1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
|
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <mach-o/loader.h>
#include <mach/thread_status.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <sys/errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include <uuid/uuid.h>
#include <vector>
// Given a list of binaries, and optional slides to be applied,
// create a corefile whose memory is those binaries laid down at
// their slid addresses.
//
// Add a 'main bin spec' LC_NOTE for the first binary, and
// 'load binary' LC_NOTEs for any additional binaries, and
// these LC_NOTEs will ONLY have the vmaddr of the binary - no
// UUID, no slide, no filename.
//
// Test that lldb can use the load addresses, find the UUIDs,
// and load the binaries/dSYMs and put them at the correct load
// address.
struct main_bin_spec_payload {
uint32_t version;
uint32_t type;
uint64_t address;
uint64_t slide;
uuid_t uuid;
uint32_t log2_pagesize;
uint32_t platform;
};
struct load_binary_payload {
uint32_t version;
uuid_t uuid;
uint64_t address;
uint64_t slide;
const char name[4];
};
union uint32_buf {
uint8_t bytebuf[4];
uint32_t val;
};
union uint64_buf {
uint8_t bytebuf[8];
uint64_t val;
};
void add_uint64(std::vector<uint8_t> &buf, uint64_t val) {
uint64_buf conv;
conv.val = val;
for (int i = 0; i < 8; i++)
buf.push_back(conv.bytebuf[i]);
}
void add_uint32(std::vector<uint8_t> &buf, uint32_t val) {
uint32_buf conv;
conv.val = val;
for (int i = 0; i < 4; i++)
buf.push_back(conv.bytebuf[i]);
}
std::vector<uint8_t> lc_thread_load_command(cpu_type_t cputype) {
std::vector<uint8_t> data;
// Emit an LC_THREAD register context appropriate for the cputype
// of the binary we're embedded. The tests in this case do not
// use the register values, so 0's are fine, lldb needs to see at
// least one LC_THREAD in the corefile.
#if defined(__x86_64__)
if (cputype == CPU_TYPE_X86_64) {
add_uint32(data, LC_THREAD); // thread_command.cmd
add_uint32(data,
16 + (x86_THREAD_STATE64_COUNT * 4)); // thread_command.cmdsize
add_uint32(data, x86_THREAD_STATE64); // thread_command.flavor
add_uint32(data, x86_THREAD_STATE64_COUNT); // thread_command.count
for (int i = 0; i < x86_THREAD_STATE64_COUNT; i++) {
add_uint32(data, 0); // whatever, just some empty register values
}
}
#endif
#if defined(__arm64__) || defined(__aarch64__)
if (cputype == CPU_TYPE_ARM64) {
add_uint32(data, LC_THREAD); // thread_command.cmd
add_uint32(data,
16 + (ARM_THREAD_STATE64_COUNT * 4)); // thread_command.cmdsize
add_uint32(data, ARM_THREAD_STATE64); // thread_command.flavor
add_uint32(data, ARM_THREAD_STATE64_COUNT); // thread_command.count
for (int i = 0; i < ARM_THREAD_STATE64_COUNT; i++) {
add_uint32(data, 0); // whatever, just some empty register values
}
}
#endif
return data;
}
void add_lc_note_main_bin_spec_load_command(
std::vector<std::vector<uint8_t>> &loadcmds, std::vector<uint8_t> &payload,
int payload_file_offset, std::string uuidstr, uint64_t address,
uint64_t slide) {
std::vector<uint8_t> loadcmd_data;
add_uint32(loadcmd_data, LC_NOTE); // note_command.cmd
add_uint32(loadcmd_data, 40); // note_command.cmdsize
char lc_note_name[16];
memset(lc_note_name, 0, 16);
strcpy(lc_note_name, "main bin spec");
// lc_note.data_owner
for (int i = 0; i < 16; i++)
loadcmd_data.push_back(lc_note_name[i]);
// we start writing the payload at payload_file_offset to leave
// room at the start for the header & the load commands.
uint64_t current_payload_offset = payload.size() + payload_file_offset;
add_uint64(loadcmd_data, current_payload_offset); // note_command.offset
add_uint64(loadcmd_data,
sizeof(struct main_bin_spec_payload)); // note_command.size
loadcmds.push_back(loadcmd_data);
// Now write the "main bin spec" payload.
add_uint32(payload, 2); // version
add_uint32(payload, 3); // type == 3 [ firmware, standalone, etc ]
add_uint64(payload, address); // load address
add_uint64(payload, slide); // slide
uuid_t uuid;
uuid_parse(uuidstr.c_str(), uuid);
for (int i = 0; i < sizeof(uuid_t); i++)
payload.push_back(uuid[i]);
add_uint32(payload, 0); // log2_pagesize unspecified
add_uint32(payload, 0); // platform unspecified
}
void add_lc_note_load_binary_load_command(
std::vector<std::vector<uint8_t>> &loadcmds, std::vector<uint8_t> &payload,
int payload_file_offset, std::string uuidstr, uint64_t address,
uint64_t slide) {
std::vector<uint8_t> loadcmd_data;
add_uint32(loadcmd_data, LC_NOTE); // note_command.cmd
add_uint32(loadcmd_data, 40); // note_command.cmdsize
char lc_note_name[16];
memset(lc_note_name, 0, 16);
strcpy(lc_note_name, "load binary");
// lc_note.data_owner
for (int i = 0; i < 16; i++)
loadcmd_data.push_back(lc_note_name[i]);
// we start writing the payload at payload_file_offset to leave
// room at the start for the header & the load commands.
uint64_t current_payload_offset = payload.size() + payload_file_offset;
add_uint64(loadcmd_data, current_payload_offset); // note_command.offset
add_uint64(loadcmd_data,
sizeof(struct load_binary_payload)); // note_command.size
loadcmds.push_back(loadcmd_data);
// Now write the "load binary" payload.
add_uint32(payload, 1); // version
uuid_t uuid;
uuid_parse(uuidstr.c_str(), uuid);
for (int i = 0; i < sizeof(uuid_t); i++)
payload.push_back(uuid[i]);
add_uint64(payload, address); // load address
add_uint64(payload, slide); // slide
add_uint32(payload, 0); // name
}
void add_lc_segment(std::vector<std::vector<uint8_t>> &loadcmds,
std::vector<uint8_t> &payload, int payload_file_offset,
uint64_t vmaddr, uint64_t size) {
std::vector<uint8_t> loadcmd_data;
struct segment_command_64 seg;
seg.cmd = LC_SEGMENT_64;
seg.cmdsize = sizeof(struct segment_command_64); // no sections
memset(seg.segname, 0, 16);
seg.vmaddr = vmaddr;
seg.vmsize = size;
seg.fileoff = payload.size() + payload_file_offset;
seg.filesize = size;
seg.maxprot = 1;
seg.initprot = 1;
seg.nsects = 0;
seg.flags = 0;
uint8_t *p = (uint8_t *)&seg;
for (int i = 0; i < sizeof(struct segment_command_64); i++) {
loadcmd_data.push_back(*(p + i));
}
loadcmds.push_back(loadcmd_data);
}
std::string scan_binary(const char *fn, uint64_t &vmaddr, cpu_type_t &cputype,
cpu_subtype_t &cpusubtype) {
FILE *f = fopen(fn, "r");
if (f == nullptr) {
fprintf(stderr, "Unable to open binary '%s' to get uuid\n", fn);
exit(1);
}
uint32_t num_of_load_cmds = 0;
uint32_t size_of_load_cmds = 0;
std::string uuid;
off_t file_offset = 0;
vmaddr = UINT64_MAX;
uint8_t magic[4];
if (::fread(magic, 1, 4, f) != 4) {
fprintf(stderr, "Failed to read magic number from input file %s\n", fn);
exit(1);
}
uint8_t magic_32_be[] = {0xfe, 0xed, 0xfa, 0xce};
uint8_t magic_32_le[] = {0xce, 0xfa, 0xed, 0xfe};
uint8_t magic_64_be[] = {0xfe, 0xed, 0xfa, 0xcf};
uint8_t magic_64_le[] = {0xcf, 0xfa, 0xed, 0xfe};
if (memcmp(magic, magic_32_be, 4) == 0 ||
memcmp(magic, magic_64_be, 4) == 0) {
fprintf(stderr, "big endian corefiles not supported\n");
exit(1);
}
::fseeko(f, 0, SEEK_SET);
if (memcmp(magic, magic_32_le, 4) == 0) {
struct mach_header mh;
if (::fread(&mh, 1, sizeof(mh), f) != sizeof(mh)) {
fprintf(stderr, "error reading mach header from input file\n");
exit(1);
}
if (mh.cputype != CPU_TYPE_X86_64 && mh.cputype != CPU_TYPE_ARM64) {
fprintf(stderr,
"This tool creates an x86_64/arm64 corefile but "
"the supplied binary '%s' is cputype 0x%x\n",
fn, (uint32_t)mh.cputype);
exit(1);
}
num_of_load_cmds = mh.ncmds;
size_of_load_cmds = mh.sizeofcmds;
file_offset += sizeof(struct mach_header);
cputype = mh.cputype;
cpusubtype = mh.cpusubtype;
} else {
struct mach_header_64 mh;
if (::fread(&mh, 1, sizeof(mh), f) != sizeof(mh)) {
fprintf(stderr, "error reading mach header from input file\n");
exit(1);
}
if (mh.cputype != CPU_TYPE_X86_64 && mh.cputype != CPU_TYPE_ARM64) {
fprintf(stderr,
"This tool creates an x86_64/arm64 corefile but "
"the supplied binary '%s' is cputype 0x%x\n",
fn, (uint32_t)mh.cputype);
exit(1);
}
num_of_load_cmds = mh.ncmds;
size_of_load_cmds = mh.sizeofcmds;
file_offset += sizeof(struct mach_header_64);
cputype = mh.cputype;
cpusubtype = mh.cpusubtype;
}
off_t load_cmds_offset = file_offset;
for (int i = 0; i < num_of_load_cmds &&
(file_offset - load_cmds_offset) < size_of_load_cmds;
i++) {
::fseeko(f, file_offset, SEEK_SET);
uint32_t cmd;
uint32_t cmdsize;
::fread(&cmd, sizeof(uint32_t), 1, f);
::fread(&cmdsize, sizeof(uint32_t), 1, f);
if (vmaddr == UINT64_MAX && cmd == LC_SEGMENT_64) {
struct segment_command_64 segcmd;
::fseeko(f, file_offset, SEEK_SET);
if (::fread(&segcmd, 1, sizeof(segcmd), f) != sizeof(segcmd)) {
fprintf(stderr, "Unable to read LC_SEGMENT_64 load command.\n");
exit(1);
}
if (strcmp("__TEXT", segcmd.segname) == 0)
vmaddr = segcmd.vmaddr;
}
if (cmd == LC_UUID) {
struct uuid_command uuidcmd;
::fseeko(f, file_offset, SEEK_SET);
if (::fread(&uuidcmd, 1, sizeof(uuidcmd), f) != sizeof(uuidcmd)) {
fprintf(stderr, "Unable to read LC_UUID load command.\n");
exit(1);
}
uuid_string_t uuidstr;
uuid_unparse(uuidcmd.uuid, uuidstr);
uuid = uuidstr;
}
file_offset += cmdsize;
}
return uuid;
}
void slide_macho_binary(std::vector<uint8_t> &image, uint64_t slide) {
uint8_t *p = image.data();
struct mach_header_64 *mh = (struct mach_header_64 *)p;
p += sizeof(struct mach_header_64);
for (int lc_idx = 0; lc_idx < mh->ncmds; lc_idx++) {
struct load_command *lc = (struct load_command *)p;
if (lc->cmd == LC_SEGMENT_64) {
struct segment_command_64 *seg = (struct segment_command_64 *)p;
if (seg->maxprot != 0 && seg->nsects > 0) {
seg->vmaddr += slide;
uint8_t *j = p + sizeof(segment_command_64);
for (int sect_idx = 0; sect_idx < seg->nsects; sect_idx++) {
struct section_64 *sect = (struct section_64 *)j;
sect->addr += slide;
j += sizeof(struct section_64);
}
}
}
p += lc->cmdsize;
}
}
int main(int argc, char **argv) {
if (argc < 3) {
fprintf(stderr,
"usage: output-corefile binary1[@optional-slide] "
"[binary2[@optional-slide] [binary3[@optional-slide] ...]]\n");
exit(1);
}
// An array of load commands (in the form of byte arrays)
std::vector<std::vector<uint8_t>> load_commands;
// An array of corefile contents (page data, lc_note data, etc)
std::vector<uint8_t> payload;
std::vector<std::string> input_filenames;
std::vector<uint64_t> input_slides;
std::vector<uint64_t> input_filesizes;
std::vector<uint64_t> input_filevmaddrs;
uint64_t main_binary_cputype = CPU_TYPE_ARM64;
uint64_t vmaddr = UINT64_MAX;
cpu_type_t cputype;
cpu_subtype_t cpusubtype;
for (int i = 2; i < argc; i++) {
std::string filename;
std::string filename_and_opt_hex(argv[i]);
uint64_t slide = 0;
auto at_pos = filename_and_opt_hex.find_last_of('@');
if (at_pos == std::string::npos) {
filename = filename_and_opt_hex;
} else {
filename = filename_and_opt_hex.substr(0, at_pos);
std::string hexstr = filename_and_opt_hex.substr(at_pos + 1);
errno = 0;
slide = (uint64_t)strtoull(hexstr.c_str(), nullptr, 16);
if (errno != 0) {
fprintf(stderr, "Unable to parse hex slide value in %s\n", argv[i]);
exit(1);
}
}
struct stat stbuf;
if (stat(filename.c_str(), &stbuf) == -1) {
fprintf(stderr, "Unable to stat '%s', exiting.\n", filename.c_str());
exit(1);
}
input_filenames.push_back(filename);
input_slides.push_back(slide);
input_filesizes.push_back(stbuf.st_size);
scan_binary(filename.c_str(), vmaddr, cputype, cpusubtype);
input_filevmaddrs.push_back(vmaddr + slide);
if (i == 2) {
main_binary_cputype = cputype;
}
}
const char *output_corefile_name = argv[1];
std::string empty_uuidstr = "00000000-0000-0000-0000-000000000000";
// First add all the load commands / payload so we can figure out how large
// the load commands will actually be.
load_commands.push_back(lc_thread_load_command(cputype));
add_lc_note_main_bin_spec_load_command(load_commands, payload, 0,
empty_uuidstr, 0, UINT64_MAX);
for (int i = 1; i < input_filenames.size(); i++) {
add_lc_note_load_binary_load_command(load_commands, payload, 0,
empty_uuidstr, 0, UINT64_MAX);
}
for (int i = 0; i < input_filenames.size(); i++) {
add_lc_segment(load_commands, payload, 0, 0, 0);
}
int size_of_load_commands = 0;
for (const auto &lc : load_commands)
size_of_load_commands += lc.size();
int size_of_header_and_load_cmds =
sizeof(struct mach_header_64) + size_of_load_commands;
// Erase the load commands / payload now that we know how much space is
// needed, redo it.
load_commands.clear();
payload.clear();
// Push the LC_THREAD load command.
load_commands.push_back(lc_thread_load_command(main_binary_cputype));
const off_t payload_offset = size_of_header_and_load_cmds;
add_lc_note_main_bin_spec_load_command(load_commands, payload, payload_offset,
empty_uuidstr, input_filevmaddrs[0],
UINT64_MAX);
for (int i = 1; i < input_filenames.size(); i++) {
add_lc_note_load_binary_load_command(load_commands, payload, payload_offset,
empty_uuidstr, input_filevmaddrs[i],
UINT64_MAX);
}
for (int i = 0; i < input_filenames.size(); i++) {
add_lc_segment(load_commands, payload, payload_offset, input_filevmaddrs[i],
input_filesizes[i]);
// Copy the contents of the binary into payload.
int fd = open(input_filenames[i].c_str(), O_RDONLY);
if (fd == -1) {
fprintf(stderr, "Unable to open %s for reading\n",
input_filenames[i].c_str());
exit(1);
}
std::vector<uint8_t> binary_contents;
for (int j = 0; j < input_filesizes[i]; j++) {
uint8_t byte;
read(fd, &byte, 1);
binary_contents.push_back(byte);
}
close(fd);
size_t cur_payload_size = payload.size();
payload.resize(cur_payload_size + binary_contents.size());
slide_macho_binary(binary_contents, input_slides[i]);
memcpy(payload.data() + cur_payload_size, binary_contents.data(),
binary_contents.size());
}
struct mach_header_64 mh;
mh.magic = MH_MAGIC_64;
mh.cputype = cputype;
mh.cpusubtype = cpusubtype;
mh.filetype = MH_CORE;
mh.ncmds = load_commands.size();
mh.sizeofcmds = size_of_load_commands;
mh.flags = 0;
mh.reserved = 0;
FILE *f = fopen(output_corefile_name, "w");
if (f == nullptr) {
fprintf(stderr, "Unable to open file %s for writing\n",
output_corefile_name);
exit(1);
}
fwrite(&mh, sizeof(mh), 1, f);
for (const auto &lc : load_commands)
fwrite(lc.data(), lc.size(), 1, f);
fwrite(payload.data(), payload.size(), 1, f);
fclose(f);
}
|