xbits.is_neg();
uint64_t x_u = xbits.uintval();
// Upper bound: max normal number = 2^1023 * (2 - 2^-52)
// > round(log (2^1023 ( 2 - 2^-52 )), D, RU) = 0x1.62e42fefa39fp+9
// > round(log (2^1023 ( 2 - 2^-52 )), D, RD) = 0x1.62e42fefa39efp+9
// > round(log (2^1023 ( 2 - 2^-52 )), D, RN) = 0x1.62e42fefa39efp+9
// > round(exp(0x1.62e42fefa39fp+9), D, RN) = infty
// Lower bound: log(2^-54) = -0x1.2b708872320e2p5
// > round(log(2^-54), D, RN) = -0x1.2b708872320e2p5
// x < log(2^-54) or x >= 0x1.6232bdd7abcd3p+9 or |x| <= 2^-53.
if (LIBC_UNLIKELY(x_u >= 0xc042b708872320e2 ||
(x_u <= 0xbca0000000000000 && x_u >= 0x40862e42fefa39f0) ||
x_u <= 0x3ca0000000000000)) {
return set_exceptional(x);
}
// Now log(2^-54) <= x <= -2^-53 or 2^-53 <= x < log(2^1023 * (2 - 2^-52))
// Range reduction:
// Let x = log(2) * (hi + mid1 + mid2) + lo
// in which:
// hi is an integer
// mid1 * 2^6 is an integer
// mid2 * 2^12 is an integer
// then:
// exp(x) = 2^hi * 2^(mid1) * 2^(mid2) * exp(lo).
// With this formula:
// - multiplying by 2^hi is exact and cheap, simply by adding the exponent
// field.
// - 2^(mid1) and 2^(mid2) are stored in 2 x 64-element tables.
// - exp(lo) ~ 1 + lo + a0 * lo^2 + ...
//
// They can be defined by:
// hi + mid1 + mid2 = 2^(-12) * round(2^12 * log_2(e) * x)
// If we store L2E = round(log2(e), D, RN), then:
// log2(e) - L2E ~ 1.5 * 2^(-56)
// So the errors when computing in double precision is:
// | x * 2^12 * log_2(e) - D(x * 2^12 * L2E) | <=
// <= | x * 2^12 * log_2(e) - x * 2^12 * L2E | +
// + | x * 2^12 * L2E - D(x * 2^12 * L2E) |
// <= 2^12 * ( |x| * 1.5 * 2^-56 + eps(x)) for RN
// 2^12 * ( |x| * 1.5 * 2^-56 + 2*eps(x)) for other rounding modes.
// So if:
// hi + mid1 + mid2 = 2^(-12) * round(x * 2^12 * L2E) is computed entirely
// in double precision, the reduced argument:
// lo = x - log(2) * (hi + mid1 + mid2) is bounded by:
// |lo| <= 2^-13 + (|x| * 1.5 * 2^-56 + 2*eps(x))
// < 2^-13 + (1.5 * 2^9 * 1.5 * 2^-56 + 2*2^(9 - 52))
// < 2^-13 + 2^-41
//
// The following trick computes the round(x * L2E) more efficiently
// than using the rounding instructions, with the tradeoff for less accuracy,
// and hence a slightly larger range for the reduced argument `lo`.
//
// To be precise, since |x| < |log(2^-1075)| < 1.5 * 2^9,
// |x * 2^12 * L2E| < 1.5 * 2^9 * 1.5 < 2^23,
// So we can fit the rounded result round(x * 2^12 * L2E) in int32_t.
// Thus, the goal is to be able to use an additional addition and fixed width
// shift to get an int32_t representing round(x * 2^12 * L2E).
//
// Assuming int32_t using 2-complement representation, since the mantissa part
// of a double precision is unsigned with the leading bit hidden, if we add an
// extra constant C = 2^e1 + 2^e2 with e1 > e2 >= 2^25 to the product, the
// part that are < 2^e2 in resulted mantissa of (x*2^12*L2E + C) can be
// considered as a proper 2-complement representations of x*2^12*L2E.
//
// One small problem with this approach is that the sum (x*2^12*L2E + C) in
// double precision is rounded to the least significant bit of the dorminant
// factor C. In order to minimize the rounding errors from this addition, we
// want to minimize e1. Another constraint that we want is that after
// shifting the mantissa so that the least significant bit of int32_t
// corresponds to the unit bit of (x*2^12*L2E), the sign is correct without
// any adjustment. So combining these 2 requirements, we can choose
// C = 2^33 + 2^32, so that the sign bit corresponds to 2^31 bit, and hence
// after right shifting the mantissa, the resulting int32_t has correct sign.
// With this choice of C, the number of mantissa bits we need to shift to the
// right is: 52 - 33 = 19.
//
// Moreover, since the integer right shifts are equivalent to rounding down,
// we can add an extra 0.5 so that it will become round-to-nearest, tie-to-
// +infinity. So in particular, we can compute:
// hmm = x * 2^12 * L2E + C,
// where C = 2^33 + 2^32 + 2^-1, then if
// k = int32_t(lower 51 bits of double(x * 2^12 * L2E + C) >> 19),
// the reduced argument:
// lo = x - log(2) * 2^-12 * k is bounded by:
// |lo| <= 2^-13 + 2^-41 + 2^-12*2^-19
// = 2^-13 + 2^-31 + 2^-41.
//
// Finally, notice that k only uses the mantissa of x * 2^12 * L2E, so the
// exponent 2^12 is not needed. So we can simply define
// C = 2^(33 - 12) + 2^(32 - 12) + 2^(-13 - 12), and
// k = int32_t(lower 51 bits of double(x * L2E + C) >> 19).
// Rounding errors <= 2^-31 + 2^-41.
double tmp = fputil::multiply_add(x, LOG2_E, 0x1.8000'0000'4p21);
int k = static_cast<int>(cpp::bit_cast<uint64_t>(tmp) >> 19);
double kd = static_cast<double>(k);
uint32_t idx1 = (k >> 6) & 0x3f;
uint32_t idx2 = k & 0x3f;
int hi = k >> 12;
DoubleDouble exp_mid1{EXP2_MID1[idx1].mid, EXP2_MID1[idx1].hi};
DoubleDouble exp_mid2{EXP2_MID2[idx2].mid, EXP2_MID2[idx2].hi};
DoubleDouble exp_mid = fputil::quick_mult(exp_mid1, exp_mid2);
// -2^(-hi)
double one_scaled =
FPBits::create_value(Sign::NEG, FPBits::EXP_BIAS - hi, 0).get_val();
// 2^(mid1 + mid2) - 2^(-hi)
DoubleDouble hi_part = x_is_neg ? fputil::exact_add(one_scaled, exp_mid.hi)
: fputil::exact_add(exp_mid.hi, one_scaled);
hi_part.lo += exp_mid.lo;
// |x - (hi + mid1 + mid2) * log(2) - dx| < 2^11 * eps(M_LOG_2_EXP2_M12.lo)
// = 2^11 * 2^-13 * 2^-52
// = 2^-54.
// |dx| < 2^-13 + 2^-30.
double lo_h = fputil::multiply_add(kd, MLOG_2_EXP2_M12_HI, x); // exact
double dx = fputil::multiply_add(kd, MLOG_2_EXP2_M12_MID, lo_h);
// We use the degree-4 Taylor polynomial to approximate exp(lo):
// exp(lo) ~ 1 + lo + lo^2 / 2 + lo^3 / 6 + lo^4 / 24 = 1 + lo * P(lo)
// So that the errors are bounded by:
// |P(lo) - expm1(lo)/lo| < |lo|^4 / 64 < 2^(-13 * 4) / 64 = 2^-58
// Let P_ be an evaluation of P where all intermediate computations are in
// double precision. Using either Horner's or Estrin's schemes, the evaluated
// errors can be bounded by:
// |P_(dx) - P(dx)| < 2^-51
// => |dx * P_(dx) - expm1(lo) | < 1.5 * 2^-64
// => 2^(mid1 + mid2) * |dx * P_(dx) - expm1(lo)| < 1.5 * 2^-63.
// Since we approximate
// 2^(mid1 + mid2) ~ exp_mid.hi + exp_mid.lo,
// We use the expression:
// (exp_mid.hi + exp_mid.lo) * (1 + dx * P_(dx)) ~
// ~ exp_mid.hi + (exp_mid.hi * dx * P_(dx) + exp_mid.lo)
// with errors bounded by 1.5 * 2^-63.
// Finally, we have the following approximation formula:
// expm1(x) = 2^hi * 2^(mid1 + mid2) * exp(lo) - 1
// = 2^hi * ( 2^(mid1 + mid2) * exp(lo) - 2^(-hi) )
// ~ 2^hi * ( (exp_mid.hi - 2^-hi) +
// + (exp_mid.hi * dx * P_(dx) + exp_mid.lo))
double mid_lo = dx * exp_mid.hi;
// Approximate expm1(dx)/dx ~ 1 + dx / 2 + dx^2 / 6 + dx^3 / 24.
double p = poly_approx_d(dx);
double lo = fputil::multiply_add(p, mid_lo, hi_part.lo);
// TODO: The following line leaks encoding abstraction. Use FPBits methods
// instead.
uint64_t err = x_is_neg ? (static_cast<uint64_t>(-hi) << 52) : 0;
double err_d = cpp::bit_cast<double>(ERR_D + err);
double upper = hi_part.hi + (lo + err_d);
double lower = hi_part.hi + (lo - err_d);
#ifdef DEBUGDEBUG
std::cout << "=== FAST PASS ===\n"
<< " x: " << std::hexfloat << x << std::defaultfloat << "\n"
<< " k: " << k << "\n"
<< " idx1: " << idx1 << "\n"
<< " idx2: " << idx2 << "\n"
<< " hi: " << hi << "\n"
<< " dx: " << std::hexfloat << dx << std::defaultfloat << "\n"
<< "exp_mid: " << exp_mid << "hi_part: " << hi_part
<< " mid_lo: " << std::hexfloat << mid_lo << std::defaultfloat
<< "\n"
<< " p: " << std::hexfloat << p << std::defaultfloat << "\n"
<< " lo: " << std::hexfloat << lo << std::defaultfloat << "\n"
<< " upper: " << std::hexfloat << upper << std::defaultfloat
<< "\n"
<< " lower: " << std::hexfloat << lower << std::defaultfloat
<< "\n"
<< std::endl;
#endif
if (LIBC_LIKELY(upper == lower)) {
// to multiply by 2^hi, a fast way is to simply add hi to the exponent
// field.
int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper));
return r;
}
// Use double-double
DoubleDouble r_dd = exp_double_double(x, kd, exp_mid, hi_part);
#ifdef LIBC_MATH_EXPM1_SKIP_ACCURATE_PASS
int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
double r =
cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(r_dd.hi + r_dd.lo));
return r;
#else
double err_dd = cpp::bit_cast<double>(ERR_DD + err);
double upper_dd = r_dd.hi + (r_dd.lo + err_dd);
double lower_dd = r_dd.hi + (r_dd.lo - err_dd);
if (LIBC_LIKELY(upper_dd == lower_dd)) {
int64_t exp_hi = static_cast<int64_t>(hi) << FPBits::FRACTION_LEN;
double r = cpp::bit_cast<double>(exp_hi + cpp::bit_cast<int64_t>(upper_dd));
return r;
}
// Use 128-bit precision
Float128 r_f128 = expm1_f128(x, kd, idx1, idx2);
return static_cast<double>(r_f128);
#endif // LIBC_MATH_EXPM1_SKIP_ACCURATE_PASS
}
} // namespace LIBC_NAMESPACE_DECL
|