1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP___ALGORITHM_SORT_H
#define _LIBCPP___ALGORITHM_SORT_H
#include <__algorithm/comp.h>
#include <__algorithm/comp_ref_type.h>
#include <__algorithm/iter_swap.h>
#include <__algorithm/iterator_operations.h>
#include <__algorithm/min_element.h>
#include <__algorithm/partial_sort.h>
#include <__algorithm/unwrap_iter.h>
#include <__assert>
#include <__bit/blsr.h>
#include <__bit/countl.h>
#include <__bit/countr.h>
#include <__config>
#include <__debug_utils/randomize_range.h>
#include <__debug_utils/strict_weak_ordering_check.h>
#include <__functional/operations.h>
#include <__functional/ranges_operations.h>
#include <__iterator/iterator_traits.h>
#include <__type_traits/conditional.h>
#include <__type_traits/disjunction.h>
#include <__type_traits/is_arithmetic.h>
#include <__type_traits/is_constant_evaluated.h>
#include <__utility/move.h>
#include <__utility/pair.h>
#include <climits>
#include <cstdint>
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
# pragma GCC system_header
#endif
_LIBCPP_PUSH_MACROS
#include <__undef_macros>
_LIBCPP_BEGIN_NAMESPACE_STD
// stable, 2-3 compares, 0-2 swaps
template <class _AlgPolicy, class _Compare, class _ForwardIterator>
_LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 unsigned
__sort3(_ForwardIterator __x, _ForwardIterator __y, _ForwardIterator __z, _Compare __c) {
using _Ops = _IterOps<_AlgPolicy>;
unsigned __r = 0;
if (!__c(*__y, *__x)) // if x <= y
{
if (!__c(*__z, *__y)) // if y <= z
return __r; // x <= y && y <= z
// x <= y && y > z
_Ops::iter_swap(__y, __z); // x <= z && y < z
__r = 1;
if (__c(*__y, *__x)) // if x > y
{
_Ops::iter_swap(__x, __y); // x < y && y <= z
__r = 2;
}
return __r; // x <= y && y < z
}
if (__c(*__z, *__y)) // x > y, if y > z
{
_Ops::iter_swap(__x, __z); // x < y && y < z
__r = 1;
return __r;
}
_Ops::iter_swap(__x, __y); // x > y && y <= z
__r = 1; // x < y && x <= z
if (__c(*__z, *__y)) // if y > z
{
_Ops::iter_swap(__y, __z); // x <= y && y < z
__r = 2;
}
return __r;
} // x <= y && y <= z
// stable, 3-6 compares, 0-5 swaps
template <class _AlgPolicy, class _Compare, class _ForwardIterator>
_LIBCPP_HIDE_FROM_ABI void
__sort4(_ForwardIterator __x1, _ForwardIterator __x2, _ForwardIterator __x3, _ForwardIterator __x4, _Compare __c) {
using _Ops = _IterOps<_AlgPolicy>;
std::__sort3<_AlgPolicy, _Compare>(__x1, __x2, __x3, __c);
if (__c(*__x4, *__x3)) {
_Ops::iter_swap(__x3, __x4);
if (__c(*__x3, *__x2)) {
_Ops::iter_swap(__x2, __x3);
if (__c(*__x2, *__x1)) {
_Ops::iter_swap(__x1, __x2);
}
}
}
}
// stable, 4-10 compares, 0-9 swaps
template <class _AlgPolicy, class _Comp, class _ForwardIterator>
_LIBCPP_HIDE_FROM_ABI void
__sort5(_ForwardIterator __x1,
_ForwardIterator __x2,
_ForwardIterator __x3,
_ForwardIterator __x4,
_ForwardIterator __x5,
_Comp __comp) {
using _Ops = _IterOps<_AlgPolicy>;
std::__sort4<_AlgPolicy, _Comp>(__x1, __x2, __x3, __x4, __comp);
if (__comp(*__x5, *__x4)) {
_Ops::iter_swap(__x4, __x5);
if (__comp(*__x4, *__x3)) {
_Ops::iter_swap(__x3, __x4);
if (__comp(*__x3, *__x2)) {
_Ops::iter_swap(__x2, __x3);
if (__comp(*__x2, *__x1)) {
_Ops::iter_swap(__x1, __x2);
}
}
}
}
}
// The comparator being simple is a prerequisite for using the branchless optimization.
template <class _Tp>
struct __is_simple_comparator : false_type {};
template <>
struct __is_simple_comparator<__less<>&> : true_type {};
template <class _Tp>
struct __is_simple_comparator<less<_Tp>&> : true_type {};
template <class _Tp>
struct __is_simple_comparator<greater<_Tp>&> : true_type {};
#if _LIBCPP_STD_VER >= 20
template <>
struct __is_simple_comparator<ranges::less&> : true_type {};
template <>
struct __is_simple_comparator<ranges::greater&> : true_type {};
#endif
template <class _Compare, class _Iter, class _Tp = typename iterator_traits<_Iter>::value_type>
using __use_branchless_sort =
integral_constant<bool,
__libcpp_is_contiguous_iterator<_Iter>::value && sizeof(_Tp) <= sizeof(void*) &&
is_arithmetic<_Tp>::value && __is_simple_comparator<_Compare>::value>;
namespace __detail {
// Size in bits for the bitset in use.
enum { __block_size = sizeof(uint64_t) * 8 };
} // namespace __detail
// Ensures that __c(*__x, *__y) is true by swapping *__x and *__y if necessary.
template <class _Compare, class _RandomAccessIterator>
inline _LIBCPP_HIDE_FROM_ABI void __cond_swap(_RandomAccessIterator __x, _RandomAccessIterator __y, _Compare __c) {
// Note: this function behaves correctly even with proxy iterators (because it relies on `value_type`).
using value_type = typename iterator_traits<_RandomAccessIterator>::value_type;
bool __r = __c(*__x, *__y);
value_type __tmp = __r ? *__x : *__y;
*__y = __r ? *__y : *__x;
*__x = __tmp;
}
// Ensures that *__x, *__y and *__z are ordered according to the comparator __c,
// under the assumption that *__y and *__z are already ordered.
template <class _Compare, class _RandomAccessIterator>
inline _LIBCPP_HIDE_FROM_ABI void
__partially_sorted_swap(_RandomAccessIterator __x, _RandomAccessIterator __y, _RandomAccessIterator __z, _Compare __c) {
// Note: this function behaves correctly even with proxy iterators (because it relies on `value_type`).
using value_type = typename iterator_traits<_RandomAccessIterator>::value_type;
bool __r = __c(*__z, *__x);
value_type __tmp = __r ? *__z : *__x;
*__z = __r ? *__x : *__z;
__r = __c(__tmp, *__y);
*__x = __r ? *__x : *__y;
*__y = __r ? *__y : __tmp;
}
template <class,
class _Compare,
class _RandomAccessIterator,
__enable_if_t<__use_branchless_sort<_Compare, _RandomAccessIterator>::value, int> = 0>
inline _LIBCPP_HIDE_FROM_ABI void __sort3_maybe_branchless(
_RandomAccessIterator __x1, _RandomAccessIterator __x2, _RandomAccessIterator __x3, _Compare __c) {
std::__cond_swap<_Compare>(__x2, __x3, __c);
std::__partially_sorted_swap<_Compare>(__x1, __x2, __x3, __c);
}
template <class _AlgPolicy,
class _Compare,
class _RandomAccessIterator,
__enable_if_t<!__use_branchless_sort<_Compare, _RandomAccessIterator>::value, int> = 0>
inline _LIBCPP_HIDE_FROM_ABI void __sort3_maybe_branchless(
_RandomAccessIterator __x1, _RandomAccessIterator __x2, _RandomAccessIterator __x3, _Compare __c) {
std::__sort3<_AlgPolicy, _Compare>(__x1, __x2, __x3, __c);
}
template <class,
class _Compare,
class _RandomAccessIterator,
__enable_if_t<__use_branchless_sort<_Compare, _RandomAccessIterator>::value, int> = 0>
inline _LIBCPP_HIDE_FROM_ABI void __sort4_maybe_branchless(
_RandomAccessIterator __x1,
_RandomAccessIterator __x2,
_RandomAccessIterator __x3,
_RandomAccessIterator __x4,
_Compare __c) {
std::__cond_swap<_Compare>(__x1, __x3, __c);
std::__cond_swap<_Compare>(__x2, __x4, __c);
std::__cond_swap<_Compare>(__x1, __x2, __c);
std::__cond_swap<_Compare>(__x3, __x4, __c);
std::__cond_swap<_Compare>(__x2, __x3, __c);
}
template <class _AlgPolicy,
class _Compare,
class _RandomAccessIterator,
__enable_if_t<!__use_branchless_sort<_Compare, _RandomAccessIterator>::value, int> = 0>
inline _LIBCPP_HIDE_FROM_ABI void __sort4_maybe_branchless(
_RandomAccessIterator __x1,
_RandomAccessIterator __x2,
_RandomAccessIterator __x3,
_RandomAccessIterator __x4,
_Compare __c) {
std::__sort4<_AlgPolicy, _Compare>(__x1, __x2, __x3, __x4, __c);
}
template <class _AlgPolicy,
class _Compare,
class _RandomAccessIterator,
__enable_if_t<__use_branchless_sort<_Compare, _RandomAccessIterator>::value, int> = 0>
inline _LIBCPP_HIDE_FROM_ABI void __sort5_maybe_branchless(
_RandomAccessIterator __x1,
_RandomAccessIterator __x2,
_RandomAccessIterator __x3,
_RandomAccessIterator __x4,
_RandomAccessIterator __x5,
_Compare __c) {
std::__cond_swap<_Compare>(__x1, __x2, __c);
std::__cond_swap<_Compare>(__x4, __x5, __c);
std::__partially_sorted_swap<_Compare>(__x3, __x4, __x5, __c);
std::__cond_swap<_Compare>(__x2, __x5, __c);
std::__partially_sorted_swap<_Compare>(__x1, __x3, __x4, __c);
std::__partially_sorted_swap<_Compare>(__x2, __x3, __x4, __c);
}
template <class _AlgPolicy,
class _Compare,
class _RandomAccessIterator,
__enable_if_t<!__use_branchless_sort<_Compare, _RandomAccessIterator>::value, int> = 0>
inline _LIBCPP_HIDE_FROM_ABI void __sort5_maybe_branchless(
_RandomAccessIterator __x1,
_RandomAccessIterator __x2,
_RandomAccessIterator __x3,
_RandomAccessIterator __x4,
_RandomAccessIterator __x5,
_Compare __c) {
std::__sort5<_AlgPolicy, _Compare, _RandomAccessIterator>(
std::move(__x1), std::move(__x2), std::move(__x3), std::move(__x4), std::move(__x5), __c);
}
// Assumes size > 0
template <class _AlgPolicy, class _Compare, class _BidirectionalIterator>
_LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 void
__selection_sort(_BidirectionalIterator __first, _BidirectionalIterator __last, _Compare __comp) {
_BidirectionalIterator __lm1 = __last;
for (--__lm1; __first != __lm1; ++__first) {
_BidirectionalIterator __i = std::__min_element<_Compare>(__first, __last, __comp);
if (__i != __first)
_IterOps<_AlgPolicy>::iter_swap(__first, __i);
}
}
// Sort the iterator range [__first, __last) using the comparator __comp using
// the insertion sort algorithm.
template <class _AlgPolicy, class _Compare, class _BidirectionalIterator>
_LIBCPP_HIDE_FROM_ABI void
__insertion_sort(_BidirectionalIterator __first, _BidirectionalIterator __last, _Compare __comp) {
using _Ops = _IterOps<_AlgPolicy>;
typedef typename iterator_traits<_BidirectionalIterator>::value_type value_type;
if (__first == __last)
return;
_BidirectionalIterator __i = __first;
for (++__i; __i != __last; ++__i) {
_BidirectionalIterator __j = __i;
--__j;
if (__comp(*__i, *__j)) {
value_type __t(_Ops::__iter_move(__i));
_BidirectionalIterator __k = __j;
__j = __i;
do {
*__j = _Ops::__iter_move(__k);
__j = __k;
} while (__j != __first && __comp(__t, *--__k));
*__j = std::move(__t);
}
}
}
// Sort the iterator range [__first, __last) using the comparator __comp using
// the insertion sort algorithm. Insertion sort has two loops, outer and inner.
// The implementation below has no bounds check (unguarded) for the inner loop.
// Assumes that there is an element in the position (__first - 1) and that each
// element in the input range is greater or equal to the element at __first - 1.
template <class _AlgPolicy, class _Compare, class _RandomAccessIterator>
_LIBCPP_HIDE_FROM_ABI void
__insertion_sort_unguarded(_RandomAccessIterator const __first, _RandomAccessIterator __last, _Compare __comp) {
using _Ops = _IterOps<_AlgPolicy>;
typedef typename iterator_traits<_RandomAccessIterator>::difference_type difference_type;
typedef typename iterator_traits<_RandomAccessIterator>::value_type value_type;
if (__first == __last)
return;
const _RandomAccessIterator __leftmost = __first - difference_type(1);
(void)__leftmost; // can be unused when assertions are disabled
for (_RandomAccessIterator __i = __first + difference_type(1); __i != __last; ++__i) {
_RandomAccessIterator __j = __i - difference_type(1);
if (__comp(*__i, *__j)) {
value_type __t(_Ops::__iter_move(__i));
_RandomAccessIterator __k = __j;
__j = __i;
do {
*__j = _Ops::__iter_move(__k);
__j = __k;
_LIBCPP_ASSERT_VALID_ELEMENT_ACCESS(
__k != __leftmost,
"Would read out of bounds, does your comparator satisfy the strict-weak ordering requirement?");
} while (__comp(__t, *--__k)); // No need for bounds check due to the assumption stated above.
*__j = std::move(__t);
}
}
}
template <class _AlgPolicy, class _Comp, class _RandomAccessIterator>
_LIBCPP_HIDE_FROM_ABI bool
__insertion_sort_incomplete(_RandomAccessIterator __first, _RandomAccessIterator __last, _Comp __comp) {
using _Ops = _IterOps<_AlgPolicy>;
typedef typename iterator_traits<_RandomAccessIterator>::difference_type difference_type;
switch (__last - __first) {
case 0:
case 1:
return true;
case 2:
if (__comp(*--__last, *__first))
_Ops::iter_swap(__first, __last);
return true;
case 3:
std::__sort3_maybe_branchless<_AlgPolicy, _Comp>(__first, __first + difference_type(1), --__last, __comp);
return true;
case 4:
std::__sort4_maybe_branchless<_AlgPolicy, _Comp>(
__first, __first + difference_type(1), __first + difference_type(2), --__last, __comp);
return true;
case 5:
std::__sort5_maybe_branchless<_AlgPolicy, _Comp>(
__first,
__first + difference_type(1),
__first + difference_type(2),
__first + difference_type(3),
--__last,
__comp);
return true;
}
typedef typename iterator_traits<_RandomAccessIterator>::value_type value_type;
_RandomAccessIterator __j = __first + difference_type(2);
std::__sort3_maybe_branchless<_AlgPolicy, _Comp>(__first, __first + difference_type(1), __j, __comp);
const unsigned __limit = 8;
unsigned __count = 0;
for (_RandomAccessIterator __i = __j + difference_type(1); __i != __last; ++__i) {
if (__comp(*__i, *__j)) {
value_type __t(_Ops::__iter_move(__i));
_RandomAccessIterator __k = __j;
__j = __i;
do {
*__j = _Ops::__iter_move(__k);
__j = __k;
} while (__j != __first && __comp(__t, *--__k));
*__j = std::move(__t);
if (++__count == __limit)
return ++__i == __last;
}
__j = __i;
}
return true;
}
template <class _AlgPolicy, class _RandomAccessIterator>
inline _LIBCPP_HIDE_FROM_ABI void __swap_bitmap_pos(
_RandomAccessIterator __first, _RandomAccessIterator __last, uint64_t& __left_bitset, uint64_t& __right_bitset) {
using _Ops = _IterOps<_AlgPolicy>;
typedef typename std::iterator_traits<_RandomAccessIterator>::difference_type difference_type;
// Swap one pair on each iteration as long as both bitsets have at least one
// element for swapping.
while (__left_bitset != 0 && __right_bitset != 0) {
difference_type __tz_left = __libcpp_ctz(__left_bitset);
__left_bitset = __libcpp_blsr(__left_bitset);
difference_type __tz_right = __libcpp_ctz(__right_bitset);
__right_bitset = __libcpp_blsr(__right_bitset);
_Ops::iter_swap(__first + __tz_left, __last - __tz_right);
}
}
template <class _Compare,
class _RandomAccessIterator,
class _ValueType = typename iterator_traits<_RandomAccessIterator>::value_type>
inline _LIBCPP_HIDE_FROM_ABI void
__populate_left_bitset(_RandomAccessIterator __first, _Compare __comp, _ValueType& __pivot, uint64_t& __left_bitset) {
// Possible vectorization. With a proper "-march" flag, the following loop
// will be compiled into a set of SIMD instructions.
_RandomAccessIterator __iter = __first;
for (int __j = 0; __j < __detail::__block_size;) {
bool __comp_result = !__comp(*__iter, __pivot);
__left_bitset |= (static_cast<uint64_t>(__comp_result) << __j);
__j++;
++__iter;
}
}
template <class _Compare,
class _RandomAccessIterator,
class _ValueType = typename iterator_traits<_RandomAccessIterator>::value_type>
inline _LIBCPP_HIDE_FROM_ABI void
__populate_right_bitset(_RandomAccessIterator __lm1, _Compare __comp, _ValueType& __pivot, uint64_t& __right_bitset) {
// Possible vectorization. With a proper "-march" flag, the following loop
// will be compiled into a set of SIMD instructions.
_RandomAccessIterator __iter = __lm1;
for (int __j = 0; __j < __detail::__block_size;) {
bool __comp_result = __comp(*__iter, __pivot);
__right_bitset |= (static_cast<uint64_t>(__comp_result) << __j);
__j++;
--__iter;
}
}
template <class _AlgPolicy,
class _Compare,
class _RandomAccessIterator,
class _ValueType = typename iterator_traits<_RandomAccessIterator>::value_type>
inline _LIBCPP_HIDE_FROM_ABI void __bitset_partition_partial_blocks(
_RandomAccessIterator& __first,
_RandomAccessIterator& __lm1,
_Compare __comp,
_ValueType& __pivot,
uint64_t& __left_bitset,
uint64_t& __right_bitset) {
typedef typename std::iterator_traits<_RandomAccessIterator>::difference_type difference_type;
difference_type __remaining_len = __lm1 - __first + 1;
difference_type __l_size;
difference_type __r_size;
if (__left_bitset == 0 && __right_bitset == 0) {
__l_size = __remaining_len / 2;
__r_size = __remaining_len - __l_size;
} else if (__left_bitset == 0) {
// We know at least one side is a full block.
__l_size = __remaining_len - __detail::__block_size;
__r_size = __detail::__block_size;
} else { // if (__right_bitset == 0)
__l_size = __detail::__block_size;
__r_size = __remaining_len - __detail::__block_size;
}
// Record the comparison outcomes for the elements currently on the left side.
if (__left_bitset == 0) {
_RandomAccessIterator __iter = __first;
for (int __j = 0; __j < __l_size; __j++) {
bool __comp_result = !__comp(*__iter, __pivot);
__left_bitset |= (static_cast<uint64_t>(__comp_result) << __j);
++__iter;
}
}
// Record the comparison outcomes for the elements currently on the right
// side.
if (__right_bitset == 0) {
_RandomAccessIterator __iter = __lm1;
for (int __j = 0; __j < __r_size; __j++) {
bool __comp_result = __comp(*__iter, __pivot);
__right_bitset |= (static_cast<uint64_t>(__comp_result) << __j);
--__iter;
}
}
std::__swap_bitmap_pos<_AlgPolicy, _RandomAccessIterator>(__first, __lm1, __left_bitset, __right_bitset);
__first += (__left_bitset == 0) ? __l_size : 0;
__lm1 -= (__right_bitset == 0) ? __r_size : 0;
}
template <class _AlgPolicy, class _RandomAccessIterator>
inline _LIBCPP_HIDE_FROM_ABI void __swap_bitmap_pos_within(
_RandomAccessIterator& __first, _RandomAccessIterator& __lm1, uint64_t& __left_bitset, uint64_t& __right_bitset) {
using _Ops = _IterOps<_AlgPolicy>;
typedef typename std::iterator_traits<_RandomAccessIterator>::difference_type difference_type;
if (__left_bitset) {
// Swap within the left side. Need to find set positions in the reverse
// order.
while (__left_bitset != 0) {
difference_type __tz_left = __detail::__block_size - 1 - __libcpp_clz(__left_bitset);
__left_bitset &= (static_cast<uint64_t>(1) << __tz_left) - 1;
_RandomAccessIterator __it = __first + __tz_left;
if (__it != __lm1) {
_Ops::iter_swap(__it, __lm1);
}
--__lm1;
}
__first = __lm1 + difference_type(1);
} else if (__right_bitset) {
// Swap within the right side. Need to find set positions in the reverse
// order.
while (__right_bitset != 0) {
difference_type __tz_right = __detail::__block_size - 1 - __libcpp_clz(__right_bitset);
__right_bitset &= (static_cast<uint64_t>(1) << __tz_right) - 1;
_RandomAccessIterator __it = __lm1 - __tz_right;
if (__it != __first) {
_Ops::iter_swap(__it, __first);
}
++__first;
}
}
}
// Partition [__first, __last) using the comparator __comp. *__first has the
// chosen pivot. Elements that are equivalent are kept to the left of the
// pivot. Returns the iterator for the pivot and a bool value which is true if
// the provided range is already sorted, false otherwise. We assume that the
// length of the range is at least three elements.
//
// __bitset_partition uses bitsets for storing outcomes of the comparisons
// between the pivot and other elements.
template <class _AlgPolicy, class _RandomAccessIterator, class _Compare>
_LIBCPP_HIDE_FROM_ABI std::pair<_RandomAccessIterator, bool>
__bitset_partition(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) {
using _Ops = _IterOps<_AlgPolicy>;
typedef typename std::iterator_traits<_RandomAccessIterator>::value_type value_type;
typedef typename std::iterator_traits<_RandomAccessIterator>::difference_type difference_type;
_LIBCPP_ASSERT_INTERNAL(__last - __first >= difference_type(3), "");
const _RandomAccessIterator __begin = __first; // used for bounds checking, those are not moved around
const _RandomAccessIterator __end = __last;
(void)__end; //
value_type __pivot(_Ops::__iter_move(__first));
// Find the first element greater than the pivot.
if (__comp(__pivot, *(__last - difference_type(1)))) {
// Not guarded since we know the last element is greater than the pivot.
do {
++__first;
_LIBCPP_ASSERT_VALID_ELEMENT_ACCESS(
__first != __end,
"Would read out of bounds, does your comparator satisfy the strict-weak ordering requirement?");
} while (!__comp(__pivot, *__first));
} else {
while (++__first < __last && !__comp(__pivot, *__first)) {
}
}
// Find the last element less than or equal to the pivot.
if (__first < __last) {
// It will be always guarded because __introsort will do the median-of-three
// before calling this.
do {
_LIBCPP_ASSERT_VALID_ELEMENT_ACCESS(
__last != __begin,
"Would read out of bounds, does your comparator satisfy the strict-weak ordering requirement?");
--__last;
} while (__comp(__pivot, *__last));
}
// If the first element greater than the pivot is at or after the
// last element less than or equal to the pivot, then we have covered the
// entire range without swapping elements. This implies the range is already
// partitioned.
bool __already_partitioned = __first >= __last;
if (!__already_partitioned) {
_Ops::iter_swap(__first, __last);
++__first;
}
// In [__first, __last) __last is not inclusive. From now on, it uses last
// minus one to be inclusive on both sides.
_RandomAccessIterator __lm1 = __last - difference_type(1);
uint64_t __left_bitset = 0;
uint64_t __right_bitset = 0;
// Reminder: length = __lm1 - __first + 1.
while (__lm1 - __first >= 2 * __detail::__block_size - 1) {
// Record the comparison outcomes for the elements currently on the left
// side.
if (__left_bitset == 0)
std::__populate_left_bitset<_Compare>(__first, __comp, __pivot, __left_bitset);
// Record the comparison outcomes for the elements currently on the right
// side.
if (__right_bitset == 0)
std::__populate_right_bitset<_Compare>(__lm1, __comp, __pivot, __right_bitset);
// Swap the elements recorded to be the candidates for swapping in the
// bitsets.
std::__swap_bitmap_pos<_AlgPolicy, _RandomAccessIterator>(__first, __lm1, __left_bitset, __right_bitset);
// Only advance the iterator if all the elements that need to be moved to
// other side were moved.
__first += (__left_bitset == 0) ? difference_type(__detail::__block_size) : difference_type(0);
__lm1 -= (__right_bitset == 0) ? difference_type(__detail::__block_size) : difference_type(0);
}
// Now, we have a less-than a block worth of elements on at least one of the
// sides.
std::__bitset_partition_partial_blocks<_AlgPolicy, _Compare>(
__first, __lm1, __comp, __pivot, __left_bitset, __right_bitset);
// At least one the bitsets would be empty. For the non-empty one, we need to
// properly partition the elements that appear within that bitset.
std::__swap_bitmap_pos_within<_AlgPolicy>(__first, __lm1, __left_bitset, __right_bitset);
// Move the pivot to its correct position.
_RandomAccessIterator __pivot_pos = __first - difference_type(1);
if (__begin != __pivot_pos) {
*__begin = _Ops::__iter_move(__pivot_pos);
}
*__pivot_pos = std::move(__pivot);
return std::make_pair(__pivot_pos, __already_partitioned);
}
// Partition [__first, __last) using the comparator __comp. *__first has the
// chosen pivot. Elements that are equivalent are kept to the right of the
// pivot. Returns the iterator for the pivot and a bool value which is true if
// the provided range is already sorted, false otherwise. We assume that the
// length of the range is at least three elements.
template <class _AlgPolicy, class _RandomAccessIterator, class _Compare>
_LIBCPP_HIDE_FROM_ABI std::pair<_RandomAccessIterator, bool>
__partition_with_equals_on_right(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) {
using _Ops = _IterOps<_AlgPolicy>;
typedef typename iterator_traits<_RandomAccessIterator>::difference_type difference_type;
typedef typename std::iterator_traits<_RandomAccessIterator>::value_type value_type;
_LIBCPP_ASSERT_INTERNAL(__last - __first >= difference_type(3), "");
const _RandomAccessIterator __begin = __first; // used for bounds checking, those are not moved around
const _RandomAccessIterator __end = __last;
(void)__end; //
value_type __pivot(_Ops::__iter_move(__first));
// Find the first element greater or equal to the pivot. It will be always
// guarded because __introsort will do the median-of-three before calling
// this.
do {
++__first;
_LIBCPP_ASSERT_VALID_ELEMENT_ACCESS(
__first != __end,
"Would read out of bounds, does your comparator satisfy the strict-weak ordering requirement?");
} while (__comp(*__first, __pivot));
// Find the last element less than the pivot.
if (__begin == __first - difference_type(1)) {
while (__first < __last && !__comp(*--__last, __pivot))
;
} else {
// Guarded.
do {
_LIBCPP_ASSERT_VALID_ELEMENT_ACCESS(
__last != __begin,
"Would read out of bounds, does your comparator satisfy the strict-weak ordering requirement?");
--__last;
} while (!__comp(*__last, __pivot));
}
// If the first element greater than or equal to the pivot is at or after the
// last element less than the pivot, then we have covered the entire range
// without swapping elements. This implies the range is already partitioned.
bool __already_partitioned = __first >= __last;
// Go through the remaining elements. Swap pairs of elements (one to the
// right of the pivot and the other to left of the pivot) that are not on the
// correct side of the pivot.
while (__first < __last) {
_Ops::iter_swap(__first, __last);
do {
++__first;
_LIBCPP_ASSERT_VALID_ELEMENT_ACCESS(
__first != __end,
"Would read out of bounds, does your comparator satisfy the strict-weak ordering requirement?");
} while (__comp(*__first, __pivot));
do {
_LIBCPP_ASSERT_VALID_ELEMENT_ACCESS(
__last != __begin,
"Would read out of bounds, does your comparator satisfy the strict-weak ordering requirement?");
--__last;
} while (!__comp(*__last, __pivot));
}
// Move the pivot to its correct position.
_RandomAccessIterator __pivot_pos = __first - difference_type(1);
if (__begin != __pivot_pos) {
*__begin = _Ops::__iter_move(__pivot_pos);
}
*__pivot_pos = std::move(__pivot);
return std::make_pair(__pivot_pos, __already_partitioned);
}
// Similar to the above function. Elements equivalent to the pivot are put to
// the left of the pivot. Returns the iterator to the pivot element.
template <class _AlgPolicy, class _RandomAccessIterator, class _Compare>
_LIBCPP_HIDE_FROM_ABI _RandomAccessIterator
__partition_with_equals_on_left(_RandomAccessIterator __first, _RandomAccessIterator __last, _Compare __comp) {
using _Ops = _IterOps<_AlgPolicy>;
typedef typename iterator_traits<_RandomAccessIterator>::difference_type difference_type;
typedef typename std::iterator_traits<_RandomAccessIterator>::value_type value_type;
const _RandomAccessIterator __begin = __first; // used for bounds checking, those are not moved around
const _RandomAccessIterator __end = __last;
(void)__end; //
value_type __pivot(_Ops::__iter_move(__first));
if (__comp(__pivot, *(__last - difference_type(1)))) {
// Guarded.
do {
++__first;
_LIBCPP_ASSERT_VALID_ELEMENT_ACCESS(
__first != __end,
"Would read out of bounds, does your comparator satisfy the strict-weak ordering requirement?");
} while (!__comp(__pivot, *__first));
} else {
while (++__first < __last && !__comp(__pivot, *__first)) {
}
}
if (__first < __last) {
// It will be always guarded because __introsort will do the
// median-of-three before calling this.
do {
_LIBCPP_ASSERT_VALID_ELEMENT_ACCESS(
__last != __begin,
"Would read out of bounds, does your comparator satisfy the strict-weak ordering requirement?");
--__last;
} while (__comp(__pivot, *__last));
}
while (__first < __last) {
_Ops::iter_swap(__first, __last);
do {
++__first;
_LIBCPP_ASSERT_VALID_ELEMENT_ACCESS(
__first != __end,
"Would read out of bounds, does your comparator satisfy the strict-weak ordering requirement?");
} while (!__comp(__pivot, *__first));
do {
_LIBCPP_ASSERT_VALID_ELEMENT_ACCESS(
__last != __begin,
"Would read out of bounds, does your comparator satisfy the strict-weak ordering requirement?");
--__last;
} while (__comp(__pivot, *__last));
}
_RandomAccessIterator __pivot_pos = __first - difference_type(1);
if (__begin != __pivot_pos) {
*__begin = _Ops::__iter_move(__pivot_pos);
}
*__pivot_pos = std::move(__pivot);
return __first;
}
// The main sorting function. Implements introsort combined with other ideas:
// - option of using block quick sort for partitioning,
// - guarded and unguarded insertion sort for small lengths,
// - Tuckey's ninther technique for computing the pivot,
// - check on whether partition was not required.
// The implementation is partly based on Orson Peters' pattern-defeating
// quicksort, published at: <https://github.com/orlp/pdqsort>.
template <class _AlgPolicy, class _Compare, class _RandomAccessIterator, bool _UseBitSetPartition>
void __introsort(_RandomAccessIterator __first,
_RandomAccessIterator __last,
_Compare __comp,
typename iterator_traits<_RandomAccessIterator>::difference_type __depth,
bool __leftmost = true) {
using _Ops = _IterOps<_AlgPolicy>;
typedef typename iterator_traits<_RandomAccessIterator>::difference_type difference_type;
using _Comp_ref = __comp_ref_type<_Compare>;
// Upper bound for using insertion sort for sorting.
_LIBCPP_CONSTEXPR difference_type __limit = 24;
// Lower bound for using Tuckey's ninther technique for median computation.
_LIBCPP_CONSTEXPR difference_type __ninther_threshold = 128;
while (true) {
difference_type __len = __last - __first;
switch (__len) {
case 0:
case 1:
return;
case 2:
if (__comp(*--__last, *__first))
_Ops::iter_swap(__first, __last);
return;
case 3:
std::__sort3_maybe_branchless<_AlgPolicy, _Compare>(__first, __first + difference_type(1), --__last, __comp);
return;
case 4:
std::__sort4_maybe_branchless<_AlgPolicy, _Compare>(
__first, __first + difference_type(1), __first + difference_type(2), --__last, __comp);
return;
case 5:
std::__sort5_maybe_branchless<_AlgPolicy, _Compare>(
__first,
__first + difference_type(1),
__first + difference_type(2),
__first + difference_type(3),
--__last,
__comp);
return;
}
// Use insertion sort if the length of the range is below the specified limit.
if (__len < __limit) {
if (__leftmost) {
std::__insertion_sort<_AlgPolicy, _Compare>(__first, __last, __comp);
} else {
std::__insertion_sort_unguarded<_AlgPolicy, _Compare>(__first, __last, __comp);
}
return;
}
if (__depth == 0) {
// Fallback to heap sort as Introsort suggests.
std::__partial_sort<_AlgPolicy, _Compare>(__first, __last, __last, __comp);
return;
}
--__depth;
{
difference_type __half_len = __len / 2;
// Use Tuckey's ninther technique or median of 3 for pivot selection
// depending on the length of the range being sorted.
if (__len > __ninther_threshold) {
std::__sort3<_AlgPolicy, _Compare>(__first, __first + __half_len, __last - difference_type(1), __comp);
std::__sort3<_AlgPolicy, _Compare>(
__first + difference_type(1), __first + (__half_len - 1), __last - difference_type(2), __comp);
std::__sort3<_AlgPolicy, _Compare>(
__first + difference_type(2), __first + (__half_len + 1), __last - difference_type(3), __comp);
std::__sort3<_AlgPolicy, _Compare>(
__first + (__half_len - 1), __first + __half_len, __first + (__half_len + 1), __comp);
_Ops::iter_swap(__first, __first + __half_len);
} else {
std::__sort3<_AlgPolicy, _Compare>(__first + __half_len, __first, __last - difference_type(1), __comp);
}
}
// The elements to the left of the current iterator range are already
// sorted. If the current iterator range to be sorted is not the
// leftmost part of the entire iterator range and the pivot is same as
// the highest element in the range to the left, then we know that all
// the elements in the range [first, pivot] would be equal to the pivot,
// assuming the equal elements are put on the left side when
// partitioned. This also means that we do not need to sort the left
// side of the partition.
if (!__leftmost && !__comp(*(__first - difference_type(1)), *__first)) {
__first = std::__partition_with_equals_on_left<_AlgPolicy, _RandomAccessIterator, _Comp_ref>(
__first, __last, _Comp_ref(__comp));
continue;
}
// Use bitset partition only if asked for.
auto __ret = _UseBitSetPartition
? std::__bitset_partition<_AlgPolicy, _RandomAccessIterator, _Compare>(__first, __last, __comp)
: std::__partition_with_equals_on_right<_AlgPolicy, _RandomAccessIterator, _Compare>(
__first, __last, __comp);
_RandomAccessIterator __i = __ret.first;
// [__first, __i) < *__i and *__i <= [__i+1, __last)
// If we were given a perfect partition, see if insertion sort is quick...
if (__ret.second) {
bool __fs = std::__insertion_sort_incomplete<_AlgPolicy, _Compare>(__first, __i, __comp);
if (std::__insertion_sort_incomplete<_AlgPolicy, _Compare>(__i + difference_type(1), __last, __comp)) {
if (__fs)
return;
__last = __i;
continue;
} else {
if (__fs) {
__first = ++__i;
continue;
}
}
}
// Sort the left partiton recursively and the right partition with tail recursion elimination.
std::__introsort<_AlgPolicy, _Compare, _RandomAccessIterator, _UseBitSetPartition>(
__first, __i, __comp, __depth, __leftmost);
__leftmost = false;
__first = ++__i;
}
}
template <typename _Number>
inline _LIBCPP_HIDE_FROM_ABI _Number __log2i(_Number __n) {
if (__n == 0)
return 0;
if (sizeof(__n) <= sizeof(unsigned))
return sizeof(unsigned) * CHAR_BIT - 1 - __libcpp_clz(static_cast<unsigned>(__n));
if (sizeof(__n) <= sizeof(unsigned long))
return sizeof(unsigned long) * CHAR_BIT - 1 - __libcpp_clz(static_cast<unsigned long>(__n));
if (sizeof(__n) <= sizeof(unsigned long long))
return sizeof(unsigned long long) * CHAR_BIT - 1 - __libcpp_clz(static_cast<unsigned long long>(__n));
_Number __log2 = 0;
while (__n > 1) {
__log2++;
__n >>= 1;
}
return __log2;
}
template <class _Comp, class _RandomAccessIterator>
void __sort(_RandomAccessIterator, _RandomAccessIterator, _Comp);
extern template _LIBCPP_EXPORTED_FROM_ABI void __sort<__less<char>&, char*>(char*, char*, __less<char>&);
#ifndef _LIBCPP_HAS_NO_WIDE_CHARACTERS
extern template _LIBCPP_EXPORTED_FROM_ABI void __sort<__less<wchar_t>&, wchar_t*>(wchar_t*, wchar_t*, __less<wchar_t>&);
#endif
extern template _LIBCPP_EXPORTED_FROM_ABI void
__sort<__less<signed char>&, signed char*>(signed char*, signed char*, __less<signed char>&);
extern template _LIBCPP_EXPORTED_FROM_ABI void
__sort<__less<unsigned char>&, unsigned char*>(unsigned char*, unsigned char*, __less<unsigned char>&);
extern template _LIBCPP_EXPORTED_FROM_ABI void __sort<__less<short>&, short*>(short*, short*, __less<short>&);
extern template _LIBCPP_EXPORTED_FROM_ABI void
__sort<__less<unsigned short>&, unsigned short*>(unsigned short*, unsigned short*, __less<unsigned short>&);
extern template _LIBCPP_EXPORTED_FROM_ABI void __sort<__less<int>&, int*>(int*, int*, __less<int>&);
extern template _LIBCPP_EXPORTED_FROM_ABI void
__sort<__less<unsigned>&, unsigned*>(unsigned*, unsigned*, __less<unsigned>&);
extern template _LIBCPP_EXPORTED_FROM_ABI void __sort<__less<long>&, long*>(long*, long*, __less<long>&);
extern template _LIBCPP_EXPORTED_FROM_ABI void
__sort<__less<unsigned long>&, unsigned long*>(unsigned long*, unsigned long*, __less<unsigned long>&);
extern template _LIBCPP_EXPORTED_FROM_ABI void
__sort<__less<long long>&, long long*>(long long*, long long*, __less<long long>&);
extern template _LIBCPP_EXPORTED_FROM_ABI void __sort<__less<unsigned long long>&, unsigned long long*>(
unsigned long long*, unsigned long long*, __less<unsigned long long>&);
extern template _LIBCPP_EXPORTED_FROM_ABI void __sort<__less<float>&, float*>(float*, float*, __less<float>&);
extern template _LIBCPP_EXPORTED_FROM_ABI void __sort<__less<double>&, double*>(double*, double*, __less<double>&);
extern template _LIBCPP_EXPORTED_FROM_ABI void
__sort<__less<long double>&, long double*>(long double*, long double*, __less<long double>&);
template <class _AlgPolicy, class _RandomAccessIterator, class _Comp>
_LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX20 void
__sort_dispatch(_RandomAccessIterator __first, _RandomAccessIterator __last, _Comp& __comp) {
typedef typename iterator_traits<_RandomAccessIterator>::difference_type difference_type;
difference_type __depth_limit = 2 * std::__log2i(__last - __first);
// Only use bitset partitioning for arithmetic types. We should also check
// that the default comparator is in use so that we are sure that there are no
// branches in the comparator.
std::__introsort<_AlgPolicy,
_Comp&,
_RandomAccessIterator,
__use_branchless_sort<_Comp, _RandomAccessIterator>::value>(__first, __last, __comp, __depth_limit);
}
template <class _Type, class... _Options>
using __is_any_of = _Or<is_same<_Type, _Options>...>;
template <class _Type>
using __sort_is_specialized_in_library = __is_any_of<
_Type,
char,
#ifndef _LIBCPP_HAS_NO_WIDE_CHARACTERS
wchar_t,
#endif
signed char,
unsigned char,
short,
unsigned short,
int,
unsigned int,
long,
unsigned long,
long long,
unsigned long long,
float,
double,
long double>;
template <class _AlgPolicy, class _Type, __enable_if_t<__sort_is_specialized_in_library<_Type>::value, int> = 0>
_LIBCPP_HIDE_FROM_ABI void __sort_dispatch(_Type* __first, _Type* __last, __less<>&) {
__less<_Type> __comp;
std::__sort<__less<_Type>&, _Type*>(__first, __last, __comp);
}
template <class _AlgPolicy, class _Type, __enable_if_t<__sort_is_specialized_in_library<_Type>::value, int> = 0>
_LIBCPP_HIDE_FROM_ABI void __sort_dispatch(_Type* __first, _Type* __last, less<_Type>&) {
__less<_Type> __comp;
std::__sort<__less<_Type>&, _Type*>(__first, __last, __comp);
}
#if _LIBCPP_STD_VER >= 14
template <class _AlgPolicy, class _Type, __enable_if_t<__sort_is_specialized_in_library<_Type>::value, int> = 0>
_LIBCPP_HIDE_FROM_ABI void __sort_dispatch(_Type* __first, _Type* __last, less<>&) {
__less<_Type> __comp;
std::__sort<__less<_Type>&, _Type*>(__first, __last, __comp);
}
#endif
#if _LIBCPP_STD_VER >= 20
template <class _AlgPolicy, class _Type, __enable_if_t<__sort_is_specialized_in_library<_Type>::value, int> = 0>
_LIBCPP_HIDE_FROM_ABI void __sort_dispatch(_Type* __first, _Type* __last, ranges::less&) {
__less<_Type> __comp;
std::__sort<__less<_Type>&, _Type*>(__first, __last, __comp);
}
#endif
template <class _AlgPolicy, class _RandomAccessIterator, class _Comp>
inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX20 void
__sort_impl(_RandomAccessIterator __first, _RandomAccessIterator __last, _Comp& __comp) {
std::__debug_randomize_range<_AlgPolicy>(__first, __last);
if (__libcpp_is_constant_evaluated()) {
std::__partial_sort<_AlgPolicy>(
std::__unwrap_iter(__first), std::__unwrap_iter(__last), std::__unwrap_iter(__last), __comp);
} else {
std::__sort_dispatch<_AlgPolicy>(std::__unwrap_iter(__first), std::__unwrap_iter(__last), __comp);
}
std::__check_strict_weak_ordering_sorted(std::__unwrap_iter(__first), std::__unwrap_iter(__last), __comp);
}
template <class _RandomAccessIterator, class _Comp>
inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX20 void
sort(_RandomAccessIterator __first, _RandomAccessIterator __last, _Comp __comp) {
std::__sort_impl<_ClassicAlgPolicy>(std::move(__first), std::move(__last), __comp);
}
template <class _RandomAccessIterator>
inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX20 void
sort(_RandomAccessIterator __first, _RandomAccessIterator __last) {
std::sort(__first, __last, __less<>());
}
_LIBCPP_END_NAMESPACE_STD
_LIBCPP_POP_MACROS
#endif // _LIBCPP___ALGORITHM_SORT_H
|