| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 
 | //===- HexagonBitTracker.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "HexagonBitTracker.h"
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <utility>
#include <vector>
using namespace llvm;
using BT = BitTracker;
HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
                                   MachineRegisterInfo &mri,
                                   const HexagonInstrInfo &tii,
                                   MachineFunction &mf)
    : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
  // Populate the VRX map (VR to extension-type).
  // Go over all the formal parameters of the function. If a given parameter
  // P is sign- or zero-extended, locate the virtual register holding that
  // parameter and create an entry in the VRX map indicating the type of ex-
  // tension (and the source type).
  // This is a bit complicated to do accurately, since the memory layout in-
  // formation is necessary to precisely determine whether an aggregate para-
  // meter will be passed in a register or in memory. What is given in MRI
  // is the association between the physical register that is live-in (i.e.
  // holds an argument), and the virtual register that this value will be
  // copied into. This, by itself, is not sufficient to map back the virtual
  // register to a formal parameter from Function (since consecutive live-ins
  // from MRI may not correspond to consecutive formal parameters from Func-
  // tion). To avoid the complications with in-memory arguments, only consi-
  // der the initial sequence of formal parameters that are known to be
  // passed via registers.
  unsigned InVirtReg, InPhysReg = 0;
  for (const Argument &Arg : MF.getFunction().args()) {
    Type *ATy = Arg.getType();
    unsigned Width = 0;
    if (ATy->isIntegerTy())
      Width = ATy->getIntegerBitWidth();
    else if (ATy->isPointerTy())
      Width = 32;
    // If pointer size is not set through target data, it will default to
    // Module::AnyPointerSize.
    if (Width == 0 || Width > 64)
      break;
    if (Arg.hasAttribute(Attribute::ByVal))
      continue;
    InPhysReg = getNextPhysReg(InPhysReg, Width);
    if (!InPhysReg)
      break;
    InVirtReg = getVirtRegFor(InPhysReg);
    if (!InVirtReg)
      continue;
    if (Arg.hasAttribute(Attribute::SExt))
      VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
    else if (Arg.hasAttribute(Attribute::ZExt))
      VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
  }
}
BT::BitMask HexagonEvaluator::mask(Register Reg, unsigned Sub) const {
  if (Sub == 0)
    return MachineEvaluator::mask(Reg, 0);
  const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
  unsigned ID = RC.getID();
  uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
  const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
  bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
  switch (ID) {
    case Hexagon::DoubleRegsRegClassID:
    case Hexagon::HvxWRRegClassID:
    case Hexagon::HvxVQRRegClassID:
      return IsSubLo ? BT::BitMask(0, RW-1)
                     : BT::BitMask(RW, 2*RW-1);
    default:
      break;
  }
#ifndef NDEBUG
  dbgs() << printReg(Reg, &TRI, Sub) << " in reg class "
         << TRI.getRegClassName(&RC) << '\n';
#endif
  llvm_unreachable("Unexpected register/subregister");
}
uint16_t HexagonEvaluator::getPhysRegBitWidth(MCRegister Reg) const {
  using namespace Hexagon;
  const auto &HST = MF.getSubtarget<HexagonSubtarget>();
  if (HST.useHVXOps()) {
    for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass,
                     HvxVQRRegClass})
      if (RC.contains(Reg))
        return TRI.getRegSizeInBits(RC);
  }
  // Default treatment for other physical registers.
  if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))
    return TRI.getRegSizeInBits(*RC);
  llvm_unreachable(
      (Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str());
}
const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(
      const TargetRegisterClass &RC, unsigned Idx) const {
  if (Idx == 0)
    return RC;
#ifndef NDEBUG
  const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
  bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
  bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
  assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");
#endif
  switch (RC.getID()) {
    case Hexagon::DoubleRegsRegClassID:
      return Hexagon::IntRegsRegClass;
    case Hexagon::HvxWRRegClassID:
      return Hexagon::HvxVRRegClass;
    case Hexagon::HvxVQRRegClassID:
      return Hexagon::HvxWRRegClass;
    default:
      break;
  }
#ifndef NDEBUG
  dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';
#endif
  llvm_unreachable("Unimplemented combination of reg class/subreg idx");
}
namespace {
class RegisterRefs {
  std::vector<BT::RegisterRef> Vector;
public:
  RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
    for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
      const MachineOperand &MO = MI.getOperand(i);
      if (MO.isReg())
        Vector[i] = BT::RegisterRef(MO);
      // For indices that don't correspond to registers, the entry will
      // remain constructed via the default constructor.
    }
  }
  size_t size() const { return Vector.size(); }
  const BT::RegisterRef &operator[](unsigned n) const {
    // The main purpose of this operator is to assert with bad argument.
    assert(n < Vector.size());
    return Vector[n];
  }
};
} // end anonymous namespace
bool HexagonEvaluator::evaluate(const MachineInstr &MI,
                                const CellMapType &Inputs,
                                CellMapType &Outputs) const {
  using namespace Hexagon;
  unsigned NumDefs = 0;
  // Basic correctness check: there should not be any defs with subregisters.
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg() || !MO.isDef())
      continue;
    NumDefs++;
    assert(MO.getSubReg() == 0);
  }
  if (NumDefs == 0)
    return false;
  unsigned Opc = MI.getOpcode();
  if (MI.mayLoad()) {
    switch (Opc) {
      // These instructions may be marked as mayLoad, but they are generating
      // immediate values, so skip them.
      case CONST32:
      case CONST64:
        break;
      default:
        return evaluateLoad(MI, Inputs, Outputs);
    }
  }
  // Check COPY instructions that copy formal parameters into virtual
  // registers. Such parameters can be sign- or zero-extended at the
  // call site, and we should take advantage of this knowledge. The MRI
  // keeps a list of pairs of live-in physical and virtual registers,
  // which provides information about which virtual registers will hold
  // the argument values. The function will still contain instructions
  // defining those virtual registers, and in practice those are COPY
  // instructions from a physical to a virtual register. In such cases,
  // applying the argument extension to the virtual register can be seen
  // as simply mirroring the extension that had already been applied to
  // the physical register at the call site. If the defining instruction
  // was not a COPY, it would not be clear how to mirror that extension
  // on the callee's side. For that reason, only check COPY instructions
  // for potential extensions.
  if (MI.isCopy()) {
    if (evaluateFormalCopy(MI, Inputs, Outputs))
      return true;
  }
  // Beyond this point, if any operand is a global, skip that instruction.
  // The reason is that certain instructions that can take an immediate
  // operand can also have a global symbol in that operand. To avoid
  // checking what kind of operand a given instruction has individually
  // for each instruction, do it here. Global symbols as operands gene-
  // rally do not provide any useful information.
  for (const MachineOperand &MO : MI.operands()) {
    if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
        MO.isCPI())
      return false;
  }
  RegisterRefs Reg(MI);
#define op(i) MI.getOperand(i)
#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
#define im(i) MI.getOperand(i).getImm()
  // If the instruction has no register operands, skip it.
  if (Reg.size() == 0)
    return false;
  // Record result for register in operand 0.
  auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
        -> bool {
    putCell(Reg[0], Val, Outputs);
    return true;
  };
  // Get the cell corresponding to the N-th operand.
  auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
                                        uint16_t W) -> BT::RegisterCell {
    const MachineOperand &Op = MI.getOperand(N);
    if (Op.isImm())
      return eIMM(Op.getImm(), W);
    if (!Op.isReg())
      return RegisterCell::self(0, W);
    assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
    return rc(N);
  };
  // Extract RW low bits of the cell.
  auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
        -> BT::RegisterCell {
    assert(RW <= RC.width());
    return eXTR(RC, 0, RW);
  };
  // Extract RW high bits of the cell.
  auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
        -> BT::RegisterCell {
    uint16_t W = RC.width();
    assert(RW <= W);
    return eXTR(RC, W-RW, W);
  };
  // Extract N-th halfword (counting from the least significant position).
  auto half = [this] (const BT::RegisterCell &RC, unsigned N)
        -> BT::RegisterCell {
    assert(N*16+16 <= RC.width());
    return eXTR(RC, N*16, N*16+16);
  };
  // Shuffle bits (pick even/odd from cells and merge into result).
  auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
                         uint16_t BW, bool Odd) -> BT::RegisterCell {
    uint16_t I = Odd, Ws = Rs.width();
    assert(Ws == Rt.width());
    RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
    I += 2;
    while (I*BW < Ws) {
      RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
      I += 2;
    }
    return RC;
  };
  // The bitwidth of the 0th operand. In most (if not all) of the
  // instructions below, the 0th operand is the defined register.
  // Pre-compute the bitwidth here, because it is needed in many cases
  // cases below.
  uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
  // Register id of the 0th operand. It can be 0.
  unsigned Reg0 = Reg[0].Reg;
  switch (Opc) {
    // Transfer immediate:
    case A2_tfrsi:
    case A2_tfrpi:
    case CONST32:
    case CONST64:
      return rr0(eIMM(im(1), W0), Outputs);
    case PS_false:
      return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
    case PS_true:
      return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
    case PS_fi: {
      int FI = op(1).getIndex();
      int Off = op(2).getImm();
      unsigned A = MFI.getObjectAlign(FI).value() + std::abs(Off);
      unsigned L = llvm::countr_zero(A);
      RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
      RC.fill(0, L, BT::BitValue::Zero);
      return rr0(RC, Outputs);
    }
    // Transfer register:
    case A2_tfr:
    case A2_tfrp:
    case C2_pxfer_map:
      return rr0(rc(1), Outputs);
    case C2_tfrpr: {
      uint16_t RW = W0;
      uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
      assert(PW <= RW);
      RegisterCell PC = eXTR(rc(1), 0, PW);
      RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
      RC.fill(PW, RW, BT::BitValue::Zero);
      return rr0(RC, Outputs);
    }
    case C2_tfrrp: {
      uint16_t RW = W0;
      uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
      RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW);
      RC.fill(PW, RW, BT::BitValue::Zero);
      return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs);
    }
    // Arithmetic:
    case A2_abs:
    case A2_absp:
      // TODO
      break;
    case A2_addsp: {
      uint16_t W1 = getRegBitWidth(Reg[1]);
      assert(W0 == 64 && W1 == 32);
      RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
      RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
      return rr0(RC, Outputs);
    }
    case A2_add:
    case A2_addp:
      return rr0(eADD(rc(1), rc(2)), Outputs);
    case A2_addi:
      return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
    case S4_addi_asl_ri: {
      RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_addi_lsr_ri: {
      RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_addaddi: {
      RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case M4_mpyri_addi: {
      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
      RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M4_mpyrr_addi: {
      RegisterCell M = eMLS(rc(2), rc(3));
      RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M4_mpyri_addr_u2: {
      RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M4_mpyri_addr: {
      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M4_mpyrr_addr: {
      RegisterCell M = eMLS(rc(2), rc(3));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case S4_subaddi: {
      RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
      return rr0(RC, Outputs);
    }
    case M2_accii: {
      RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case M2_acci: {
      RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
      return rr0(RC, Outputs);
    }
    case M2_subacc: {
      RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
      return rr0(RC, Outputs);
    }
    case S2_addasl_rrri: {
      RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case C4_addipc: {
      RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
      RPC.fill(0, 2, BT::BitValue::Zero);
      return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
    }
    case A2_sub:
    case A2_subp:
      return rr0(eSUB(rc(1), rc(2)), Outputs);
    case A2_subri:
      return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
    case S4_subi_asl_ri: {
      RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_subi_lsr_ri: {
      RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case M2_naccii: {
      RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case M2_nacci: {
      RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
      return rr0(RC, Outputs);
    }
    // 32-bit negation is done by "Rd = A2_subri 0, Rs"
    case A2_negp:
      return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
    case M2_mpy_up: {
      RegisterCell M = eMLS(rc(1), rc(2));
      return rr0(hi(M, W0), Outputs);
    }
    case M2_dpmpyss_s0:
      return rr0(eMLS(rc(1), rc(2)), Outputs);
    case M2_dpmpyss_acc_s0:
      return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
    case M2_dpmpyss_nac_s0:
      return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
    case M2_mpyi: {
      RegisterCell M = eMLS(rc(1), rc(2));
      return rr0(lo(M, W0), Outputs);
    }
    case M2_macsip: {
      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M2_macsin: {
      RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
      RegisterCell RC = eSUB(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M2_maci: {
      RegisterCell M = eMLS(rc(2), rc(3));
      RegisterCell RC = eADD(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M2_mnaci: {
      RegisterCell M = eMLS(rc(2), rc(3));
      RegisterCell RC = eSUB(rc(1), lo(M, W0));
      return rr0(RC, Outputs);
    }
    case M2_mpysmi: {
      RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
      return rr0(lo(M, 32), Outputs);
    }
    case M2_mpysin: {
      RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
      return rr0(lo(M, 32), Outputs);
    }
    case M2_mpysip: {
      RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
      return rr0(lo(M, 32), Outputs);
    }
    case M2_mpyu_up: {
      RegisterCell M = eMLU(rc(1), rc(2));
      return rr0(hi(M, W0), Outputs);
    }
    case M2_dpmpyuu_s0:
      return rr0(eMLU(rc(1), rc(2)), Outputs);
    case M2_dpmpyuu_acc_s0:
      return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
    case M2_dpmpyuu_nac_s0:
      return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
    //case M2_mpysu_up:
    // Logical/bitwise:
    case A2_andir:
      return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
    case A2_and:
    case A2_andp:
      return rr0(eAND(rc(1), rc(2)), Outputs);
    case A4_andn:
    case A4_andnp:
      return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
    case S4_andi_asl_ri: {
      RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_andi_lsr_ri: {
      RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case M4_and_and:
      return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
    case M4_and_andn:
      return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case M4_and_or:
      return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
    case M4_and_xor:
      return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
    case A2_orir:
      return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
    case A2_or:
    case A2_orp:
      return rr0(eORL(rc(1), rc(2)), Outputs);
    case A4_orn:
    case A4_ornp:
      return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
    case S4_ori_asl_ri: {
      RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case S4_ori_lsr_ri: {
      RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
      return rr0(RC, Outputs);
    }
    case M4_or_and:
      return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
    case M4_or_andn:
      return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case S4_or_andi:
    case S4_or_andix: {
      RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case S4_or_ori: {
      RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
      return rr0(RC, Outputs);
    }
    case M4_or_or:
      return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
    case M4_or_xor:
      return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
    case A2_xor:
    case A2_xorp:
      return rr0(eXOR(rc(1), rc(2)), Outputs);
    case M4_xor_and:
      return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
    case M4_xor_andn:
      return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case M4_xor_or:
      return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
    case M4_xor_xacc:
      return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
    case A2_not:
    case A2_notp:
      return rr0(eNOT(rc(1)), Outputs);
    case S2_asl_i_r:
    case S2_asl_i_p:
      return rr0(eASL(rc(1), im(2)), Outputs);
    case A2_aslh:
      return rr0(eASL(rc(1), 16), Outputs);
    case S2_asl_i_r_acc:
    case S2_asl_i_p_acc:
      return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_r_nac:
    case S2_asl_i_p_nac:
      return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_r_and:
    case S2_asl_i_p_and:
      return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_r_or:
    case S2_asl_i_p_or:
      return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_r_xacc:
    case S2_asl_i_p_xacc:
      return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
    case S2_asl_i_vh:
    case S2_asl_i_vw:
      // TODO
      break;
    case S2_asr_i_r:
    case S2_asr_i_p:
      return rr0(eASR(rc(1), im(2)), Outputs);
    case A2_asrh:
      return rr0(eASR(rc(1), 16), Outputs);
    case S2_asr_i_r_acc:
    case S2_asr_i_p_acc:
      return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
    case S2_asr_i_r_nac:
    case S2_asr_i_p_nac:
      return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
    case S2_asr_i_r_and:
    case S2_asr_i_p_and:
      return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
    case S2_asr_i_r_or:
    case S2_asr_i_p_or:
      return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
    case S2_asr_i_r_rnd: {
      // The input is first sign-extended to 64 bits, then the output
      // is truncated back to 32 bits.
      assert(W0 == 32);
      RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
      RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
      return rr0(eXTR(RC, 0, W0), Outputs);
    }
    case S2_asr_i_r_rnd_goodsyntax: {
      int64_t S = im(2);
      if (S == 0)
        return rr0(rc(1), Outputs);
      // Result: S2_asr_i_r_rnd Rs, u5-1
      RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
      RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
      return rr0(eXTR(RC, 0, W0), Outputs);
    }
    case S2_asr_r_vh:
    case S2_asr_i_vw:
    case S2_asr_i_svw_trun:
      // TODO
      break;
    case S2_lsr_i_r:
    case S2_lsr_i_p:
      return rr0(eLSR(rc(1), im(2)), Outputs);
    case S2_lsr_i_r_acc:
    case S2_lsr_i_p_acc:
      return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
    case S2_lsr_i_r_nac:
    case S2_lsr_i_p_nac:
      return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
    case S2_lsr_i_r_and:
    case S2_lsr_i_p_and:
      return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
    case S2_lsr_i_r_or:
    case S2_lsr_i_p_or:
      return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
    case S2_lsr_i_r_xacc:
    case S2_lsr_i_p_xacc:
      return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
    case S2_clrbit_i: {
      RegisterCell RC = rc(1);
      RC[im(2)] = BT::BitValue::Zero;
      return rr0(RC, Outputs);
    }
    case S2_setbit_i: {
      RegisterCell RC = rc(1);
      RC[im(2)] = BT::BitValue::One;
      return rr0(RC, Outputs);
    }
    case S2_togglebit_i: {
      RegisterCell RC = rc(1);
      uint16_t BX = im(2);
      RC[BX] = RC[BX].is(0) ? BT::BitValue::One
                            : RC[BX].is(1) ? BT::BitValue::Zero
                                           : BT::BitValue::self();
      return rr0(RC, Outputs);
    }
    case A4_bitspliti: {
      uint16_t W1 = getRegBitWidth(Reg[1]);
      uint16_t BX = im(2);
      // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
      const BT::BitValue Zero = BT::BitValue::Zero;
      RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
                                        .fill(W1+(W1-BX), W0, Zero);
      RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
      RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
      return rr0(RC, Outputs);
    }
    case S4_extract:
    case S4_extractp:
    case S2_extractu:
    case S2_extractup: {
      uint16_t Wd = im(2), Of = im(3);
      assert(Wd <= W0);
      if (Wd == 0)
        return rr0(eIMM(0, W0), Outputs);
      // If the width extends beyond the register size, pad the register
      // with 0 bits.
      RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
      RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
      // Ext is short, need to extend it with 0s or sign bit.
      RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
      if (Opc == S2_extractu || Opc == S2_extractup)
        return rr0(eZXT(RC, Wd), Outputs);
      return rr0(eSXT(RC, Wd), Outputs);
    }
    case S2_insert:
    case S2_insertp: {
      uint16_t Wd = im(3), Of = im(4);
      assert(Wd < W0 && Of < W0);
      // If Wd+Of exceeds W0, the inserted bits are truncated.
      if (Wd+Of > W0)
        Wd = W0-Of;
      if (Wd == 0)
        return rr0(rc(1), Outputs);
      return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
    }
    // Bit permutations:
    case A2_combineii:
    case A4_combineii:
    case A4_combineir:
    case A4_combineri:
    case A2_combinew:
    case V6_vcombine:
      assert(W0 % 2 == 0);
      return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
    case A2_combine_ll:
    case A2_combine_lh:
    case A2_combine_hl:
    case A2_combine_hh: {
      assert(W0 == 32);
      assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
      // Low half in the output is 0 for _ll and _hl, 1 otherwise:
      unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
      // High half in the output is 0 for _ll and _lh, 1 otherwise:
      unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
      RegisterCell R1 = rc(1);
      RegisterCell R2 = rc(2);
      RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
      return rr0(RC, Outputs);
    }
    case S2_packhl: {
      assert(W0 == 64);
      assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
      RegisterCell R1 = rc(1);
      RegisterCell R2 = rc(2);
      RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
                                   .cat(half(R1, 1));
      return rr0(RC, Outputs);
    }
    case S2_shuffeb: {
      RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
      return rr0(RC, Outputs);
    }
    case S2_shuffeh: {
      RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
      return rr0(RC, Outputs);
    }
    case S2_shuffob: {
      RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
      return rr0(RC, Outputs);
    }
    case S2_shuffoh: {
      RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
      return rr0(RC, Outputs);
    }
    case C2_mask: {
      uint16_t WR = W0;
      uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
      assert(WR == 64 && WP == 8);
      RegisterCell R1 = rc(1);
      RegisterCell RC(WR);
      for (uint16_t i = 0; i < WP; ++i) {
        const BT::BitValue &V = R1[i];
        BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
        RC.fill(i*8, i*8+8, F);
      }
      return rr0(RC, Outputs);
    }
    // Mux:
    case C2_muxii:
    case C2_muxir:
    case C2_muxri:
    case C2_mux: {
      BT::BitValue PC0 = rc(1)[0];
      RegisterCell R2 = cop(2, W0);
      RegisterCell R3 = cop(3, W0);
      if (PC0.is(0) || PC0.is(1))
        return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
      R2.meet(R3, Reg[0].Reg);
      return rr0(R2, Outputs);
    }
    case C2_vmux:
      // TODO
      break;
    // Sign- and zero-extension:
    case A2_sxtb:
      return rr0(eSXT(rc(1), 8), Outputs);
    case A2_sxth:
      return rr0(eSXT(rc(1), 16), Outputs);
    case A2_sxtw: {
      uint16_t W1 = getRegBitWidth(Reg[1]);
      assert(W0 == 64 && W1 == 32);
      RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
      return rr0(RC, Outputs);
    }
    case A2_zxtb:
      return rr0(eZXT(rc(1), 8), Outputs);
    case A2_zxth:
      return rr0(eZXT(rc(1), 16), Outputs);
    // Saturations
    case A2_satb:
      return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
    case A2_sath:
      return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
    case A2_satub:
      return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
    case A2_satuh:
      return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
    // Bit count:
    case S2_cl0:
    case S2_cl0p:
      // Always produce a 32-bit result.
      return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
    case S2_cl1:
    case S2_cl1p:
      return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
    case S2_clb:
    case S2_clbp: {
      uint16_t W1 = getRegBitWidth(Reg[1]);
      RegisterCell R1 = rc(1);
      BT::BitValue TV = R1[W1-1];
      if (TV.is(0) || TV.is(1))
        return rr0(eCLB(R1, TV, 32), Outputs);
      break;
    }
    case S2_ct0:
    case S2_ct0p:
      return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
    case S2_ct1:
    case S2_ct1p:
      return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
    case S5_popcountp:
      // TODO
      break;
    case C2_all8: {
      RegisterCell P1 = rc(1);
      bool Has0 = false, All1 = true;
      for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
        if (!P1[i].is(1))
          All1 = false;
        if (!P1[i].is(0))
          continue;
        Has0 = true;
        break;
      }
      if (!Has0 && !All1)
        break;
      RegisterCell RC(W0);
      RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
      return rr0(RC, Outputs);
    }
    case C2_any8: {
      RegisterCell P1 = rc(1);
      bool Has1 = false, All0 = true;
      for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
        if (!P1[i].is(0))
          All0 = false;
        if (!P1[i].is(1))
          continue;
        Has1 = true;
        break;
      }
      if (!Has1 && !All0)
        break;
      RegisterCell RC(W0);
      RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
      return rr0(RC, Outputs);
    }
    case C2_and:
      return rr0(eAND(rc(1), rc(2)), Outputs);
    case C2_andn:
      return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
    case C2_not:
      return rr0(eNOT(rc(1)), Outputs);
    case C2_or:
      return rr0(eORL(rc(1), rc(2)), Outputs);
    case C2_orn:
      return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
    case C2_xor:
      return rr0(eXOR(rc(1), rc(2)), Outputs);
    case C4_and_and:
      return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
    case C4_and_andn:
      return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case C4_and_or:
      return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
    case C4_and_orn:
      return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
    case C4_or_and:
      return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
    case C4_or_andn:
      return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
    case C4_or_or:
      return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
    case C4_or_orn:
      return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
    case C2_bitsclr:
    case C2_bitsclri:
    case C2_bitsset:
    case C4_nbitsclr:
    case C4_nbitsclri:
    case C4_nbitsset:
      // TODO
      break;
    case S2_tstbit_i:
    case S4_ntstbit_i: {
      BT::BitValue V = rc(1)[im(2)];
      if (V.is(0) || V.is(1)) {
        // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
        bool TV = (Opc == S2_tstbit_i);
        BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
        return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
      }
      break;
    }
    default:
      // For instructions that define a single predicate registers, store
      // the low 8 bits of the register only.
      if (unsigned DefR = getUniqueDefVReg(MI)) {
        if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) {
          BT::RegisterRef PD(DefR, 0);
          uint16_t RW = getRegBitWidth(PD);
          uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
          RegisterCell RC = RegisterCell::self(DefR, RW);
          RC.fill(PW, RW, BT::BitValue::Zero);
          putCell(PD, RC, Outputs);
          return true;
        }
      }
      return MachineEvaluator::evaluate(MI, Inputs, Outputs);
  }
  #undef im
  #undef rc
  #undef op
  return false;
}
bool HexagonEvaluator::evaluate(const MachineInstr &BI,
                                const CellMapType &Inputs,
                                BranchTargetList &Targets,
                                bool &FallsThru) const {
  // We need to evaluate one branch at a time. TII::analyzeBranch checks
  // all the branches in a basic block at once, so we cannot use it.
  unsigned Opc = BI.getOpcode();
  bool SimpleBranch = false;
  bool Negated = false;
  switch (Opc) {
    case Hexagon::J2_jumpf:
    case Hexagon::J2_jumpfpt:
    case Hexagon::J2_jumpfnew:
    case Hexagon::J2_jumpfnewpt:
      Negated = true;
      [[fallthrough]];
    case Hexagon::J2_jumpt:
    case Hexagon::J2_jumptpt:
    case Hexagon::J2_jumptnew:
    case Hexagon::J2_jumptnewpt:
      // Simple branch:  if([!]Pn) jump ...
      // i.e. Op0 = predicate, Op1 = branch target.
      SimpleBranch = true;
      break;
    case Hexagon::J2_jump:
      Targets.insert(BI.getOperand(0).getMBB());
      FallsThru = false;
      return true;
    default:
      // If the branch is of unknown type, assume that all successors are
      // executable.
      return false;
  }
  if (!SimpleBranch)
    return false;
  // BI is a conditional branch if we got here.
  RegisterRef PR = BI.getOperand(0);
  RegisterCell PC = getCell(PR, Inputs);
  const BT::BitValue &Test = PC[0];
  // If the condition is neither true nor false, then it's unknown.
  if (!Test.is(0) && !Test.is(1))
    return false;
  // "Test.is(!Negated)" means "branch condition is true".
  if (!Test.is(!Negated)) {
    // Condition known to be false.
    FallsThru = true;
    return true;
  }
  Targets.insert(BI.getOperand(1).getMBB());
  FallsThru = false;
  return true;
}
unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const {
  unsigned DefReg = 0;
  for (const MachineOperand &Op : MI.operands()) {
    if (!Op.isReg() || !Op.isDef())
      continue;
    Register R = Op.getReg();
    if (!R.isVirtual())
      continue;
    if (DefReg != 0)
      return 0;
    DefReg = R;
  }
  return DefReg;
}
bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
                                    const CellMapType &Inputs,
                                    CellMapType &Outputs) const {
  using namespace Hexagon;
  if (TII.isPredicated(MI))
    return false;
  assert(MI.mayLoad() && "A load that mayn't?");
  unsigned Opc = MI.getOpcode();
  uint16_t BitNum;
  bool SignEx;
  switch (Opc) {
    default:
      return false;
#if 0
    // memb_fifo
    case L2_loadalignb_pbr:
    case L2_loadalignb_pcr:
    case L2_loadalignb_pi:
    // memh_fifo
    case L2_loadalignh_pbr:
    case L2_loadalignh_pcr:
    case L2_loadalignh_pi:
    // membh
    case L2_loadbsw2_pbr:
    case L2_loadbsw2_pci:
    case L2_loadbsw2_pcr:
    case L2_loadbsw2_pi:
    case L2_loadbsw4_pbr:
    case L2_loadbsw4_pci:
    case L2_loadbsw4_pcr:
    case L2_loadbsw4_pi:
    // memubh
    case L2_loadbzw2_pbr:
    case L2_loadbzw2_pci:
    case L2_loadbzw2_pcr:
    case L2_loadbzw2_pi:
    case L2_loadbzw4_pbr:
    case L2_loadbzw4_pci:
    case L2_loadbzw4_pcr:
    case L2_loadbzw4_pi:
#endif
    case L2_loadrbgp:
    case L2_loadrb_io:
    case L2_loadrb_pbr:
    case L2_loadrb_pci:
    case L2_loadrb_pcr:
    case L2_loadrb_pi:
    case PS_loadrbabs:
    case L4_loadrb_ap:
    case L4_loadrb_rr:
    case L4_loadrb_ur:
      BitNum = 8;
      SignEx = true;
      break;
    case L2_loadrubgp:
    case L2_loadrub_io:
    case L2_loadrub_pbr:
    case L2_loadrub_pci:
    case L2_loadrub_pcr:
    case L2_loadrub_pi:
    case PS_loadrubabs:
    case L4_loadrub_ap:
    case L4_loadrub_rr:
    case L4_loadrub_ur:
      BitNum = 8;
      SignEx = false;
      break;
    case L2_loadrhgp:
    case L2_loadrh_io:
    case L2_loadrh_pbr:
    case L2_loadrh_pci:
    case L2_loadrh_pcr:
    case L2_loadrh_pi:
    case PS_loadrhabs:
    case L4_loadrh_ap:
    case L4_loadrh_rr:
    case L4_loadrh_ur:
      BitNum = 16;
      SignEx = true;
      break;
    case L2_loadruhgp:
    case L2_loadruh_io:
    case L2_loadruh_pbr:
    case L2_loadruh_pci:
    case L2_loadruh_pcr:
    case L2_loadruh_pi:
    case L4_loadruh_rr:
    case PS_loadruhabs:
    case L4_loadruh_ap:
    case L4_loadruh_ur:
      BitNum = 16;
      SignEx = false;
      break;
    case L2_loadrigp:
    case L2_loadri_io:
    case L2_loadri_pbr:
    case L2_loadri_pci:
    case L2_loadri_pcr:
    case L2_loadri_pi:
    case L2_loadw_locked:
    case PS_loadriabs:
    case L4_loadri_ap:
    case L4_loadri_rr:
    case L4_loadri_ur:
    case LDriw_pred:
      BitNum = 32;
      SignEx = true;
      break;
    case L2_loadrdgp:
    case L2_loadrd_io:
    case L2_loadrd_pbr:
    case L2_loadrd_pci:
    case L2_loadrd_pcr:
    case L2_loadrd_pi:
    case L4_loadd_locked:
    case PS_loadrdabs:
    case L4_loadrd_ap:
    case L4_loadrd_rr:
    case L4_loadrd_ur:
      BitNum = 64;
      SignEx = true;
      break;
  }
  const MachineOperand &MD = MI.getOperand(0);
  assert(MD.isReg() && MD.isDef());
  RegisterRef RD = MD;
  uint16_t W = getRegBitWidth(RD);
  assert(W >= BitNum && BitNum > 0);
  RegisterCell Res(W);
  for (uint16_t i = 0; i < BitNum; ++i)
    Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
  if (SignEx) {
    const BT::BitValue &Sign = Res[BitNum-1];
    for (uint16_t i = BitNum; i < W; ++i)
      Res[i] = BT::BitValue::ref(Sign);
  } else {
    for (uint16_t i = BitNum; i < W; ++i)
      Res[i] = BT::BitValue::Zero;
  }
  putCell(RD, Res, Outputs);
  return true;
}
bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
                                          const CellMapType &Inputs,
                                          CellMapType &Outputs) const {
  // If MI defines a formal parameter, but is not a copy (loads are handled
  // in evaluateLoad), then it's not clear what to do.
  assert(MI.isCopy());
  RegisterRef RD = MI.getOperand(0);
  RegisterRef RS = MI.getOperand(1);
  assert(RD.Sub == 0);
  if (!RS.Reg.isPhysical())
    return false;
  RegExtMap::const_iterator F = VRX.find(RD.Reg);
  if (F == VRX.end())
    return false;
  uint16_t EW = F->second.Width;
  // Store RD's cell into the map. This will associate the cell with a virtual
  // register, and make zero-/sign-extends possible (otherwise we would be ex-
  // tending "self" bit values, which will have no effect, since "self" values
  // cannot be references to anything).
  putCell(RD, getCell(RS, Inputs), Outputs);
  RegisterCell Res;
  // Read RD's cell from the outputs instead of RS's cell from the inputs:
  if (F->second.Type == ExtType::SExt)
    Res = eSXT(getCell(RD, Outputs), EW);
  else if (F->second.Type == ExtType::ZExt)
    Res = eZXT(getCell(RD, Outputs), EW);
  putCell(RD, Res, Outputs);
  return true;
}
unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
  using namespace Hexagon;
  bool Is64 = DoubleRegsRegClass.contains(PReg);
  assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
  static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
  static const unsigned Phys64[] = { D0, D1, D2 };
  const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
  const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
  // Return the first parameter register of the required width.
  if (PReg == 0)
    return (Width <= 32) ? Phys32[0] : Phys64[0];
  // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
  // next register.
  unsigned Idx32 = 0, Idx64 = 0;
  if (!Is64) {
    while (Idx32 < Num32) {
      if (Phys32[Idx32] == PReg)
        break;
      Idx32++;
    }
    Idx64 = Idx32/2;
  } else {
    while (Idx64 < Num64) {
      if (Phys64[Idx64] == PReg)
        break;
      Idx64++;
    }
    Idx32 = Idx64*2+1;
  }
  if (Width <= 32)
    return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
  return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
}
unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
  for (std::pair<unsigned,unsigned> P : MRI.liveins())
    if (P.first == PReg)
      return P.second;
  return 0;
}
 |