1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <algorithm>
#include <benchmark/benchmark.h>
#include <iterator>
#include "test_iterators.h"
#include <vector>
static void bm_ends_with_contiguous_iter(benchmark::State& state) {
std::vector<int> a(state.range(), 1);
std::vector<int> p(state.range(), 1);
for (auto _ : state) {
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(p);
auto begin1 = contiguous_iterator(a.data());
auto end1 = contiguous_iterator(a.data() + a.size());
auto begin2 = contiguous_iterator(p.data());
auto end2 = contiguous_iterator(p.data() + p.size());
benchmark::DoNotOptimize(std::ranges::ends_with(begin1, end1, begin2, end2));
}
}
BENCHMARK(bm_ends_with_contiguous_iter)->RangeMultiplier(16)->Range(16, 16 << 20);
static void bm_ends_with_random_iter(benchmark::State& state) {
std::vector<int> a(state.range(), 1);
std::vector<int> p(state.range(), 1);
for (auto _ : state) {
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(p);
auto begin1 = random_access_iterator(a.begin());
auto end1 = random_access_iterator(a.end());
auto begin2 = random_access_iterator(p.begin());
auto end2 = random_access_iterator(p.end());
benchmark::DoNotOptimize(std::ranges::ends_with(begin1, end1, begin2, end2));
}
}
BENCHMARK(bm_ends_with_random_iter)->RangeMultiplier(16)->Range(16, 16 << 20);
static void bm_ends_with_bidirectional_iter(benchmark::State& state) {
std::vector<int> a(state.range(), 1);
std::vector<int> p(state.range(), 1);
for (auto _ : state) {
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(p);
auto begin1 = bidirectional_iterator(a.begin());
auto end1 = bidirectional_iterator(a.end());
auto begin2 = bidirectional_iterator(p.begin());
auto end2 = bidirectional_iterator(p.end());
benchmark::DoNotOptimize(std::ranges::ends_with(begin1, end1, begin2, end2));
}
}
BENCHMARK(bm_ends_with_bidirectional_iter)->RangeMultiplier(16)->Range(16, 16 << 20);
static void bm_ends_with_forward_iter(benchmark::State& state) {
std::vector<int> a(state.range(), 1);
std::vector<int> p(state.range(), 1);
for (auto _ : state) {
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(p);
auto begin1 = forward_iterator(a.begin());
auto end1 = forward_iterator(a.end());
auto begin2 = forward_iterator(p.begin());
auto end2 = forward_iterator(p.end());
benchmark::DoNotOptimize(std::ranges::ends_with(begin1, end1, begin2, end2));
}
}
BENCHMARK(bm_ends_with_forward_iter)->RangeMultiplier(16)->Range(16, 16 << 20);
static void bm_ends_with_forward_iter_with_size_optimization(benchmark::State& state) {
std::vector<int> a(state.range(), 1);
std::vector<int> p(state.range(), 1);
p.push_back(2);
for (auto _ : state) {
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(p);
auto begin1 = forward_iterator(a.begin());
auto end1 = forward_iterator(a.end());
auto begin2 = forward_iterator(p.begin());
auto end2 = forward_iterator(p.end());
benchmark::DoNotOptimize(std::ranges::ends_with(begin1, end1, begin2, end2));
}
}
BENCHMARK(bm_ends_with_forward_iter_with_size_optimization)->RangeMultiplier(16)->Range(16, 16 << 20);
BENCHMARK_MAIN();
|