1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef _LIBCPP___RANDOM_NEGATIVE_BINOMIAL_DISTRIBUTION_H
#define _LIBCPP___RANDOM_NEGATIVE_BINOMIAL_DISTRIBUTION_H
#include <__assert>
#include <__config>
#include <__random/bernoulli_distribution.h>
#include <__random/gamma_distribution.h>
#include <__random/is_valid.h>
#include <__random/poisson_distribution.h>
#include <iosfwd>
#include <limits>
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
# pragma GCC system_header
#endif
_LIBCPP_PUSH_MACROS
#include <__undef_macros>
_LIBCPP_BEGIN_NAMESPACE_STD
template <class _IntType = int>
class _LIBCPP_TEMPLATE_VIS negative_binomial_distribution {
static_assert(__libcpp_random_is_valid_inttype<_IntType>::value, "IntType must be a supported integer type");
public:
// types
typedef _IntType result_type;
class _LIBCPP_TEMPLATE_VIS param_type {
result_type __k_;
double __p_;
public:
typedef negative_binomial_distribution distribution_type;
_LIBCPP_HIDE_FROM_ABI explicit param_type(result_type __k = 1, double __p = 0.5) : __k_(__k), __p_(__p) {}
_LIBCPP_HIDE_FROM_ABI result_type k() const { return __k_; }
_LIBCPP_HIDE_FROM_ABI double p() const { return __p_; }
friend _LIBCPP_HIDE_FROM_ABI bool operator==(const param_type& __x, const param_type& __y) {
return __x.__k_ == __y.__k_ && __x.__p_ == __y.__p_;
}
friend _LIBCPP_HIDE_FROM_ABI bool operator!=(const param_type& __x, const param_type& __y) { return !(__x == __y); }
};
private:
param_type __p_;
public:
// constructor and reset functions
#ifndef _LIBCPP_CXX03_LANG
_LIBCPP_HIDE_FROM_ABI negative_binomial_distribution() : negative_binomial_distribution(1) {}
_LIBCPP_HIDE_FROM_ABI explicit negative_binomial_distribution(result_type __k, double __p = 0.5) : __p_(__k, __p) {}
#else
_LIBCPP_HIDE_FROM_ABI explicit negative_binomial_distribution(result_type __k = 1, double __p = 0.5)
: __p_(__k, __p) {}
#endif
_LIBCPP_HIDE_FROM_ABI explicit negative_binomial_distribution(const param_type& __p) : __p_(__p) {}
_LIBCPP_HIDE_FROM_ABI void reset() {}
// generating functions
template <class _URNG>
_LIBCPP_HIDE_FROM_ABI result_type operator()(_URNG& __g) {
return (*this)(__g, __p_);
}
template <class _URNG>
_LIBCPP_HIDE_FROM_ABI result_type operator()(_URNG& __g, const param_type& __p);
// property functions
_LIBCPP_HIDE_FROM_ABI result_type k() const { return __p_.k(); }
_LIBCPP_HIDE_FROM_ABI double p() const { return __p_.p(); }
_LIBCPP_HIDE_FROM_ABI param_type param() const { return __p_; }
_LIBCPP_HIDE_FROM_ABI void param(const param_type& __p) { __p_ = __p; }
_LIBCPP_HIDE_FROM_ABI result_type min() const { return 0; }
_LIBCPP_HIDE_FROM_ABI result_type max() const { return numeric_limits<result_type>::max(); }
friend _LIBCPP_HIDE_FROM_ABI bool
operator==(const negative_binomial_distribution& __x, const negative_binomial_distribution& __y) {
return __x.__p_ == __y.__p_;
}
friend _LIBCPP_HIDE_FROM_ABI bool
operator!=(const negative_binomial_distribution& __x, const negative_binomial_distribution& __y) {
return !(__x == __y);
}
};
template <class _IntType>
template <class _URNG>
_IntType negative_binomial_distribution<_IntType>::operator()(_URNG& __urng, const param_type& __pr) {
static_assert(__libcpp_random_is_valid_urng<_URNG>::value, "");
result_type __k = __pr.k();
double __p = __pr.p();
// When the number of bits in _IntType is small, we are too likely to
// overflow __f below to use this technique.
if (__k <= 21 * __p && sizeof(_IntType) > 1) {
bernoulli_distribution __gen(__p);
result_type __f = 0;
result_type __s = 0;
while (__s < __k) {
if (__gen(__urng))
++__s;
else
++__f;
}
_LIBCPP_ASSERT_INTERNAL(__f >= 0,
"std::negative_binomial_distribution should never produce negative values. "
"This is almost certainly a signed integer overflow issue on __f.");
return __f;
}
return poisson_distribution<result_type>(gamma_distribution<double>(__k, (1 - __p) / __p)(__urng))(__urng);
}
template <class _CharT, class _Traits, class _IntType>
_LIBCPP_HIDE_FROM_ABI basic_ostream<_CharT, _Traits>&
operator<<(basic_ostream<_CharT, _Traits>& __os, const negative_binomial_distribution<_IntType>& __x) {
__save_flags<_CharT, _Traits> __lx(__os);
typedef basic_ostream<_CharT, _Traits> _OStream;
__os.flags(_OStream::dec | _OStream::left | _OStream::fixed | _OStream::scientific);
_CharT __sp = __os.widen(' ');
__os.fill(__sp);
return __os << __x.k() << __sp << __x.p();
}
template <class _CharT, class _Traits, class _IntType>
_LIBCPP_HIDE_FROM_ABI basic_istream<_CharT, _Traits>&
operator>>(basic_istream<_CharT, _Traits>& __is, negative_binomial_distribution<_IntType>& __x) {
typedef negative_binomial_distribution<_IntType> _Eng;
typedef typename _Eng::result_type result_type;
typedef typename _Eng::param_type param_type;
__save_flags<_CharT, _Traits> __lx(__is);
typedef basic_istream<_CharT, _Traits> _Istream;
__is.flags(_Istream::dec | _Istream::skipws);
result_type __k;
double __p;
__is >> __k >> __p;
if (!__is.fail())
__x.param(param_type(__k, __p));
return __is;
}
_LIBCPP_END_NAMESPACE_STD
_LIBCPP_POP_MACROS
#endif // _LIBCPP___RANDOM_NEGATIVE_BINOMIAL_DISTRIBUTION_H
|