1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14, c++17, c++20
// <memory>
// [inout.ptr], function template inout_ptr
// template<class Pointer = void, class Smart, class... Args>
// auto inout_ptr(Smart& s, Args&&... args); // since c++23
#include <cassert>
#include <memory>
#include <utility>
#include "../types.h"
// Test updating the ownership of an `inout_ptr_t`-managed pointer for an API with a non-void pointer type.
// The API returns a new valid object.
void test_replace_int_p() {
auto replace_int_p = [](int** pp) {
assert(**pp == 90);
delete *pp;
*pp = new int{84};
};
// raw pointer
{
auto rPtr = new int{90};
replace_int_p(std::inout_ptr<int*>(rPtr));
assert(*rPtr == 84);
delete rPtr;
}
// std::unique_ptr
{
auto uPtr = std::make_unique<int>(90);
replace_int_p(std::inout_ptr(uPtr));
assert(*uPtr == 84);
}
{
MoveOnlyDeleter<int> del;
std::unique_ptr<int, MoveOnlyDeleter<int>> uPtr{new int{90}};
replace_int_p(std::inout_ptr(uPtr, std::move(del)));
assert(*uPtr == 84);
assert(uPtr.get_deleter().wasMoveInitilized == true);
}
// pointer-like ConstructiblePtr
{
ConstructiblePtr<int> cPtr(new int{90});
replace_int_p(std::inout_ptr(cPtr));
assert(cPtr == 84);
}
// pointer-like ResettablePtr
{
ResettablePtr<int> rPtr(new int{90});
replace_int_p(std::inout_ptr(rPtr));
assert(rPtr == 84);
}
// pointer-like NonConstructiblePtr
{
NonConstructiblePtr<int> nPtr;
nPtr.reset(new int{90});
replace_int_p(std::inout_ptr(nPtr));
assert(nPtr == 84);
}
}
// Test updating the ownership of an `inout_ptr_t`-managed pointer for an API with a non-void pointer type.
// The API returns `nullptr`.
void test_replace_int_p_with_nullptr() {
auto replace_int_p_with_nullptr = [](int** pp) -> void {
assert(**pp == 90);
delete *pp;
*pp = nullptr;
};
// raw pointer
{
// LWG-3897 inout_ptr will not update raw pointer to null
auto rPtr = new int{90};
replace_int_p_with_nullptr(std::inout_ptr<int*>(rPtr));
assert(rPtr == nullptr);
}
// std::unique_ptr
{
auto uPtr = std::make_unique<int>(90);
replace_int_p_with_nullptr(std::inout_ptr(uPtr));
assert(uPtr == nullptr);
}
}
// Test updating the ownership of an `inout_ptr_t`-managed pointer for an API with a void pointer type.
// The API returns a new valid object.
void test_replace_int_void_p() {
auto replace_int_void_p = [](void** pp) {
assert(*(static_cast<int*>(*pp)) == 90);
delete static_cast<int*>(*pp);
*pp = new int{84};
};
// raw pointer
{
auto rPtr = new int{90};
replace_int_void_p(std::inout_ptr<int*>(rPtr));
assert(*rPtr == 84);
delete rPtr;
}
// std::unique_ptr
{
auto uPtr = std::make_unique<int>(90);
replace_int_void_p(std::inout_ptr(uPtr));
assert(*uPtr == 84);
}
}
// Test updating the ownership of an `inout_ptr_t`-managed pointer for an API with a non-void pointer type.
// The API returns `nullptr`.
void test_replace_int_void_p_with_nullptr() {
auto replace_int_void_p_with_nullptr = [](void** pp) {
assert(*(static_cast<int*>(*pp)) == 90);
delete static_cast<int*>(*pp);
*pp = nullptr;
};
// raw pointer
{
auto rPtr = new int{90};
replace_int_void_p_with_nullptr(std::inout_ptr<int*>(rPtr));
assert(rPtr == nullptr);
}
// std::unique_ptr
{
auto uPtr = std::make_unique<int>(90);
replace_int_void_p_with_nullptr(std::inout_ptr(uPtr));
assert(uPtr == nullptr);
}
}
// Test updating the ownership of an `inout_ptr_t`-managed pointer for an API with a void pointer type.
// The API returns a new valid object.
void test_replace_nullptr_with_int_p() {
auto replace_nullptr_with_int_p = [](int** pp) {
assert(*pp == nullptr);
*pp = new int{84};
};
// raw pointer
{
int* rPtr = nullptr;
replace_nullptr_with_int_p(std::inout_ptr<int*>(rPtr));
assert(*rPtr == 84);
delete rPtr;
}
// std::unique_ptr
{
std::unique_ptr<int> uPtr;
replace_nullptr_with_int_p(std::inout_ptr(uPtr));
assert(*uPtr == 84);
}
}
int main(int, char**) {
test_replace_int_p();
test_replace_int_p_with_nullptr();
test_replace_int_void_p();
test_replace_int_void_p_with_nullptr();
test_replace_nullptr_with_int_p();
return 0;
}
|