File: bind_back.pass.cpp

package info (click to toggle)
llvm-toolchain-19 1%3A19.1.7-3~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm-proposed-updates
  • size: 1,998,492 kB
  • sloc: cpp: 6,951,680; ansic: 1,486,157; asm: 913,598; python: 232,024; f90: 80,126; objc: 75,281; lisp: 37,276; pascal: 16,990; sh: 10,009; ml: 5,058; perl: 4,724; awk: 3,523; makefile: 3,167; javascript: 2,504; xml: 892; fortran: 664; cs: 573
file content (381 lines) | stat: -rw-r--r-- 11,968 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

// UNSUPPORTED: c++03, c++11, c++14, c++17, c++20

// <functional>

// template<class F, class... Args>
//   constexpr unspecified bind_back(F&& f, Args&&... args);

#include <functional>

#include <cassert>
#include <concepts>
#include <tuple>
#include <utility>

#include "callable_types.h"
#include "types.h"

constexpr void test_basic_bindings() {
  { // Bind arguments, call without arguments
    {
      auto f = std::bind_back(MakeTuple{});
      assert(f() == std::make_tuple());
    }
    {
      auto f = std::bind_back(MakeTuple{}, Elem<1>{});
      assert(f() == std::make_tuple(Elem<1>{}));
    }
    {
      auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{});
      assert(f() == std::make_tuple(Elem<1>{}, Elem<2>{}));
    }
    {
      auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{});
      assert(f() == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}));
    }
  }

  { // Bind no arguments, call with arguments
    {
      auto f = std::bind_back(MakeTuple{});
      assert(f(Elem<1>{}) == std::make_tuple(Elem<1>{}));
    }
    {
      auto f = std::bind_back(MakeTuple{});
      assert(f(Elem<1>{}, Elem<2>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}));
    }
    {
      auto f = std::bind_back(MakeTuple{});
      assert(f(Elem<1>{}, Elem<2>{}, Elem<3>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}));
    }
  }

  { // Bind arguments, call with arguments
    {
      auto f = std::bind_back(MakeTuple{}, Elem<1>{});
      assert(f(Elem<10>{}) == std::make_tuple(Elem<10>{}, Elem<1>{}));
    }
    {
      auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{});
      assert(f(Elem<10>{}) == std::make_tuple(Elem<10>{}, Elem<1>{}, Elem<2>{}));
    }
    {
      auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{});
      assert(f(Elem<10>{}) == std::make_tuple(Elem<10>{}, Elem<1>{}, Elem<2>{}, Elem<3>{}));
    }

    {
      auto f = std::bind_back(MakeTuple{}, Elem<1>{});
      assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<10>{}, Elem<11>{}, Elem<1>{}));
    }
    {
      auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{});
      assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<10>{}, Elem<11>{}, Elem<1>{}, Elem<2>{}));
    }
    {
      auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{});
      assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<10>{}, Elem<11>{}, Elem<1>{}, Elem<2>{}, Elem<3>{}));
    }
    {
      auto f = std::bind_back(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{});
      assert(f(Elem<10>{}, Elem<11>{}, Elem<12>{}) ==
             std::make_tuple(Elem<10>{}, Elem<11>{}, Elem<12>{}, Elem<1>{}, Elem<2>{}, Elem<3>{}));
    }
  }

  { // Basic tests with fundamental types
    int n         = 2;
    int m         = 1;
    int sum       = 0;
    auto add      = [](int x, int y) { return x + y; };
    auto add_n    = [](int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; };
    auto add_ref  = [&](int x, int y) -> int& { return sum = x + y; };
    auto add_rref = [&](int x, int y) -> int&& { return std::move(sum = x + y); };

    auto a = std::bind_back(add, m, n);
    assert(a() == 3);

    auto b = std::bind_back(add_n, m, n, m, m, m, m);
    assert(b() == 7);

    auto c = std::bind_back(add_n, n, m);
    assert(c(1, 1, 1, 1) == 7);

    auto d = std::bind_back(add_ref, n, m);
    std::same_as<int&> decltype(auto) dresult(d());
    assert(dresult == 3);

    auto e = std::bind_back(add_rref, n, m);
    std::same_as<int&&> decltype(auto) eresult(e());
    assert(eresult == 3);

    auto f = std::bind_back(add, n);
    assert(f(3) == 5);

    auto g = std::bind_back(add, n, 1);
    assert(g() == 3);

    auto h = std::bind_back(add_n, 1, 1, 1);
    assert(h(2, 2, 2) == 9);

    auto i = std::bind_back(add_ref, n);
    std::same_as<int&> decltype(auto) iresult(i(5));
    assert(iresult == 7);

    auto j = std::bind_back(add_rref, m);
    std::same_as<int&&> decltype(auto) jresult(j(4));
    assert(jresult == 5);
  }
}

constexpr void test_edge_cases() {
  { // Make sure we don't treat std::reference_wrapper specially.
    auto sub = [](std::reference_wrapper<int> a, std::reference_wrapper<int> b) { return a.get() - b.get(); };

    int i  = 1;
    int j  = 2;
    auto f = std::bind_back(sub, std::ref(i));
    assert(f(std::ref(j)) == 1);
  }

  { // Make sure we can call a function that's a pointer to a member function.
    struct MemberFunction {
      constexpr int foo(int x, int y) { return x * y; }
    };

    MemberFunction value;
    auto fn = std::bind_back(&MemberFunction::foo, 2, 3);
    assert(fn(value) == 6);
  }

  { // Make sure we can call a function that's a pointer to a member object.
    struct MemberObject {
      int obj;
    };

    MemberObject value{.obj = 3};
    auto fn = std::bind_back(&MemberObject::obj);
    assert(fn(value) == 3);
  }
}

constexpr void test_passing_arguments() {
  { // Make sure that we copy the bound arguments into the unspecified-type.
    auto add = [](int x, int y) { return x + y; };
    int n    = 2;
    auto f   = std::bind_back(add, n, 1);
    n        = 100;
    assert(f() == 3);
  }

  { // Make sure we pass the bound arguments to the function object
    // with the right value category.
    {
      auto was_copied = [](CopyMoveInfo info) { return info.copy_kind == CopyMoveInfo::copy; };
      CopyMoveInfo info;
      auto f = std::bind_back(was_copied, info);
      assert(f());
    }

    {
      auto was_moved = [](CopyMoveInfo info) { return info.copy_kind == CopyMoveInfo::move; };
      CopyMoveInfo info;
      auto f = std::bind_back(was_moved, info);
      assert(std::move(f)());
    }
  }
}

constexpr void test_function_objects() {
  { // Make sure we call the correctly cv-ref qualified operator()
    // based on the value category of the bind_back unspecified-type.
    struct X {
      constexpr int operator()() & { return 1; }
      constexpr int operator()() const& { return 2; }
      constexpr int operator()() && { return 3; }
      constexpr int operator()() const&& { return 4; }
    };

    auto f  = std::bind_back(X{});
    using F = decltype(f);
    assert(static_cast<F&>(f)() == 1);
    assert(static_cast<const F&>(f)() == 2);
    assert(static_cast<F&&>(f)() == 3);
    assert(static_cast<const F&&>(f)() == 4);
  }

  // Make sure the `bind_back` unspecified-type does not model invocable
  // when the call would select a differently-qualified operator().
  //
  // For example, if the call to `operator()() &` is ill-formed, the call to the unspecified-type
  // should be ill-formed and not fall back to the `operator()() const&` overload.
  { // Make sure we delete the & overload when the underlying call isn't valid.
    {
      struct X {
        void operator()() & = delete;
        void operator()() const&;
        void operator()() &&;
        void operator()() const&&;
      };

      using F = decltype(std::bind_back(X{}));
      static_assert(!std::invocable<F&>);
      static_assert(std::invocable<const F&>);
      static_assert(std::invocable<F>);
      static_assert(std::invocable<const F>);
    }

    // There's no way to make sure we delete the const& overload when the underlying call isn't valid,
    // so we can't check this one.

    { // Make sure we delete the && overload when the underlying call isn't valid.
      struct X {
        void operator()() &;
        void operator()() const&;
        void operator()() && = delete;
        void operator()() const&&;
      };

      using F = decltype(std::bind_back(X{}));
      static_assert(std::invocable<F&>);
      static_assert(std::invocable<const F&>);
      static_assert(!std::invocable<F>);
      static_assert(std::invocable<const F>);
    }

    { // Make sure we delete the const&& overload when the underlying call isn't valid.
      struct X {
        void operator()() &;
        void operator()() const&;
        void operator()() &&;
        void operator()() const&& = delete;
      };

      using F = decltype(std::bind_back(X{}));
      static_assert(std::invocable<F&>);
      static_assert(std::invocable<const F&>);
      static_assert(std::invocable<F>);
      static_assert(!std::invocable<const F>);
    }
  }

  { // Extra value category tests
    struct X {};

    {
      struct Y {
        void operator()(X&&) const&;
        void operator()(X&&) && = delete;
      };

      using F = decltype(std::bind_back(Y{}));
      static_assert(std::invocable<F&, X>);
      static_assert(!std::invocable<F, X>);
    }

    {
      struct Y {
        void operator()(const X&) const;
        void operator()(X&&) const = delete;
      };

      using F = decltype(std::bind_back(Y{}, X{}));
      static_assert(std::invocable<F&>);
      static_assert(!std::invocable<F>);
    }
  }
}

constexpr void test_return_type() {
  {   // Test properties of the constructor of the unspecified-type returned by bind_back.
    { // Test move constructor when function is move only.
      MoveOnlyCallable<bool> value(true);
      auto f = std::bind_back(std::move(value), 1);
      assert(f());
      assert(f(1, 2, 3));

      auto f1 = std::move(f);
      assert(!f());
      assert(f1());
      assert(f1(1, 2, 3));

      using F = decltype(f);
      static_assert(std::is_move_constructible<F>::value);
      static_assert(!std::is_copy_constructible<F>::value);
      static_assert(!std::is_move_assignable<F>::value);
      static_assert(!std::is_copy_assignable<F>::value);
    }

    { // Test move constructor when function is copyable but not assignable.
      CopyCallable<bool> value(true);
      auto f = std::bind_back(value, 1);
      assert(f());
      assert(f(1, 2, 3));

      auto f1 = std::move(f);
      assert(!f());
      assert(f1());
      assert(f1(1, 2, 3));

      auto f2 = std::bind_back(std::move(value), 1);
      assert(f1());
      assert(f2());
      assert(f2(1, 2, 3));

      using F = decltype(f);
      static_assert(std::is_move_constructible<F>::value);
      static_assert(std::is_copy_constructible<F>::value);
      static_assert(!std::is_move_assignable<F>::value);
      static_assert(!std::is_copy_assignable<F>::value);
    }

    { // Test constructors when function is copy assignable.
      using F = decltype(std::bind_back(std::declval<CopyAssignableWrapper&>(), 1));
      static_assert(std::is_move_constructible<F>::value);
      static_assert(std::is_copy_constructible<F>::value);
      static_assert(std::is_move_assignable<F>::value);
      static_assert(std::is_copy_assignable<F>::value);
    }

    { // Test constructors when function is move assignable only.
      using F = decltype(std::bind_back(std::declval<MoveAssignableWrapper>(), 1));
      static_assert(std::is_move_constructible<F>::value);
      static_assert(!std::is_copy_constructible<F>::value);
      static_assert(std::is_move_assignable<F>::value);
      static_assert(!std::is_copy_assignable<F>::value);
    }
  }

  { // Make sure bind_back's unspecified type's operator() is SFINAE-friendly.
    using F = decltype(std::bind_back(std::declval<int (*)(int, int)>(), 1));
    static_assert(!std::is_invocable<F>::value);
    static_assert(std::is_invocable<F, int>::value);
    static_assert(!std::is_invocable<F, void*>::value);
    static_assert(!std::is_invocable<F, int, int>::value);
  }
}

constexpr bool test() {
  test_basic_bindings();
  test_edge_cases();
  test_passing_arguments();
  test_function_objects();
  test_return_type();

  return true;
}

int main(int, char**) {
  test();
  static_assert(test());

  return 0;
}