1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// <utility>
// template <class T1, class T2> struct pair
// template <class T1, class T2, class U1, class U2>
// constexpr common_comparison_category_t<synth-three-way-result<T1, U1>,synth-three-way-result<T2, U2>>
// operator<=>(const pair<T1,T2>&, const pair<U1,U2>&);
// UNSUPPORTED: c++03, c++11, c++14, c++17
#include <cassert>
#include <compare>
#include <limits>
#include <type_traits> // std::is_constant_evaluated
#include <utility>
#include <string>
#include "test_macros.h"
template <class T>
concept HasEqual = requires(T t) { t == t; };
template <class T>
concept HasLess = requires(T t) { t < t; };
template <class T, class U = T>
concept HasSpaceship = requires(T t, U u) { t <=> u; };
constexpr bool test() {
{
// Pairs of different types should compare with strong ordering.
using P1 = std::pair<int, int>;
using P2 = std::pair<long long, long long>;
ASSERT_SAME_TYPE(decltype(P1() <=> P2()), std::strong_ordering);
assert((P1(1, 1) <=> P2(1, 2)) == std::strong_ordering::less);
assert((P1(2, 1) <=> P2(1, 2)) == std::strong_ordering::greater);
assert((P1(0, 0) <=> P2(0, 0)) == std::strong_ordering::equal);
}
{
// Pairs of different types should compare with partial ordering.
using P1 = std::pair<int, int>;
using P2 = std::pair<double, double>;
ASSERT_SAME_TYPE(decltype(P1() <=> P2()), std::partial_ordering);
assert((P1(1, 1) <=> P2(1.0, 2.0)) == std::partial_ordering::less);
assert((P1(2, 1) <=> P2(1.0, 2.0)) == std::partial_ordering::greater);
assert((P1(0, 0) <=> P2(0.0, 0.0)) == std::partial_ordering::equivalent);
}
{ static_assert(!HasSpaceship<std::pair<int, int>, std::pair<std::string, int>>); }
{
// Pairs of types that both have strong ordering should compare with strong ordering.
using P = std::pair<int, int>;
ASSERT_SAME_TYPE(decltype(P() <=> P()), std::strong_ordering);
assert((P(1, 1) <=> P(1, 2)) == std::strong_ordering::less);
assert((P(2, 1) <=> P(1, 2)) == std::strong_ordering::greater);
assert((P(0, 0) <=> P(0, 0)) == std::strong_ordering::equal);
}
{
// Pairs of int and a type with no spaceship operator should compare with weak ordering.
struct NoSpaceship {
int value;
constexpr bool operator==(const NoSpaceship&) const = default;
constexpr bool operator<(const NoSpaceship& other) const { return value < other.value; }
};
using P = std::pair<int, NoSpaceship>;
ASSERT_SAME_TYPE(decltype(P() <=> P()), std::weak_ordering);
assert((P(1, {1}) <=> P(1, {2})) == std::weak_ordering::less);
assert((P(2, {1}) <=> P(1, {2})) == std::weak_ordering::greater);
assert((P(0, {0}) <=> P(0, {0})) == std::weak_ordering::equivalent);
}
{
// Pairs of int (strongly ordered) and double (partially ordered) should compare with partial ordering.
using P = std::pair<int, double>;
constexpr double nan = std::numeric_limits<double>::quiet_NaN();
ASSERT_SAME_TYPE(decltype(P() <=> P()), std::partial_ordering);
assert((P(1, 1.0) <=> P(1, 2.0)) == std::partial_ordering::less);
assert((P(1, 1.0) <=> P(1, 1.0)) == std::partial_ordering::equivalent);
assert((P(1, -0.0) <=> P(1, 0.0)) == std::partial_ordering::equivalent);
assert((P(1, 2.0) <=> P(1, 1.0)) == std::partial_ordering::greater);
assert((P(1, nan) <=> P(2, nan)) == std::partial_ordering::less);
assert((P(2, nan) <=> P(1, nan)) == std::partial_ordering::greater);
assert((P(1, nan) <=> P(1, nan)) == std::partial_ordering::unordered);
}
{
using P = std::pair<double, int>;
constexpr double nan = std::numeric_limits<double>::quiet_NaN();
ASSERT_SAME_TYPE(decltype(P() <=> P()), std::partial_ordering);
assert((P(2.0, 1) <=> P(1.0, 2)) == std::partial_ordering::greater);
assert((P(1.0, 1) <=> P(1.0, 2)) == std::partial_ordering::less);
assert((P(nan, 1) <=> P(nan, 2)) == std::partial_ordering::unordered);
}
{
struct NoRelative {
constexpr bool operator==(const NoRelative&) const;
};
static_assert(HasEqual<std::pair<int, NoRelative>>);
static_assert(!HasLess<std::pair<int, NoRelative>>);
static_assert(!HasSpaceship<std::pair<int, NoRelative>>);
}
{
struct NoLessThan {
constexpr bool operator==(const NoLessThan&) const;
constexpr bool operator>(const NoLessThan&) const;
};
static_assert(HasEqual<std::pair<int, NoLessThan>>);
static_assert(!HasLess<std::pair<int, NoLessThan>>);
static_assert(!HasSpaceship<std::pair<int, NoLessThan>>);
}
#ifdef TEST_COMPILER_GCC
// GCC cannot evaluate NaN @ non-NaN constexpr, so test that runtime-only.
if (!std::is_constant_evaluated())
#endif
{
{
using P = std::pair<int, double>;
constexpr double nan = std::numeric_limits<double>::quiet_NaN();
assert((P(1, 2.0) <=> P(1, nan)) == std::partial_ordering::unordered);
}
{
using P = std::pair<double, int>;
constexpr double nan = std::numeric_limits<double>::quiet_NaN();
assert((P(1.0, 1) <=> P(nan, 2)) == std::partial_ordering::unordered);
}
}
return true;
}
int main(int, char**) {
test();
static_assert(test());
return 0;
}
|