1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: no-threads, c++03
// <condition_variable>
// class condition_variable;
// template <class Clock, class Duration>
// cv_status
// wait_until(unique_lock<mutex>& lock,
// const chrono::time_point<Clock, Duration>& abs_time);
#include <condition_variable>
#include <atomic>
#include <cassert>
#include <chrono>
#include <mutex>
#include <thread>
#include "make_test_thread.h"
#include "test_macros.h"
struct TestClock {
typedef std::chrono::milliseconds duration;
typedef duration::rep rep;
typedef duration::period period;
typedef std::chrono::time_point<TestClock> time_point;
static const bool is_steady = true;
static time_point now() {
using namespace std::chrono;
return time_point(duration_cast<duration>(steady_clock::now().time_since_epoch()));
}
};
template <class Clock>
void test() {
// Test unblocking via a call to notify_one() in another thread.
//
// To test this, we set a very long timeout in wait_until() and we wait
// again in case we get awoken spuriously. Note that it can actually
// happen that we get awoken spuriously and fail to recognize it
// (making this test useless), but the likelihood should be small.
{
std::atomic<bool> ready(false);
std::atomic<bool> likely_spurious(true);
auto timeout = Clock::now() + std::chrono::seconds(3600);
std::condition_variable cv;
std::mutex mutex;
std::thread t1 = support::make_test_thread([&] {
std::unique_lock<std::mutex> lock(mutex);
ready = true;
do {
std::cv_status result = cv.wait_until(lock, timeout);
assert(result == std::cv_status::no_timeout);
} while (likely_spurious);
// This can technically fail if we have many spurious awakenings, but in practice the
// tolerance is so high that it shouldn't be a problem.
assert(Clock::now() < timeout);
});
std::thread t2 = support::make_test_thread([&] {
while (!ready) {
// spin
}
// Acquire the same mutex as t1. This blocks the condition variable inside its wait call
// so we can notify it while it is waiting.
std::unique_lock<std::mutex> lock(mutex);
cv.notify_one();
likely_spurious = false;
lock.unlock();
});
t2.join();
t1.join();
}
// Test unblocking via a timeout.
//
// To test this, we create a thread that waits on a condition variable
// with a certain timeout, and we never awaken it. To guard against
// spurious wakeups, we wait again whenever we are awoken for a reason
// other than a timeout.
{
auto timeout = Clock::now() + std::chrono::milliseconds(250);
std::condition_variable cv;
std::mutex mutex;
std::thread t1 = support::make_test_thread([&] {
std::unique_lock<std::mutex> lock(mutex);
std::cv_status result;
do {
result = cv.wait_until(lock, timeout);
if (result == std::cv_status::timeout)
assert(Clock::now() >= timeout);
} while (result != std::cv_status::timeout);
});
t1.join();
}
}
int main(int, char**) {
test<TestClock>();
test<std::chrono::steady_clock>();
return 0;
}
|