1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14, c++17
// functional
// template <class F, class... Args>
// constexpr unspecified bind_front(F&&, Args&&...);
#include <functional>
#include <cassert>
#include <concepts>
#include <tuple>
#include <type_traits>
#include <utility>
#include "callable_types.h"
#include "test_macros.h"
struct CopyMoveInfo {
enum { none, copy, move } copy_kind;
constexpr CopyMoveInfo() : copy_kind(none) {}
constexpr CopyMoveInfo(CopyMoveInfo const&) : copy_kind(copy) {}
constexpr CopyMoveInfo(CopyMoveInfo&&) : copy_kind(move) {}
};
template <class ...Args>
struct is_bind_frontable {
template <class ...LocalArgs>
static auto test(int)
-> decltype((void)std::bind_front(std::declval<LocalArgs>()...), std::true_type());
template <class...>
static std::false_type test(...);
static constexpr bool value = decltype(test<Args...>(0))::value;
};
struct NotCopyMove {
NotCopyMove() = delete;
NotCopyMove(const NotCopyMove&) = delete;
NotCopyMove(NotCopyMove&&) = delete;
template <class ...Args>
void operator()(Args&& ...) const { }
};
struct NonConstCopyConstructible {
explicit NonConstCopyConstructible() {}
NonConstCopyConstructible(NonConstCopyConstructible&) {}
};
struct MoveConstructible {
explicit MoveConstructible() {}
MoveConstructible(MoveConstructible&&) {}
};
struct MakeTuple {
template <class ...Args>
constexpr auto operator()(Args&& ...args) const {
return std::make_tuple(std::forward<Args>(args)...);
}
};
template <int X>
struct Elem {
template <int Y>
constexpr bool operator==(Elem<Y> const&) const
{ return X == Y; }
};
constexpr bool test() {
// Bind arguments, call without arguments
{
{
auto f = std::bind_front(MakeTuple{});
assert(f() == std::make_tuple());
}
{
auto f = std::bind_front(MakeTuple{}, Elem<1>{});
assert(f() == std::make_tuple(Elem<1>{}));
}
{
auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{});
assert(f() == std::make_tuple(Elem<1>{}, Elem<2>{}));
}
{
auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{});
assert(f() == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}));
}
}
// Bind no arguments, call with arguments
{
{
auto f = std::bind_front(MakeTuple{});
assert(f(Elem<1>{}) == std::make_tuple(Elem<1>{}));
}
{
auto f = std::bind_front(MakeTuple{});
assert(f(Elem<1>{}, Elem<2>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}));
}
{
auto f = std::bind_front(MakeTuple{});
assert(f(Elem<1>{}, Elem<2>{}, Elem<3>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}));
}
}
// Bind arguments, call with arguments
{
{
auto f = std::bind_front(MakeTuple{}, Elem<1>{});
assert(f(Elem<10>{}) == std::make_tuple(Elem<1>{}, Elem<10>{}));
}
{
auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{});
assert(f(Elem<10>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<10>{}));
}
{
auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{});
assert(f(Elem<10>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}, Elem<10>{}));
}
{
auto f = std::bind_front(MakeTuple{}, Elem<1>{});
assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<1>{}, Elem<10>{}, Elem<11>{}));
}
{
auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{});
assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<10>{}, Elem<11>{}));
}
{
auto f = std::bind_front(MakeTuple{}, Elem<1>{}, Elem<2>{}, Elem<3>{});
assert(f(Elem<10>{}, Elem<11>{}) == std::make_tuple(Elem<1>{}, Elem<2>{}, Elem<3>{}, Elem<10>{}, Elem<11>{}));
}
}
// Basic tests with fundamental types
{
int n = 2;
int m = 1;
int sum = 0;
auto add = [](int x, int y) { return x + y; };
auto addN = [](int a, int b, int c, int d, int e, int f) { return a + b + c + d + e + f; };
auto add_ref = [&](int x, int y) -> int& { return sum = x + y; };
auto add_rref = [&](int x, int y) -> int&& { return std::move(sum = x + y); };
auto a = std::bind_front(add, m, n);
assert(a() == 3);
auto b = std::bind_front(addN, m, n, m, m, m, m);
assert(b() == 7);
auto c = std::bind_front(addN, n, m);
assert(c(1, 1, 1, 1) == 7);
auto d = std::bind_front(add_ref, n, m);
std::same_as<int&> decltype(auto) dresult(d());
assert(dresult == 3);
auto e = std::bind_front(add_rref, n, m);
std::same_as<int&&> decltype(auto) eresult(e());
assert(eresult == 3);
auto f = std::bind_front(add, n);
assert(f(3) == 5);
auto g = std::bind_front(add, n, 1);
assert(g() == 3);
auto h = std::bind_front(addN, 1, 1, 1);
assert(h(2, 2, 2) == 9);
auto i = std::bind_front(add_ref, n);
std::same_as<int&> decltype(auto) iresult(i(5));
assert(iresult == 7);
auto j = std::bind_front(add_rref, m);
std::same_as<int&&> decltype(auto) jresult(j(4));
assert(jresult == 5);
}
// Make sure we don't treat std::reference_wrapper specially.
{
auto add = [](std::reference_wrapper<int> a, std::reference_wrapper<int> b) {
return a.get() + b.get();
};
int i = 1, j = 2;
auto f = std::bind_front(add, std::ref(i));
assert(f(std::ref(j)) == 3);
}
// Make sure we can call a function that's a pointer to a member function.
{
struct MemberFunction {
constexpr bool foo(int, int) { return true; }
};
MemberFunction value;
auto fn = std::bind_front(&MemberFunction::foo, value, 0);
assert(fn(0));
}
// Make sure that we copy the bound arguments into the unspecified-type.
{
auto add = [](int x, int y) { return x + y; };
int n = 2;
auto i = std::bind_front(add, n, 1);
n = 100;
assert(i() == 3);
}
// Make sure we pass the bound arguments to the function object
// with the right value category.
{
{
auto wasCopied = [](CopyMoveInfo info) {
return info.copy_kind == CopyMoveInfo::copy;
};
CopyMoveInfo info;
auto copied = std::bind_front(wasCopied, info);
assert(copied());
}
{
auto wasMoved = [](CopyMoveInfo info) {
return info.copy_kind == CopyMoveInfo::move;
};
CopyMoveInfo info;
auto moved = std::bind_front(wasMoved, info);
assert(std::move(moved)());
}
}
// Make sure we call the correctly cv-ref qualified operator() based on the
// value category of the bind_front unspecified-type.
{
struct F {
constexpr int operator()() & { return 1; }
constexpr int operator()() const& { return 2; }
constexpr int operator()() && { return 3; }
constexpr int operator()() const&& { return 4; }
};
auto x = std::bind_front(F{});
using X = decltype(x);
assert(static_cast<X&>(x)() == 1);
assert(static_cast<X const&>(x)() == 2);
assert(static_cast<X&&>(x)() == 3);
assert(static_cast<X const&&>(x)() == 4);
}
// Make sure the bind_front unspecified-type is NOT invocable when the call would select a
// differently-qualified operator().
//
// For example, if the call to `operator()() &` is ill-formed, the call to the unspecified-type
// should be ill-formed and not fall back to the `operator()() const&` overload.
{
// Make sure we delete the & overload when the underlying call isn't valid
{
struct F {
void operator()() & = delete;
void operator()() const&;
void operator()() &&;
void operator()() const&&;
};
using X = decltype(std::bind_front(F{}));
static_assert(!std::is_invocable_v<X&>);
static_assert( std::is_invocable_v<X const&>);
static_assert( std::is_invocable_v<X>);
static_assert( std::is_invocable_v<X const>);
}
// There's no way to make sure we delete the const& overload when the underlying call isn't valid,
// so we can't check this one.
// Make sure we delete the && overload when the underlying call isn't valid
{
struct F {
void operator()() &;
void operator()() const&;
void operator()() && = delete;
void operator()() const&&;
};
using X = decltype(std::bind_front(F{}));
static_assert( std::is_invocable_v<X&>);
static_assert( std::is_invocable_v<X const&>);
static_assert(!std::is_invocable_v<X>);
static_assert( std::is_invocable_v<X const>);
}
// Make sure we delete the const&& overload when the underlying call isn't valid
{
struct F {
void operator()() &;
void operator()() const&;
void operator()() &&;
void operator()() const&& = delete;
};
using X = decltype(std::bind_front(F{}));
static_assert( std::is_invocable_v<X&>);
static_assert( std::is_invocable_v<X const&>);
static_assert( std::is_invocable_v<X>);
static_assert(!std::is_invocable_v<X const>);
}
}
// Some examples by Tim Song
{
{
struct T { };
struct F {
void operator()(T&&) const &;
void operator()(T&&) && = delete;
};
using X = decltype(std::bind_front(F{}));
static_assert(!std::is_invocable_v<X, T>);
}
{
struct T { };
struct F {
void operator()(T const&) const;
void operator()(T&&) const = delete;
};
using X = decltype(std::bind_front(F{}, T{}));
static_assert(!std::is_invocable_v<X>);
}
}
// Test properties of the constructor of the unspecified-type returned by bind_front.
{
{
MoveOnlyCallable<bool> value(true);
auto ret = std::bind_front(std::move(value), 1);
assert(ret());
assert(ret(1, 2, 3));
auto ret1 = std::move(ret);
assert(!ret());
assert(ret1());
assert(ret1(1, 2, 3));
using RetT = decltype(ret);
static_assert( std::is_move_constructible<RetT>::value);
static_assert(!std::is_copy_constructible<RetT>::value);
static_assert(!std::is_move_assignable<RetT>::value);
static_assert(!std::is_copy_assignable<RetT>::value);
}
{
CopyCallable<bool> value(true);
auto ret = std::bind_front(value, 1);
assert(ret());
assert(ret(1, 2, 3));
auto ret1 = std::move(ret);
assert(ret1());
assert(ret1(1, 2, 3));
auto ret2 = std::bind_front(std::move(value), 1);
assert(!ret());
assert(ret2());
assert(ret2(1, 2, 3));
using RetT = decltype(ret);
static_assert( std::is_move_constructible<RetT>::value);
static_assert( std::is_copy_constructible<RetT>::value);
static_assert(!std::is_move_assignable<RetT>::value);
static_assert(!std::is_copy_assignable<RetT>::value);
}
{
CopyAssignableWrapper value(true);
using RetT = decltype(std::bind_front(value, 1));
static_assert(std::is_move_constructible<RetT>::value);
static_assert(std::is_copy_constructible<RetT>::value);
static_assert(std::is_move_assignable<RetT>::value);
static_assert(std::is_copy_assignable<RetT>::value);
}
{
MoveAssignableWrapper value(true);
using RetT = decltype(std::bind_front(std::move(value), 1));
static_assert( std::is_move_constructible<RetT>::value);
static_assert(!std::is_copy_constructible<RetT>::value);
static_assert( std::is_move_assignable<RetT>::value);
static_assert(!std::is_copy_assignable<RetT>::value);
}
}
// Make sure bind_front is SFINAE friendly
{
static_assert(!std::is_constructible_v<NotCopyMove, NotCopyMove&>);
static_assert(!std::is_move_constructible_v<NotCopyMove>);
static_assert(!is_bind_frontable<NotCopyMove>::value);
static_assert(!is_bind_frontable<NotCopyMove&>::value);
auto takeAnything = [](auto&& ...) { };
static_assert(!std::is_constructible_v<MoveConstructible, MoveConstructible&>);
static_assert( std::is_move_constructible_v<MoveConstructible>);
static_assert( is_bind_frontable<decltype(takeAnything), MoveConstructible>::value);
static_assert(!is_bind_frontable<decltype(takeAnything), MoveConstructible&>::value);
static_assert( std::is_constructible_v<NonConstCopyConstructible, NonConstCopyConstructible&>);
static_assert(!std::is_move_constructible_v<NonConstCopyConstructible>);
static_assert(!is_bind_frontable<decltype(takeAnything), NonConstCopyConstructible&>::value);
static_assert(!is_bind_frontable<decltype(takeAnything), NonConstCopyConstructible>::value);
}
// Make sure bind_front's unspecified type's operator() is SFINAE-friendly
{
using T = decltype(std::bind_front(std::declval<int(*)(int, int)>(), 1));
static_assert(!std::is_invocable<T>::value);
static_assert( std::is_invocable<T, int>::value);
static_assert(!std::is_invocable<T, void*>::value);
static_assert(!std::is_invocable<T, int, int>::value);
}
return true;
}
int main(int, char**) {
test();
static_assert(test());
return 0;
}
|