1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// UNSUPPORTED: no-threads, c++03
// <condition_variable>
// class condition_variable_any;
// template <class Lock, class Rep, class Period, class Predicate>
// bool
// wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time,
// Predicate pred);
#include <condition_variable>
#include <atomic>
#include <cassert>
#include <chrono>
#include <mutex>
#include <thread>
#include "make_test_thread.h"
#include "test_macros.h"
template <class Mutex>
struct MyLock : std::unique_lock<Mutex> {
using std::unique_lock<Mutex>::unique_lock;
};
template <class Function>
std::chrono::microseconds measure(Function f) {
std::chrono::high_resolution_clock::time_point start = std::chrono::high_resolution_clock::now();
f();
std::chrono::high_resolution_clock::time_point end = std::chrono::high_resolution_clock::now();
return std::chrono::duration_cast<std::chrono::microseconds>(end - start);
}
template <class Lock>
void test() {
using Mutex = typename Lock::mutex_type;
// Test unblocking via a call to notify_one() in another thread.
//
// To test this, we set a very long timeout in wait_for() and we try to minimize
// the likelihood that we got awoken by a spurious wakeup by updating the
// likely_spurious flag only immediately before we perform the notification.
{
std::atomic<bool> ready(false);
std::atomic<bool> likely_spurious(true);
auto timeout = std::chrono::seconds(3600);
std::condition_variable_any cv;
Mutex mutex;
std::thread t1 = support::make_test_thread([&] {
Lock lock(mutex);
auto elapsed = measure([&] {
ready = true;
bool result = cv.wait_for(lock, timeout, [&] { return !likely_spurious; });
assert(result); // return value should be true since we didn't time out
});
assert(elapsed < timeout);
});
std::thread t2 = support::make_test_thread([&] {
while (!ready) {
// spin
}
// Acquire the same mutex as t1. This ensures that the condition variable has started
// waiting (and hence released that mutex).
Lock lock(mutex);
likely_spurious = false;
lock.unlock();
cv.notify_one();
});
t2.join();
t1.join();
}
// Test unblocking via a timeout.
//
// To test this, we create a thread that waits on a condition variable with a certain
// timeout, and we never awaken it. The "stop waiting" predicate always returns false,
// which means that we can't get out of the wait via a spurious wakeup.
{
auto timeout = std::chrono::milliseconds(250);
std::condition_variable_any cv;
Mutex mutex;
std::thread t1 = support::make_test_thread([&] {
Lock lock(mutex);
auto elapsed = measure([&] {
bool result = cv.wait_for(lock, timeout, [] { return false; }); // never stop waiting (until timeout)
assert(!result); // return value should be false since the predicate returns false after the timeout
});
assert(elapsed >= timeout);
});
t1.join();
}
// Test unblocking via a spurious wakeup.
//
// To test this, we set a fairly long timeout in wait_for() and we basically never
// wake up the condition variable. This way, we are hoping to get out of the wait
// via a spurious wakeup.
//
// However, since spurious wakeups are not required to even happen, this test is
// only trying to trigger that code path, but not actually asserting that it is
// taken. In particular, we do need to eventually ensure we get out of the wait
// by standard means, so we actually wake up the thread at the end.
{
std::atomic<bool> ready(false);
std::atomic<bool> awoken(false);
auto timeout = std::chrono::seconds(3600);
std::condition_variable_any cv;
Mutex mutex;
std::thread t1 = support::make_test_thread([&] {
Lock lock(mutex);
auto elapsed = measure([&] {
ready = true;
bool result = cv.wait_for(lock, timeout, [&] { return true; });
awoken = true;
assert(result); // return value should be true since we didn't time out
});
assert(elapsed < timeout); // can technically fail if t2 never executes and we timeout, but very unlikely
});
std::thread t2 = support::make_test_thread([&] {
while (!ready) {
// spin
}
// Acquire the same mutex as t1. This ensures that the condition variable has started
// waiting (and hence released that mutex).
Lock lock(mutex);
lock.unlock();
// Give some time for t1 to be awoken spuriously so that code path is used.
std::this_thread::sleep_for(std::chrono::seconds(1));
// We would want to assert that the thread has been awoken after this time,
// however nothing guarantees us that it ever gets spuriously awoken, so
// we can't really check anything. This is still left here as documentation.
bool woke = awoken.load();
assert(woke || !woke);
// Whatever happened, actually awaken the condition variable to ensure the test
// doesn't keep running until the timeout.
cv.notify_one();
});
t2.join();
t1.join();
}
}
int main(int, char**) {
test<std::unique_lock<std::mutex>>();
test<std::unique_lock<std::timed_mutex>>();
test<MyLock<std::mutex>>();
test<MyLock<std::timed_mutex>>();
return 0;
}
|