| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 
 | //===-- HexagonISelDAGToDAGHVX.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Hexagon.h"
#include "HexagonISelDAGToDAG.h"
#include "HexagonISelLowering.h"
#include "HexagonTargetMachine.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsHexagon.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cmath>
#include <deque>
#include <functional>
#include <map>
#include <optional>
#include <set>
#include <unordered_map>
#include <utility>
#include <vector>
#define DEBUG_TYPE "hexagon-isel"
using namespace llvm;
namespace {
// --------------------------------------------------------------------
// Implementation of permutation networks.
// Implementation of the node routing through butterfly networks:
// - Forward delta.
// - Reverse delta.
// - Benes.
//
//
// Forward delta network consists of log(N) steps, where N is the number
// of inputs. In each step, an input can stay in place, or it can get
// routed to another position[1]. The step after that consists of two
// networks, each half in size in terms of the number of nodes. In those
// terms, in the given step, an input can go to either the upper or the
// lower network in the next step.
//
// [1] Hexagon's vdelta/vrdelta allow an element to be routed to both
// positions as long as there is no conflict.
// Here's a delta network for 8 inputs, only the switching routes are
// shown:
//
//         Steps:
//         |- 1 ---------------|- 2 -----|- 3 -|
//
// Inp[0] ***                 ***       ***   *** Out[0]
//           \               /   \     /   \ /
//            \             /     \   /     X
//             \           /       \ /     / \
// Inp[1] ***   \         /   ***   X   ***   *** Out[1]
//           \   \       /   /   \ / \ /
//            \   \     /   /     X   X
//             \   \   /   /     / \ / \
// Inp[2] ***   \   \ /   /   ***   X   ***   *** Out[2]
//           \   \   X   /   /     / \     \ /
//            \   \ / \ /   /     /   \     X
//             \   X   X   /     /     \   / \
// Inp[3] ***   \ / \ / \ /   ***       ***   *** Out[3]
//           \   X   X   X   /
//            \ / \ / \ / \ /
//             X   X   X   X
//            / \ / \ / \ / \
//           /   X   X   X   \
// Inp[4] ***   / \ / \ / \   ***       ***   *** Out[4]
//             /   X   X   \     \     /   \ /
//            /   / \ / \   \     \   /     X
//           /   /   X   \   \     \ /     / \
// Inp[5] ***   /   / \   \   ***   X   ***   *** Out[5]
//             /   /   \   \     \ / \ /
//            /   /     \   \     X   X
//           /   /       \   \   / \ / \
// Inp[6] ***   /         \   ***   X   ***   *** Out[6]
//             /           \       / \     \ /
//            /             \     /   \     X
//           /               \   /     \   / \
// Inp[7] ***                 ***       ***   *** Out[7]
//
//
// Reverse delta network is same as delta network, with the steps in
// the opposite order.
//
//
// Benes network is a forward delta network immediately followed by
// a reverse delta network.
enum class ColorKind { None, Red, Black };
// Graph coloring utility used to partition nodes into two groups:
// they will correspond to nodes routed to the upper and lower networks.
struct Coloring {
  using Node = int;
  using MapType = std::map<Node, ColorKind>;
  static constexpr Node Ignore = Node(-1);
  Coloring(ArrayRef<Node> Ord) : Order(Ord) {
    build();
    if (!color())
      Colors.clear();
  }
  const MapType &colors() const {
    return Colors;
  }
  ColorKind other(ColorKind Color) {
    if (Color == ColorKind::None)
      return ColorKind::Red;
    return Color == ColorKind::Red ? ColorKind::Black : ColorKind::Red;
  }
  LLVM_DUMP_METHOD void dump() const;
private:
  ArrayRef<Node> Order;
  MapType Colors;
  std::set<Node> Needed;
  using NodeSet = std::set<Node>;
  std::map<Node,NodeSet> Edges;
  Node conj(Node Pos) {
    Node Num = Order.size();
    return (Pos < Num/2) ? Pos + Num/2 : Pos - Num/2;
  }
  ColorKind getColor(Node N) {
    auto F = Colors.find(N);
    return F != Colors.end() ? F->second : ColorKind::None;
  }
  std::pair<bool, ColorKind> getUniqueColor(const NodeSet &Nodes);
  void build();
  bool color();
};
} // namespace
std::pair<bool, ColorKind> Coloring::getUniqueColor(const NodeSet &Nodes) {
  auto Color = ColorKind::None;
  for (Node N : Nodes) {
    ColorKind ColorN = getColor(N);
    if (ColorN == ColorKind::None)
      continue;
    if (Color == ColorKind::None)
      Color = ColorN;
    else if (Color != ColorKind::None && Color != ColorN)
      return { false, ColorKind::None };
  }
  return { true, Color };
}
void Coloring::build() {
  // Add Order[P] and Order[conj(P)] to Edges.
  for (unsigned P = 0; P != Order.size(); ++P) {
    Node I = Order[P];
    if (I != Ignore) {
      Needed.insert(I);
      Node PC = Order[conj(P)];
      if (PC != Ignore && PC != I)
        Edges[I].insert(PC);
    }
  }
  // Add I and conj(I) to Edges.
  for (unsigned I = 0; I != Order.size(); ++I) {
    if (!Needed.count(I))
      continue;
    Node C = conj(I);
    // This will create an entry in the edge table, even if I is not
    // connected to any other node. This is necessary, because it still
    // needs to be colored.
    NodeSet &Is = Edges[I];
    if (Needed.count(C))
      Is.insert(C);
  }
}
bool Coloring::color() {
  SetVector<Node> FirstQ;
  auto Enqueue = [this,&FirstQ] (Node N) {
    SetVector<Node> Q;
    Q.insert(N);
    for (unsigned I = 0; I != Q.size(); ++I) {
      NodeSet &Ns = Edges[Q[I]];
      Q.insert(Ns.begin(), Ns.end());
    }
    FirstQ.insert(Q.begin(), Q.end());
  };
  for (Node N : Needed)
    Enqueue(N);
  for (Node N : FirstQ) {
    if (Colors.count(N))
      continue;
    NodeSet &Ns = Edges[N];
    auto P = getUniqueColor(Ns);
    if (!P.first)
      return false;
    Colors[N] = other(P.second);
  }
  // First, color nodes that don't have any dups.
  for (auto E : Edges) {
    Node N = E.first;
    if (!Needed.count(conj(N)) || Colors.count(N))
      continue;
    auto P = getUniqueColor(E.second);
    if (!P.first)
      return false;
    Colors[N] = other(P.second);
  }
  // Now, nodes that are still uncolored. Since the graph can be modified
  // in this step, create a work queue.
  std::vector<Node> WorkQ;
  for (auto E : Edges) {
    Node N = E.first;
    if (!Colors.count(N))
      WorkQ.push_back(N);
  }
  for (Node N : WorkQ) {
    NodeSet &Ns = Edges[N];
    auto P = getUniqueColor(Ns);
    if (P.first) {
      Colors[N] = other(P.second);
      continue;
    }
    // Coloring failed. Split this node.
    Node C = conj(N);
    ColorKind ColorN = other(ColorKind::None);
    ColorKind ColorC = other(ColorN);
    NodeSet &Cs = Edges[C];
    NodeSet CopyNs = Ns;
    for (Node M : CopyNs) {
      ColorKind ColorM = getColor(M);
      if (ColorM == ColorC) {
        // Connect M with C, disconnect M from N.
        Cs.insert(M);
        Edges[M].insert(C);
        Ns.erase(M);
        Edges[M].erase(N);
      }
    }
    Colors[N] = ColorN;
    Colors[C] = ColorC;
  }
  // Explicitly assign "None" to all uncolored nodes.
  for (unsigned I = 0; I != Order.size(); ++I)
    if (Colors.count(I) == 0)
      Colors[I] = ColorKind::None;
  return true;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void Coloring::dump() const {
  dbgs() << "{ Order:   {";
  for (Node P : Order) {
    if (P != Ignore)
      dbgs() << ' ' << P;
    else
      dbgs() << " -";
  }
  dbgs() << " }\n";
  dbgs() << "  Needed: {";
  for (Node N : Needed)
    dbgs() << ' ' << N;
  dbgs() << " }\n";
  dbgs() << "  Edges: {\n";
  for (auto E : Edges) {
    dbgs() << "    " << E.first << " -> {";
    for (auto N : E.second)
      dbgs() << ' ' << N;
    dbgs() << " }\n";
  }
  dbgs() << "  }\n";
  auto ColorKindToName = [](ColorKind C) {
    switch (C) {
    case ColorKind::None:
      return "None";
    case ColorKind::Red:
      return "Red";
    case ColorKind::Black:
      return "Black";
    }
    llvm_unreachable("all ColorKinds should be handled by the switch above");
  };
  dbgs() << "  Colors: {\n";
  for (auto C : Colors)
    dbgs() << "    " << C.first << " -> " << ColorKindToName(C.second) << "\n";
  dbgs() << "  }\n}\n";
}
#endif
namespace {
// Base class of for reordering networks. They don't strictly need to be
// permutations, as outputs with repeated occurrences of an input element
// are allowed.
struct PermNetwork {
  using Controls = std::vector<uint8_t>;
  using ElemType = int;
  static constexpr ElemType Ignore = ElemType(-1);
  enum : uint8_t {
    None,
    Pass,
    Switch
  };
  enum : uint8_t {
    Forward,
    Reverse
  };
  PermNetwork(ArrayRef<ElemType> Ord, unsigned Mult = 1) {
    Order.assign(Ord.data(), Ord.data()+Ord.size());
    Log = 0;
    unsigned S = Order.size();
    while (S >>= 1)
      ++Log;
    Table.resize(Order.size());
    for (RowType &Row : Table)
      Row.resize(Mult*Log, None);
  }
  void getControls(Controls &V, unsigned StartAt, uint8_t Dir) const {
    unsigned Size = Order.size();
    V.resize(Size);
    for (unsigned I = 0; I != Size; ++I) {
      unsigned W = 0;
      for (unsigned L = 0; L != Log; ++L) {
        unsigned C = ctl(I, StartAt+L) == Switch;
        if (Dir == Forward)
          W |= C << (Log-1-L);
        else
          W |= C << L;
      }
      assert(isUInt<8>(W));
      V[I] = uint8_t(W);
    }
  }
  uint8_t ctl(ElemType Pos, unsigned Step) const {
    return Table[Pos][Step];
  }
  unsigned size() const {
    return Order.size();
  }
  unsigned steps() const {
    return Log;
  }
protected:
  unsigned Log;
  std::vector<ElemType> Order;
  using RowType = std::vector<uint8_t>;
  std::vector<RowType> Table;
};
struct ForwardDeltaNetwork : public PermNetwork {
  ForwardDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
  bool run(Controls &V) {
    if (!route(Order.data(), Table.data(), size(), 0))
      return false;
    getControls(V, 0, Forward);
    return true;
  }
private:
  bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
};
struct ReverseDeltaNetwork : public PermNetwork {
  ReverseDeltaNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord) {}
  bool run(Controls &V) {
    if (!route(Order.data(), Table.data(), size(), 0))
      return false;
    getControls(V, 0, Reverse);
    return true;
  }
private:
  bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
};
struct BenesNetwork : public PermNetwork {
  BenesNetwork(ArrayRef<ElemType> Ord) : PermNetwork(Ord, 2) {}
  bool run(Controls &F, Controls &R) {
    if (!route(Order.data(), Table.data(), size(), 0))
      return false;
    getControls(F, 0, Forward);
    getControls(R, Log, Reverse);
    return true;
  }
private:
  bool route(ElemType *P, RowType *T, unsigned Size, unsigned Step);
};
} // namespace
bool ForwardDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
                                unsigned Step) {
  bool UseUp = false, UseDown = false;
  ElemType Num = Size;
  // Cannot use coloring here, because coloring is used to determine
  // the "big" switch, i.e. the one that changes halves, and in a forward
  // network, a color can be simultaneously routed to both halves in the
  // step we're working on.
  for (ElemType J = 0; J != Num; ++J) {
    ElemType I = P[J];
    // I is the position in the input,
    // J is the position in the output.
    if (I == Ignore)
      continue;
    uint8_t S;
    if (I < Num/2)
      S = (J < Num/2) ? Pass : Switch;
    else
      S = (J < Num/2) ? Switch : Pass;
    // U is the element in the table that needs to be updated.
    ElemType U = (S == Pass) ? I : (I < Num/2 ? I+Num/2 : I-Num/2);
    if (U < Num/2)
      UseUp = true;
    else
      UseDown = true;
    if (T[U][Step] != S && T[U][Step] != None)
      return false;
    T[U][Step] = S;
  }
  for (ElemType J = 0; J != Num; ++J)
    if (P[J] != Ignore && P[J] >= Num/2)
      P[J] -= Num/2;
  if (Step+1 < Log) {
    if (UseUp   && !route(P,        T,        Size/2, Step+1))
      return false;
    if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
      return false;
  }
  return true;
}
bool ReverseDeltaNetwork::route(ElemType *P, RowType *T, unsigned Size,
                                unsigned Step) {
  unsigned Pets = Log-1 - Step;
  bool UseUp = false, UseDown = false;
  ElemType Num = Size;
  // In this step half-switching occurs, so coloring can be used.
  Coloring G({P,Size});
  const Coloring::MapType &M = G.colors();
  if (M.empty())
    return false;
  ColorKind ColorUp = ColorKind::None;
  for (ElemType J = 0; J != Num; ++J) {
    ElemType I = P[J];
    // I is the position in the input,
    // J is the position in the output.
    if (I == Ignore)
      continue;
    ColorKind C = M.at(I);
    if (C == ColorKind::None)
      continue;
    // During "Step", inputs cannot switch halves, so if the "up" color
    // is still unknown, make sure that it is selected in such a way that
    // "I" will stay in the same half.
    bool InpUp = I < Num/2;
    if (ColorUp == ColorKind::None)
      ColorUp = InpUp ? C : G.other(C);
    if ((C == ColorUp) != InpUp) {
      // If I should go to a different half than where is it now, give up.
      return false;
    }
    uint8_t S;
    if (InpUp) {
      S = (J < Num/2) ? Pass : Switch;
      UseUp = true;
    } else {
      S = (J < Num/2) ? Switch : Pass;
      UseDown = true;
    }
    T[J][Pets] = S;
  }
  // Reorder the working permutation according to the computed switch table
  // for the last step (i.e. Pets).
  for (ElemType J = 0, E = Size / 2; J != E; ++J) {
    ElemType PJ = P[J];         // Current values of P[J]
    ElemType PC = P[J+Size/2];  // and P[conj(J)]
    ElemType QJ = PJ;           // New values of P[J]
    ElemType QC = PC;           // and P[conj(J)]
    if (T[J][Pets] == Switch)
      QC = PJ;
    if (T[J+Size/2][Pets] == Switch)
      QJ = PC;
    P[J] = QJ;
    P[J+Size/2] = QC;
  }
  for (ElemType J = 0; J != Num; ++J)
    if (P[J] != Ignore && P[J] >= Num/2)
      P[J] -= Num/2;
  if (Step+1 < Log) {
    if (UseUp && !route(P, T, Size/2, Step+1))
      return false;
    if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
      return false;
  }
  return true;
}
bool BenesNetwork::route(ElemType *P, RowType *T, unsigned Size,
                         unsigned Step) {
  Coloring G({P,Size});
  const Coloring::MapType &M = G.colors();
  if (M.empty())
    return false;
  ElemType Num = Size;
  unsigned Pets = 2*Log-1 - Step;
  bool UseUp = false, UseDown = false;
  // Both assignments, i.e. Red->Up and Red->Down are valid, but they will
  // result in different controls. Let's pick the one where the first
  // control will be "Pass".
  ColorKind ColorUp = ColorKind::None;
  for (ElemType J = 0; J != Num; ++J) {
    ElemType I = P[J];
    if (I == Ignore)
      continue;
    ColorKind C = M.at(I);
    if (C == ColorKind::None)
      continue;
    if (ColorUp == ColorKind::None) {
      ColorUp = (I < Num / 2) ? ColorKind::Red : ColorKind::Black;
    }
    unsigned CI = (I < Num/2) ? I+Num/2 : I-Num/2;
    if (C == ColorUp) {
      if (I < Num/2)
        T[I][Step] = Pass;
      else
        T[CI][Step] = Switch;
      T[J][Pets] = (J < Num/2) ? Pass : Switch;
      UseUp = true;
    } else { // Down
      if (I < Num/2)
        T[CI][Step] = Switch;
      else
        T[I][Step] = Pass;
      T[J][Pets] = (J < Num/2) ? Switch : Pass;
      UseDown = true;
    }
  }
  // Reorder the working permutation according to the computed switch table
  // for the last step (i.e. Pets).
  for (ElemType J = 0; J != Num/2; ++J) {
    ElemType PJ = P[J];         // Current values of P[J]
    ElemType PC = P[J+Num/2];   // and P[conj(J)]
    ElemType QJ = PJ;           // New values of P[J]
    ElemType QC = PC;           // and P[conj(J)]
    if (T[J][Pets] == Switch)
      QC = PJ;
    if (T[J+Num/2][Pets] == Switch)
      QJ = PC;
    P[J] = QJ;
    P[J+Num/2] = QC;
  }
  for (ElemType J = 0; J != Num; ++J)
    if (P[J] != Ignore && P[J] >= Num/2)
      P[J] -= Num/2;
  if (Step+1 < Log) {
    if (UseUp && !route(P, T, Size/2, Step+1))
      return false;
    if (UseDown && !route(P+Size/2, T+Size/2, Size/2, Step+1))
      return false;
  }
  return true;
}
// --------------------------------------------------------------------
// Support for building selection results (output instructions that are
// parts of the final selection).
namespace {
struct OpRef {
  OpRef(SDValue V) : OpV(V) {}
  bool isValue() const { return OpV.getNode() != nullptr; }
  bool isValid() const { return isValue() || !(OpN & Invalid); }
  bool isUndef() const { return OpN & Undef; }
  static OpRef res(int N) { return OpRef(Whole | (N & Index)); }
  static OpRef fail() { return OpRef(Invalid); }
  static OpRef lo(const OpRef &R) {
    assert(!R.isValue());
    return OpRef(R.OpN & (Undef | Index | LoHalf));
  }
  static OpRef hi(const OpRef &R) {
    assert(!R.isValue());
    return OpRef(R.OpN & (Undef | Index | HiHalf));
  }
  static OpRef undef(MVT Ty) { return OpRef(Undef | Ty.SimpleTy); }
  // Direct value.
  SDValue OpV = SDValue();
  // Reference to the operand of the input node:
  // If the 31st bit is 1, it's undef, otherwise, bits 28..0 are the
  // operand index:
  // If bit 30 is set, it's the high half of the operand.
  // If bit 29 is set, it's the low half of the operand.
  unsigned OpN = 0;
  enum : unsigned {
    Invalid = 0x10000000,
    LoHalf  = 0x20000000,
    HiHalf  = 0x40000000,
    Whole   = LoHalf | HiHalf,
    Undef   = 0x80000000,
    Index   = 0x0FFFFFFF,  // Mask of the index value.
    IndexBits = 28,
  };
  LLVM_DUMP_METHOD
  void print(raw_ostream &OS, const SelectionDAG &G) const;
private:
  OpRef(unsigned N) : OpN(N) {}
};
struct NodeTemplate {
  NodeTemplate() = default;
  unsigned Opc = 0;
  MVT Ty = MVT::Other;
  std::vector<OpRef> Ops;
  LLVM_DUMP_METHOD void print(raw_ostream &OS, const SelectionDAG &G) const;
};
struct ResultStack {
  ResultStack(SDNode *Inp)
    : InpNode(Inp), InpTy(Inp->getValueType(0).getSimpleVT()) {}
  SDNode *InpNode;
  MVT InpTy;
  unsigned push(const NodeTemplate &Res) {
    List.push_back(Res);
    return List.size()-1;
  }
  unsigned push(unsigned Opc, MVT Ty, std::vector<OpRef> &&Ops) {
    NodeTemplate Res;
    Res.Opc = Opc;
    Res.Ty = Ty;
    Res.Ops = Ops;
    return push(Res);
  }
  bool empty() const { return List.empty(); }
  unsigned size() const { return List.size(); }
  unsigned top() const { return size()-1; }
  const NodeTemplate &operator[](unsigned I) const { return List[I]; }
  unsigned reset(unsigned NewTop) {
    List.resize(NewTop+1);
    return NewTop;
  }
  using BaseType = std::vector<NodeTemplate>;
  BaseType::iterator begin() { return List.begin(); }
  BaseType::iterator end()   { return List.end(); }
  BaseType::const_iterator begin() const { return List.begin(); }
  BaseType::const_iterator end() const   { return List.end(); }
  BaseType List;
  LLVM_DUMP_METHOD
  void print(raw_ostream &OS, const SelectionDAG &G) const;
};
} // namespace
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void OpRef::print(raw_ostream &OS, const SelectionDAG &G) const {
  if (isValue()) {
    OpV.getNode()->print(OS, &G);
    return;
  }
  if (OpN & Invalid) {
    OS << "invalid";
    return;
  }
  if (OpN & Undef) {
    OS << "undef";
    return;
  }
  if ((OpN & Whole) != Whole) {
    assert((OpN & Whole) == LoHalf || (OpN & Whole) == HiHalf);
    if (OpN & LoHalf)
      OS << "lo ";
    else
      OS << "hi ";
  }
  OS << '#' << SignExtend32(OpN & Index, IndexBits);
}
void NodeTemplate::print(raw_ostream &OS, const SelectionDAG &G) const {
  const TargetInstrInfo &TII = *G.getSubtarget().getInstrInfo();
  OS << format("%8s", EVT(Ty).getEVTString().c_str()) << "  "
     << TII.getName(Opc);
  bool Comma = false;
  for (const auto &R : Ops) {
    if (Comma)
      OS << ',';
    Comma = true;
    OS << ' ';
    R.print(OS, G);
  }
}
void ResultStack::print(raw_ostream &OS, const SelectionDAG &G) const {
  OS << "Input node:\n";
#ifndef NDEBUG
  InpNode->dumpr(&G);
#endif
  OS << "Result templates:\n";
  for (unsigned I = 0, E = List.size(); I != E; ++I) {
    OS << '[' << I << "] ";
    List[I].print(OS, G);
    OS << '\n';
  }
}
#endif
namespace {
struct ShuffleMask {
  ShuffleMask(ArrayRef<int> M) : Mask(M) {
    for (int M : Mask) {
      if (M == -1)
        continue;
      MinSrc = (MinSrc == -1) ? M : std::min(MinSrc, M);
      MaxSrc = (MaxSrc == -1) ? M : std::max(MaxSrc, M);
    }
  }
  ArrayRef<int> Mask;
  int MinSrc = -1, MaxSrc = -1;
  ShuffleMask lo() const {
    size_t H = Mask.size()/2;
    return ShuffleMask(Mask.take_front(H));
  }
  ShuffleMask hi() const {
    size_t H = Mask.size()/2;
    return ShuffleMask(Mask.take_back(H));
  }
  void print(raw_ostream &OS) const {
    OS << "MinSrc:" << MinSrc << ", MaxSrc:" << MaxSrc << " {";
    for (int M : Mask)
      OS << ' ' << M;
    OS << " }";
  }
};
LLVM_ATTRIBUTE_UNUSED
raw_ostream &operator<<(raw_ostream &OS, const ShuffleMask &SM) {
  SM.print(OS);
  return OS;
}
} // namespace
namespace shuffles {
using MaskT = SmallVector<int, 128>;
// Vdd = vshuffvdd(Vu, Vv, Rt)
// Vdd = vdealvdd(Vu, Vv, Rt)
// Vd  = vpack(Vu, Vv, Size, TakeOdd)
// Vd  = vshuff(Vu, Vv, Size, TakeOdd)
// Vd  = vdeal(Vu, Vv, Size, TakeOdd)
// Vd  = vdealb4w(Vu, Vv)
ArrayRef<int> lo(ArrayRef<int> Vuu) { return Vuu.take_front(Vuu.size() / 2); }
ArrayRef<int> hi(ArrayRef<int> Vuu) { return Vuu.take_back(Vuu.size() / 2); }
MaskT vshuffvdd(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Rt) {
  int Len = Vu.size();
  MaskT Vdd(2 * Len);
  std::copy(Vv.begin(), Vv.end(), Vdd.begin());
  std::copy(Vu.begin(), Vu.end(), Vdd.begin() + Len);
  auto Vd0 = MutableArrayRef<int>(Vdd).take_front(Len);
  auto Vd1 = MutableArrayRef<int>(Vdd).take_back(Len);
  for (int Offset = 1; Offset < Len; Offset *= 2) {
    if ((Rt & Offset) == 0)
      continue;
    for (int i = 0; i != Len; ++i) {
      if ((i & Offset) == 0)
        std::swap(Vd1[i], Vd0[i + Offset]);
    }
  }
  return Vdd;
}
MaskT vdealvdd(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Rt) {
  int Len = Vu.size();
  MaskT Vdd(2 * Len);
  std::copy(Vv.begin(), Vv.end(), Vdd.begin());
  std::copy(Vu.begin(), Vu.end(), Vdd.begin() + Len);
  auto Vd0 = MutableArrayRef<int>(Vdd).take_front(Len);
  auto Vd1 = MutableArrayRef<int>(Vdd).take_back(Len);
  for (int Offset = Len / 2; Offset > 0; Offset /= 2) {
    if ((Rt & Offset) == 0)
      continue;
    for (int i = 0; i != Len; ++i) {
      if ((i & Offset) == 0)
        std::swap(Vd1[i], Vd0[i + Offset]);
    }
  }
  return Vdd;
}
MaskT vpack(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) {
  int Len = Vu.size();
  MaskT Vd(Len);
  auto Odd = static_cast<int>(TakeOdd);
  for (int i = 0, e = Len / (2 * Size); i != e; ++i) {
    for (int b = 0; b != static_cast<int>(Size); ++b) {
      // clang-format off
      Vd[i * Size + b]           = Vv[(2 * i + Odd) * Size + b];
      Vd[i * Size + b + Len / 2] = Vu[(2 * i + Odd) * Size + b];
      // clang-format on
    }
  }
  return Vd;
}
MaskT vshuff(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) {
  int Len = Vu.size();
  MaskT Vd(Len);
  auto Odd = static_cast<int>(TakeOdd);
  for (int i = 0, e = Len / (2 * Size); i != e; ++i) {
    for (int b = 0; b != static_cast<int>(Size); ++b) {
      Vd[(2 * i + 0) * Size + b] = Vv[(2 * i + Odd) * Size + b];
      Vd[(2 * i + 1) * Size + b] = Vu[(2 * i + Odd) * Size + b];
    }
  }
  return Vd;
}
MaskT vdeal(ArrayRef<int> Vu, ArrayRef<int> Vv, unsigned Size, bool TakeOdd) {
  int Len = Vu.size();
  MaskT T = vdealvdd(Vu, Vv, Len - 2 * Size);
  return vpack(hi(T), lo(T), Size, TakeOdd);
}
MaskT vdealb4w(ArrayRef<int> Vu, ArrayRef<int> Vv) {
  int Len = Vu.size();
  MaskT Vd(Len);
  for (int i = 0, e = Len / 4; i != e; ++i) {
    Vd[0 * (Len / 4) + i] = Vv[4 * i + 0];
    Vd[1 * (Len / 4) + i] = Vv[4 * i + 2];
    Vd[2 * (Len / 4) + i] = Vu[4 * i + 0];
    Vd[3 * (Len / 4) + i] = Vu[4 * i + 2];
  }
  return Vd;
}
template <typename ShuffFunc, typename... OptArgs>
auto mask(ShuffFunc S, unsigned Length, OptArgs... args) -> MaskT {
  MaskT Vu(Length), Vv(Length);
  std::iota(Vu.begin(), Vu.end(), Length); // High
  std::iota(Vv.begin(), Vv.end(), 0);      // Low
  return S(Vu, Vv, args...);
}
} // namespace shuffles
// --------------------------------------------------------------------
// The HvxSelector class.
static const HexagonTargetLowering &getHexagonLowering(SelectionDAG &G) {
  return static_cast<const HexagonTargetLowering&>(G.getTargetLoweringInfo());
}
static const HexagonSubtarget &getHexagonSubtarget(SelectionDAG &G) {
  return G.getSubtarget<HexagonSubtarget>();
}
namespace llvm {
  struct HvxSelector {
    const HexagonTargetLowering &Lower;
    HexagonDAGToDAGISel &ISel;
    SelectionDAG &DAG;
    const HexagonSubtarget &HST;
    const unsigned HwLen;
    HvxSelector(HexagonDAGToDAGISel &HS, SelectionDAG &G)
        : Lower(getHexagonLowering(G)), ISel(HS), DAG(G),
          HST(getHexagonSubtarget(G)), HwLen(HST.getVectorLength()) {}
    MVT getSingleVT(MVT ElemTy) const {
      assert(ElemTy != MVT::i1 && "Use getBoolVT for predicates");
      unsigned NumElems = HwLen / (ElemTy.getSizeInBits() / 8);
      return MVT::getVectorVT(ElemTy, NumElems);
    }
    MVT getPairVT(MVT ElemTy) const {
      assert(ElemTy != MVT::i1); // Suspicious: there are no predicate pairs.
      unsigned NumElems = (2 * HwLen) / (ElemTy.getSizeInBits() / 8);
      return MVT::getVectorVT(ElemTy, NumElems);
    }
    MVT getBoolVT() const {
      // Return HwLen x i1.
      return MVT::getVectorVT(MVT::i1, HwLen);
    }
    void selectExtractSubvector(SDNode *N);
    void selectShuffle(SDNode *N);
    void selectRor(SDNode *N);
    void selectVAlign(SDNode *N);
    static SmallVector<uint32_t, 8> getPerfectCompletions(ShuffleMask SM,
                                                          unsigned Width);
    static SmallVector<uint32_t, 8> completeToPerfect(
        ArrayRef<uint32_t> Completions, unsigned Width);
    static std::optional<int> rotationDistance(ShuffleMask SM, unsigned WrapAt);
  private:
    void select(SDNode *ISelN);
    void materialize(const ResultStack &Results);
    SDValue getConst32(int Val, const SDLoc &dl);
    SDValue getVectorConstant(ArrayRef<uint8_t> Data, const SDLoc &dl);
    enum : unsigned {
      None,
      PackMux,
    };
    OpRef concats(OpRef Va, OpRef Vb, ResultStack &Results);
    OpRef funnels(OpRef Va, OpRef Vb, int Amount, ResultStack &Results);
    OpRef packs(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
                MutableArrayRef<int> NewMask, unsigned Options = None);
    OpRef packp(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results,
                MutableArrayRef<int> NewMask);
    OpRef vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
                ResultStack &Results);
    OpRef vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
                ResultStack &Results);
    OpRef shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results);
    OpRef shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
    OpRef shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results);
    OpRef shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
    OpRef butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results);
    OpRef contracting(ShuffleMask SM, OpRef Va, OpRef Vb, ResultStack &Results);
    OpRef expanding(ShuffleMask SM, OpRef Va, ResultStack &Results);
    OpRef perfect(ShuffleMask SM, OpRef Va, ResultStack &Results);
    bool selectVectorConstants(SDNode *N);
    bool scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl, MVT ResTy,
                          SDValue Va, SDValue Vb, SDNode *N);
  };
} // namespace llvm
static void splitMask(ArrayRef<int> Mask, MutableArrayRef<int> MaskL,
                      MutableArrayRef<int> MaskR) {
  unsigned VecLen = Mask.size();
  assert(MaskL.size() == VecLen && MaskR.size() == VecLen);
  for (unsigned I = 0; I != VecLen; ++I) {
    int M = Mask[I];
    if (M < 0) {
      MaskL[I] = MaskR[I] = -1;
    } else if (unsigned(M) < VecLen) {
      MaskL[I] = M;
      MaskR[I] = -1;
    } else {
      MaskL[I] = -1;
      MaskR[I] = M-VecLen;
    }
  }
}
static std::pair<int,unsigned> findStrip(ArrayRef<int> A, int Inc,
                                         unsigned MaxLen) {
  assert(A.size() > 0 && A.size() >= MaxLen);
  int F = A[0];
  int E = F;
  for (unsigned I = 1; I != MaxLen; ++I) {
    if (A[I] - E != Inc)
      return { F, I };
    E = A[I];
  }
  return { F, MaxLen };
}
static bool isUndef(ArrayRef<int> Mask) {
  for (int Idx : Mask)
    if (Idx != -1)
      return false;
  return true;
}
static bool isIdentity(ArrayRef<int> Mask) {
  for (int I = 0, E = Mask.size(); I != E; ++I) {
    int M = Mask[I];
    if (M >= 0 && M != I)
      return false;
  }
  return true;
}
static bool isLowHalfOnly(ArrayRef<int> Mask) {
  int L = Mask.size();
  assert(L % 2 == 0);
  // Check if the second half of the mask is all-undef.
  return llvm::all_of(Mask.drop_front(L / 2), [](int M) { return M < 0; });
}
static SmallVector<unsigned, 4> getInputSegmentList(ShuffleMask SM,
                                                    unsigned SegLen) {
  assert(isPowerOf2_32(SegLen));
  SmallVector<unsigned, 4> SegList;
  if (SM.MaxSrc == -1)
    return SegList;
  unsigned Shift = Log2_32(SegLen);
  BitVector Segs(alignTo(SM.MaxSrc + 1, SegLen) >> Shift);
  for (int M : SM.Mask) {
    if (M >= 0)
      Segs.set(M >> Shift);
  }
  for (unsigned B : Segs.set_bits())
    SegList.push_back(B);
  return SegList;
}
static SmallVector<unsigned, 4> getOutputSegmentMap(ShuffleMask SM,
                                                    unsigned SegLen) {
  // Calculate the layout of the output segments in terms of the input
  // segments.
  // For example [1,3,1,0] means that the output consists of 4 output
  // segments, where the first output segment has only elements of the
  // input segment at index 1. The next output segment only has elements
  // of the input segment 3, etc.
  // If an output segment only has undef elements, the value will be ~0u.
  // If an output segment has elements from more than one input segment,
  // the corresponding value will be ~1u.
  unsigned MaskLen = SM.Mask.size();
  assert(MaskLen % SegLen == 0);
  SmallVector<unsigned, 4> Map(MaskLen / SegLen);
  for (int S = 0, E = Map.size(); S != E; ++S) {
    unsigned Idx = ~0u;
    for (int I = 0; I != static_cast<int>(SegLen); ++I) {
      int M = SM.Mask[S*SegLen + I];
      if (M < 0)
        continue;
      unsigned G = M / SegLen; // Input segment of this element.
      if (Idx == ~0u) {
        Idx = G;
      } else if (Idx != G) {
        Idx = ~1u;
        break;
      }
    }
    Map[S] = Idx;
  }
  return Map;
}
static void packSegmentMask(ArrayRef<int> Mask, ArrayRef<unsigned> OutSegMap,
                            unsigned SegLen, MutableArrayRef<int> PackedMask) {
  SmallVector<unsigned, 4> InvMap;
  for (int I = OutSegMap.size() - 1; I >= 0; --I) {
    unsigned S = OutSegMap[I];
    assert(S != ~0u && "Unexpected undef");
    assert(S != ~1u && "Unexpected multi");
    if (InvMap.size() <= S)
      InvMap.resize(S+1);
    InvMap[S] = I;
  }
  unsigned Shift = Log2_32(SegLen);
  for (int I = 0, E = Mask.size(); I != E; ++I) {
    int M = Mask[I];
    if (M >= 0) {
      int OutIdx = InvMap[M >> Shift];
      M = (M & (SegLen-1)) + SegLen*OutIdx;
    }
    PackedMask[I] = M;
  }
}
bool HvxSelector::selectVectorConstants(SDNode *N) {
  // Constant vectors are generated as loads from constant pools or as
  // splats of a constant value. Since they are generated during the
  // selection process, the main selection algorithm is not aware of them.
  // Select them directly here.
  SmallVector<SDNode*,4> Nodes;
  SetVector<SDNode*> WorkQ;
  // The DAG can change (due to CSE) during selection, so cache all the
  // unselected nodes first to avoid traversing a mutating DAG.
  WorkQ.insert(N);
  for (unsigned i = 0; i != WorkQ.size(); ++i) {
    SDNode *W = WorkQ[i];
    if (!W->isMachineOpcode() && W->getOpcode() == HexagonISD::ISEL)
      Nodes.push_back(W);
    for (unsigned j = 0, f = W->getNumOperands(); j != f; ++j)
      WorkQ.insert(W->getOperand(j).getNode());
  }
  for (SDNode *L : Nodes)
    select(L);
  return !Nodes.empty();
}
void HvxSelector::materialize(const ResultStack &Results) {
  DEBUG_WITH_TYPE("isel", {
    dbgs() << "Materializing\n";
    Results.print(dbgs(), DAG);
  });
  if (Results.empty())
    return;
  const SDLoc &dl(Results.InpNode);
  std::vector<SDValue> Output;
  for (unsigned I = 0, E = Results.size(); I != E; ++I) {
    const NodeTemplate &Node = Results[I];
    std::vector<SDValue> Ops;
    for (const OpRef &R : Node.Ops) {
      assert(R.isValid());
      if (R.isValue()) {
        Ops.push_back(R.OpV);
        continue;
      }
      if (R.OpN & OpRef::Undef) {
        MVT::SimpleValueType SVT = MVT::SimpleValueType(R.OpN & OpRef::Index);
        Ops.push_back(ISel.selectUndef(dl, MVT(SVT)));
        continue;
      }
      // R is an index of a result.
      unsigned Part = R.OpN & OpRef::Whole;
      int Idx = SignExtend32(R.OpN & OpRef::Index, OpRef::IndexBits);
      if (Idx < 0)
        Idx += I;
      assert(Idx >= 0 && unsigned(Idx) < Output.size());
      SDValue Op = Output[Idx];
      MVT OpTy = Op.getValueType().getSimpleVT();
      if (Part != OpRef::Whole) {
        assert(Part == OpRef::LoHalf || Part == OpRef::HiHalf);
        MVT HalfTy = MVT::getVectorVT(OpTy.getVectorElementType(),
                                      OpTy.getVectorNumElements()/2);
        unsigned Sub = (Part == OpRef::LoHalf) ? Hexagon::vsub_lo
                                               : Hexagon::vsub_hi;
        Op = DAG.getTargetExtractSubreg(Sub, dl, HalfTy, Op);
      }
      Ops.push_back(Op);
    } // for (Node : Results)
    assert(Node.Ty != MVT::Other);
    SDNode *ResN = (Node.Opc == TargetOpcode::COPY)
                      ? Ops.front().getNode()
                      : DAG.getMachineNode(Node.Opc, dl, Node.Ty, Ops);
    Output.push_back(SDValue(ResN, 0));
  }
  SDNode *OutN = Output.back().getNode();
  SDNode *InpN = Results.InpNode;
  DEBUG_WITH_TYPE("isel", {
    dbgs() << "Generated node:\n";
    OutN->dumpr(&DAG);
  });
  ISel.ReplaceNode(InpN, OutN);
  selectVectorConstants(OutN);
  DAG.RemoveDeadNodes();
}
OpRef HvxSelector::concats(OpRef Lo, OpRef Hi, ResultStack &Results) {
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
  const SDLoc &dl(Results.InpNode);
  Results.push(TargetOpcode::REG_SEQUENCE, getPairVT(MVT::i8), {
    getConst32(Hexagon::HvxWRRegClassID, dl),
    Lo, getConst32(Hexagon::vsub_lo, dl),
    Hi, getConst32(Hexagon::vsub_hi, dl),
  });
  return OpRef::res(Results.top());
}
OpRef HvxSelector::funnels(OpRef Va, OpRef Vb, int Amount,
                           ResultStack &Results) {
  // Do a funnel shift towards the low end (shift right) by Amount bytes.
  // If Amount < 0, treat it as shift left, i.e. do a shift right by
  // Amount + HwLen.
  auto VecLen = static_cast<int>(HwLen);
  if (Amount == 0)
    return Va;
  if (Amount == VecLen)
    return Vb;
  MVT Ty = getSingleVT(MVT::i8);
  const SDLoc &dl(Results.InpNode);
  if (Amount < 0)
    Amount += VecLen;
  if (Amount > VecLen) {
    Amount -= VecLen;
    std::swap(Va, Vb);
  }
  if (isUInt<3>(Amount)) {
    SDValue A = getConst32(Amount, dl);
    Results.push(Hexagon::V6_valignbi, Ty, {Vb, Va, A});
  } else if (isUInt<3>(VecLen - Amount)) {
    SDValue A = getConst32(VecLen - Amount, dl);
    Results.push(Hexagon::V6_vlalignbi, Ty, {Vb, Va, A});
  } else {
    SDValue A = getConst32(Amount, dl);
    Results.push(Hexagon::A2_tfrsi, Ty, {A});
    Results.push(Hexagon::V6_valignb, Ty, {Vb, Va, OpRef::res(-1)});
  }
  return OpRef::res(Results.top());
}
// Va, Vb are single vectors. If SM only uses two vector halves from Va/Vb,
// pack these halves into a single vector, and remap SM into NewMask to use
// the new vector instead.
OpRef HvxSelector::packs(ShuffleMask SM, OpRef Va, OpRef Vb,
                         ResultStack &Results, MutableArrayRef<int> NewMask,
                         unsigned Options) {
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
  if (!Va.isValid() || !Vb.isValid())
    return OpRef::fail();
  if (Vb.isUndef()) {
    std::copy(SM.Mask.begin(), SM.Mask.end(), NewMask.begin());
    return Va;
  }
  if (Va.isUndef()) {
    std::copy(SM.Mask.begin(), SM.Mask.end(), NewMask.begin());
    ShuffleVectorSDNode::commuteMask(NewMask);
    return Vb;
  }
  MVT Ty = getSingleVT(MVT::i8);
  MVT PairTy = getPairVT(MVT::i8);
  OpRef Inp[2] = {Va, Vb};
  unsigned VecLen = SM.Mask.size();
  auto valign = [this](OpRef Lo, OpRef Hi, unsigned Amt, MVT Ty,
                       ResultStack &Results) {
    if (Amt == 0)
      return Lo;
    const SDLoc &dl(Results.InpNode);
    if (isUInt<3>(Amt) || isUInt<3>(HwLen - Amt)) {
      bool IsRight = isUInt<3>(Amt); // Right align.
      SDValue S = getConst32(IsRight ? Amt : HwLen - Amt, dl);
      unsigned Opc = IsRight ? Hexagon::V6_valignbi : Hexagon::V6_vlalignbi;
      Results.push(Opc, Ty, {Hi, Lo, S});
      return OpRef::res(Results.top());
    }
    Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(Amt, dl)});
    OpRef A = OpRef::res(Results.top());
    Results.push(Hexagon::V6_valignb, Ty, {Hi, Lo, A});
    return OpRef::res(Results.top());
  };
  // Segment is a vector half.
  unsigned SegLen = HwLen / 2;
  // Check if we can shuffle vector halves around to get the used elements
  // into a single vector.
  shuffles::MaskT MaskH(SM.Mask);
  SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, SegLen);
  unsigned SegCount = SegList.size();
  SmallVector<unsigned, 4> SegMap = getOutputSegmentMap(SM.Mask, SegLen);
  if (SegList.empty())
    return OpRef::undef(Ty);
  // NOTE:
  // In the following part of the function, where the segments are rearranged,
  // the shuffle mask SM can be of any length that is a multiple of a vector
  // (i.e. a multiple of 2*SegLen), and non-zero.
  // The output segment map is computed, and it may have any even number of
  // entries, but the rearrangement of input segments will be done based only
  // on the first two (non-undef) entries in the segment map.
  // For example, if the output map is 3, 1, 1, 3 (it can have at most two
  // distinct entries!), the segments 1 and 3 of Va/Vb will be packaged into
  // a single vector V = 3:1. The output mask will then be updated to use
  // seg(0,V), seg(1,V), seg(1,V), seg(0,V).
  //
  // Picking the segments based on the output map is an optimization. For
  // correctness it is only necessary that Seg0 and Seg1 are the two input
  // segments that are used in the output.
  unsigned Seg0 = ~0u, Seg1 = ~0u;
  for (unsigned X : SegMap) {
    if (X == ~0u)
      continue;
    if (Seg0 == ~0u)
      Seg0 = X;
    else if (Seg1 != ~0u)
      break;
    if (X == ~1u || X != Seg0)
      Seg1 = X;
  }
  if (SegCount == 1) {
    unsigned SrcOp = SegList[0] / 2;
    for (int I = 0; I != static_cast<int>(VecLen); ++I) {
      int M = SM.Mask[I];
      if (M >= 0) {
        M -= SrcOp * HwLen;
        assert(M >= 0);
      }
      NewMask[I] = M;
    }
    return Inp[SrcOp];
  }
  if (SegCount == 2) {
    // Seg0 should not be undef here: this would imply a SegList
    // with <= 1 elements, which was checked earlier.
    assert(Seg0 != ~0u);
    // If Seg0 or Seg1 are "multi-defined", pick them from the input
    // segment list instead.
    if (Seg0 == ~1u || Seg1 == ~1u) {
      if (Seg0 == Seg1) {
        Seg0 = SegList[0];
        Seg1 = SegList[1];
      } else if (Seg0 == ~1u) {
        Seg0 = SegList[0] != Seg1 ? SegList[0] : SegList[1];
      } else {
        assert(Seg1 == ~1u);
        Seg1 = SegList[0] != Seg0 ? SegList[0] : SegList[1];
      }
    }
    assert(Seg0 != ~1u && Seg1 != ~1u);
    assert(Seg0 != Seg1 && "Expecting different segments");
    const SDLoc &dl(Results.InpNode);
    Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(SegLen, dl)});
    OpRef HL = OpRef::res(Results.top());
    // Va = AB, Vb = CD
    if (Seg0 / 2 == Seg1 / 2) {
      // Same input vector.
      Va = Inp[Seg0 / 2];
      if (Seg0 > Seg1) {
        // Swap halves.
        Results.push(Hexagon::V6_vror, Ty, {Inp[Seg0 / 2], HL});
        Va = OpRef::res(Results.top());
      }
      packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH);
    } else if (Seg0 % 2 == Seg1 % 2) {
      // Picking AC, BD, CA, or DB.
      // vshuff(CD,AB,HL) -> BD:AC
      // vshuff(AB,CD,HL) -> DB:CA
      auto Vs = (Seg0 == 0 || Seg0 == 1) ? std::make_pair(Vb, Va)  // AC or BD
                                         : std::make_pair(Va, Vb); // CA or DB
      Results.push(Hexagon::V6_vshuffvdd, PairTy, {Vs.first, Vs.second, HL});
      OpRef P = OpRef::res(Results.top());
      Va = (Seg0 == 0 || Seg0 == 2) ? OpRef::lo(P) : OpRef::hi(P);
      packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH);
    } else {
      // Picking AD, BC, CB, or DA.
      if ((Seg0 == 0 && Seg1 == 3) || (Seg0 == 2 && Seg1 == 1)) {
        // AD or BC: this can be done using vmux.
        // Q = V6_pred_scalar2 SegLen
        // V = V6_vmux Q, (Va, Vb) or (Vb, Va)
        Results.push(Hexagon::V6_pred_scalar2, getBoolVT(), {HL});
        OpRef Qt = OpRef::res(Results.top());
        auto Vs = (Seg0 == 0) ? std::make_pair(Va, Vb)  // AD
                              : std::make_pair(Vb, Va); // CB
        Results.push(Hexagon::V6_vmux, Ty, {Qt, Vs.first, Vs.second});
        Va = OpRef::res(Results.top());
        packSegmentMask(SM.Mask, {Seg0, Seg1}, SegLen, MaskH);
      } else {
        // BC or DA: this could be done via valign by SegLen.
        // Do nothing here, because valign (if possible) will be generated
        // later on (make sure the Seg0 values are as expected).
        assert(Seg0 == 1 || Seg0 == 3);
      }
    }
  }
  // Check if the arguments can be packed by valign(Va,Vb) or valign(Vb,Va).
  // FIXME: maybe remove this?
  ShuffleMask SMH(MaskH);
  assert(SMH.Mask.size() == VecLen);
  shuffles::MaskT MaskA(SMH.Mask);
  if (SMH.MaxSrc - SMH.MinSrc >= static_cast<int>(HwLen)) {
    // valign(Lo=Va,Hi=Vb) won't work. Try swapping Va/Vb.
    shuffles::MaskT Swapped(SMH.Mask);
    ShuffleVectorSDNode::commuteMask(Swapped);
    ShuffleMask SW(Swapped);
    if (SW.MaxSrc - SW.MinSrc < static_cast<int>(HwLen)) {
      MaskA.assign(SW.Mask.begin(), SW.Mask.end());
      std::swap(Va, Vb);
    }
  }
  ShuffleMask SMA(MaskA);
  assert(SMA.Mask.size() == VecLen);
  if (SMA.MaxSrc - SMA.MinSrc < static_cast<int>(HwLen)) {
    int ShiftR = SMA.MinSrc;
    if (ShiftR >= static_cast<int>(HwLen)) {
      Va = Vb;
      Vb = OpRef::undef(Ty);
      ShiftR -= HwLen;
    }
    OpRef RetVal = valign(Va, Vb, ShiftR, Ty, Results);
    for (int I = 0; I != static_cast<int>(VecLen); ++I) {
      int M = SMA.Mask[I];
      if (M != -1)
        M -= SMA.MinSrc;
      NewMask[I] = M;
    }
    return RetVal;
  }
  // By here, packing by segment (half-vector) shuffling, and vector alignment
  // failed. Try vmux.
  // Note: since this is using the original mask, Va and Vb must not have been
  // modified.
  if (Options & PackMux) {
    // If elements picked from Va and Vb have all different (source) indexes
    // (relative to the start of the argument), do a mux, and update the mask.
    BitVector Picked(HwLen);
    SmallVector<uint8_t,128> MuxBytes(HwLen);
    bool CanMux = true;
    for (int I = 0; I != static_cast<int>(VecLen); ++I) {
      int M = SM.Mask[I];
      if (M == -1)
        continue;
      if (M >= static_cast<int>(HwLen))
        M -= HwLen;
      else
        MuxBytes[M] = 0xFF;
      if (Picked[M]) {
        CanMux = false;
        break;
      }
      NewMask[I] = M;
    }
    if (CanMux)
      return vmuxs(MuxBytes, Va, Vb, Results);
  }
  return OpRef::fail();
}
// Va, Vb are vector pairs. If SM only uses two single vectors from Va/Vb,
// pack these vectors into a pair, and remap SM into NewMask to use the
// new pair instead.
OpRef HvxSelector::packp(ShuffleMask SM, OpRef Va, OpRef Vb,
                         ResultStack &Results, MutableArrayRef<int> NewMask) {
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
  SmallVector<unsigned, 4> SegList = getInputSegmentList(SM.Mask, HwLen);
  if (SegList.empty())
    return OpRef::undef(getPairVT(MVT::i8));
  // If more than two halves are used, bail.
  // TODO: be more aggressive here?
  unsigned SegCount = SegList.size();
  if (SegCount > 2)
    return OpRef::fail();
  MVT HalfTy = getSingleVT(MVT::i8);
  OpRef Inp[2] = { Va, Vb };
  OpRef Out[2] = { OpRef::undef(HalfTy), OpRef::undef(HalfTy) };
  // Really make sure we have at most 2 vectors used in the mask.
  assert(SegCount <= 2);
  for (int I = 0, E = SegList.size(); I != E; ++I) {
    unsigned S = SegList[I];
    OpRef Op = Inp[S / 2];
    Out[I] = (S & 1) ? OpRef::hi(Op) : OpRef::lo(Op);
  }
  // NOTE: Using SegList as the packing map here (not SegMap). This works,
  // because we're not concerned here about the order of the segments (i.e.
  // single vectors) in the output pair. Changing the order of vectors is
  // free (as opposed to changing the order of vector halves as in packs),
  // and so there is no extra cost added in case the order needs to be
  // changed later.
  packSegmentMask(SM.Mask, SegList, HwLen, NewMask);
  return concats(Out[0], Out[1], Results);
}
OpRef HvxSelector::vmuxs(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
                         ResultStack &Results) {
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
  MVT ByteTy = getSingleVT(MVT::i8);
  MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
  const SDLoc &dl(Results.InpNode);
  SDValue B = getVectorConstant(Bytes, dl);
  Results.push(Hexagon::V6_vd0, ByteTy, {});
  Results.push(Hexagon::V6_veqb, BoolTy, {OpRef(B), OpRef::res(-1)});
  Results.push(Hexagon::V6_vmux, ByteTy, {OpRef::res(-1), Vb, Va});
  return OpRef::res(Results.top());
}
OpRef HvxSelector::vmuxp(ArrayRef<uint8_t> Bytes, OpRef Va, OpRef Vb,
                         ResultStack &Results) {
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
  size_t S = Bytes.size() / 2;
  OpRef L = vmuxs(Bytes.take_front(S), OpRef::lo(Va), OpRef::lo(Vb), Results);
  OpRef H = vmuxs(Bytes.drop_front(S), OpRef::hi(Va), OpRef::hi(Vb), Results);
  return concats(L, H, Results);
}
OpRef HvxSelector::shuffs1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
  unsigned VecLen = SM.Mask.size();
  assert(HwLen == VecLen);
  (void)VecLen;
  assert(all_of(SM.Mask, [this](int M) { return M == -1 || M < int(HwLen); }));
  if (isIdentity(SM.Mask))
    return Va;
  if (isUndef(SM.Mask))
    return OpRef::undef(getSingleVT(MVT::i8));
  // First, check for rotations.
  if (auto Dist = rotationDistance(SM, VecLen)) {
    OpRef Rotate = funnels(Va, Va, *Dist, Results);
    if (Rotate.isValid())
      return Rotate;
  }
  unsigned HalfLen = HwLen / 2;
  assert(isPowerOf2_32(HalfLen));
  // Handle special case where the output is the same half of the input
  // repeated twice, i.e. if Va = AB, then handle the output of AA or BB.
  std::pair<int, unsigned> Strip1 = findStrip(SM.Mask, 1, HalfLen);
  if ((Strip1.first & ~HalfLen) == 0 && Strip1.second == HalfLen) {
    std::pair<int, unsigned> Strip2 =
        findStrip(SM.Mask.drop_front(HalfLen), 1, HalfLen);
    if (Strip1 == Strip2) {
      const SDLoc &dl(Results.InpNode);
      Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(HalfLen, dl)});
      Results.push(Hexagon::V6_vshuffvdd, getPairVT(MVT::i8),
                   {Va, Va, OpRef::res(Results.top())});
      OpRef S = OpRef::res(Results.top());
      return (Strip1.first == 0) ? OpRef::lo(S) : OpRef::hi(S);
    }
  }
  OpRef P = perfect(SM, Va, Results);
  if (P.isValid())
    return P;
  return butterfly(SM, Va, Results);
}
OpRef HvxSelector::shuffs2(ShuffleMask SM, OpRef Va, OpRef Vb,
                           ResultStack &Results) {
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
  if (isUndef(SM.Mask))
    return OpRef::undef(getSingleVT(MVT::i8));
  OpRef C = contracting(SM, Va, Vb, Results);
  if (C.isValid())
    return C;
  int VecLen = SM.Mask.size();
  shuffles::MaskT PackedMask(VecLen);
  OpRef P = packs(SM, Va, Vb, Results, PackedMask);
  if (P.isValid())
    return shuffs1(ShuffleMask(PackedMask), P, Results);
  // TODO: Before we split the mask, try perfect shuffle on concatenated
  // operands.
  shuffles::MaskT MaskL(VecLen), MaskR(VecLen);
  splitMask(SM.Mask, MaskL, MaskR);
  OpRef L = shuffs1(ShuffleMask(MaskL), Va, Results);
  OpRef R = shuffs1(ShuffleMask(MaskR), Vb, Results);
  if (!L.isValid() || !R.isValid())
    return OpRef::fail();
  SmallVector<uint8_t, 128> Bytes(VecLen);
  for (int I = 0; I != VecLen; ++I) {
    if (MaskL[I] != -1)
      Bytes[I] = 0xFF;
  }
  return vmuxs(Bytes, L, R, Results);
}
OpRef HvxSelector::shuffp1(ShuffleMask SM, OpRef Va, ResultStack &Results) {
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
  int VecLen = SM.Mask.size();
  if (isIdentity(SM.Mask))
    return Va;
  if (isUndef(SM.Mask))
    return OpRef::undef(getPairVT(MVT::i8));
  shuffles::MaskT PackedMask(VecLen);
  OpRef P = packs(SM, OpRef::lo(Va), OpRef::hi(Va), Results, PackedMask);
  if (P.isValid()) {
    ShuffleMask PM(PackedMask);
    OpRef E = expanding(PM, P, Results);
    if (E.isValid())
      return E;
    OpRef L = shuffs1(PM.lo(), P, Results);
    OpRef H = shuffs1(PM.hi(), P, Results);
    if (L.isValid() && H.isValid())
      return concats(L, H, Results);
  }
  if (!isLowHalfOnly(SM.Mask)) {
    // Doing a perfect shuffle on a low-half mask (i.e. where the upper half
    // is all-undef) may produce a perfect shuffle that generates legitimate
    // upper half. This isn't wrong, but if the perfect shuffle was possible,
    // then there is a good chance that a shorter (contracting) code may be
    // used as well (e.g. V6_vshuffeb, etc).
    OpRef R = perfect(SM, Va, Results);
    if (R.isValid())
      return R;
    // TODO commute the mask and try the opposite order of the halves.
  }
  OpRef L = shuffs2(SM.lo(), OpRef::lo(Va), OpRef::hi(Va), Results);
  OpRef H = shuffs2(SM.hi(), OpRef::lo(Va), OpRef::hi(Va), Results);
  if (L.isValid() && H.isValid())
    return concats(L, H, Results);
  return OpRef::fail();
}
OpRef HvxSelector::shuffp2(ShuffleMask SM, OpRef Va, OpRef Vb,
                           ResultStack &Results) {
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
  if (isUndef(SM.Mask))
    return OpRef::undef(getPairVT(MVT::i8));
  int VecLen = SM.Mask.size();
  SmallVector<int,256> PackedMask(VecLen);
  OpRef P = packp(SM, Va, Vb, Results, PackedMask);
  if (P.isValid())
    return shuffp1(ShuffleMask(PackedMask), P, Results);
  SmallVector<int,256> MaskL(VecLen), MaskR(VecLen);
  splitMask(SM.Mask, MaskL, MaskR);
  OpRef L = shuffp1(ShuffleMask(MaskL), Va, Results);
  OpRef R = shuffp1(ShuffleMask(MaskR), Vb, Results);
  if (!L.isValid() || !R.isValid())
    return OpRef::fail();
  // Mux the results.
  SmallVector<uint8_t,256> Bytes(VecLen);
  for (int I = 0; I != VecLen; ++I) {
    if (MaskL[I] != -1)
      Bytes[I] = 0xFF;
  }
  return vmuxp(Bytes, L, R, Results);
}
namespace {
  struct Deleter : public SelectionDAG::DAGNodeDeletedListener {
    template <typename T>
    Deleter(SelectionDAG &D, T &C)
      : SelectionDAG::DAGNodeDeletedListener(D, [&C] (SDNode *N, SDNode *E) {
                                                  C.erase(N);
                                                }) {}
  };
  template <typename T>
  struct NullifyingVector : public T {
    DenseMap<SDNode*, SDNode**> Refs;
    NullifyingVector(T &&V) : T(V) {
      for (unsigned i = 0, e = T::size(); i != e; ++i) {
        SDNode *&N = T::operator[](i);
        Refs[N] = &N;
      }
    }
    void erase(SDNode *N) {
      auto F = Refs.find(N);
      if (F != Refs.end())
        *F->second = nullptr;
    }
  };
}
void HvxSelector::select(SDNode *ISelN) {
  // What's important here is to select the right set of nodes. The main
  // selection algorithm loops over nodes in a topological order, i.e. users
  // are visited before their operands.
  //
  // It is an error to have an unselected node with a selected operand, and
  // there is an assertion in the main selector code to enforce that.
  //
  // Such a situation could occur if we selected a node, which is both a
  // subnode of ISelN, and a subnode of an unrelated (and yet unselected)
  // node in the DAG.
  assert(ISelN->getOpcode() == HexagonISD::ISEL);
  SDNode *N0 = ISelN->getOperand(0).getNode();
  // There could have been nodes created (i.e. inserted into the DAG)
  // that are now dead. Remove them, in case they use any of the nodes
  // to select (and make them look shared).
  DAG.RemoveDeadNodes();
  SetVector<SDNode *> SubNodes;
  if (!N0->isMachineOpcode()) {
    // Don't want to select N0 if it's shared with another node, except if
    // it's shared with other ISELs.
    auto IsISelN = [](SDNode *T) { return T->getOpcode() == HexagonISD::ISEL; };
    if (llvm::all_of(N0->uses(), IsISelN))
      SubNodes.insert(N0);
  }
  if (SubNodes.empty()) {
    ISel.ReplaceNode(ISelN, N0);
    return;
  }
  // Need to manually select the nodes that are dominated by the ISEL. Other
  // nodes are reachable from the rest of the DAG, and so will be selected
  // by the DAG selection routine.
  SetVector<SDNode*> Dom, NonDom;
  Dom.insert(N0);
  auto IsDomRec = [&Dom, &NonDom] (SDNode *T, auto Rec) -> bool {
    if (Dom.count(T))
      return true;
    if (T->use_empty() || NonDom.count(T))
      return false;
    for (SDNode *U : T->uses()) {
      // If T is reachable from a known non-dominated node, then T itself
      // is non-dominated.
      if (!Rec(U, Rec)) {
        NonDom.insert(T);
        return false;
      }
    }
    Dom.insert(T);
    return true;
  };
  auto IsDom = [&IsDomRec] (SDNode *T) { return IsDomRec(T, IsDomRec); };
  // Add the rest of nodes dominated by ISEL to SubNodes.
  for (unsigned I = 0; I != SubNodes.size(); ++I) {
    for (SDValue Op : SubNodes[I]->ops()) {
      SDNode *O = Op.getNode();
      if (IsDom(O))
        SubNodes.insert(O);
    }
  }
  // Do a topological sort of nodes from Dom.
  SetVector<SDNode*> TmpQ;
  std::map<SDNode *, unsigned> OpCount;
  for (SDNode *T : Dom) {
    unsigned NumDomOps = llvm::count_if(T->ops(), [&Dom](const SDUse &U) {
                             return Dom.count(U.getNode());
                           });
    OpCount.insert({T, NumDomOps});
    if (NumDomOps == 0)
      TmpQ.insert(T);
  }
  for (unsigned I = 0; I != TmpQ.size(); ++I) {
    SDNode *S = TmpQ[I];
    for (SDNode *U : S->uses()) {
      if (U == ISelN)
        continue;
      auto F = OpCount.find(U);
      assert(F != OpCount.end());
      if (F->second > 0 && !--F->second)
        TmpQ.insert(F->first);
    }
  }
  // Remove the marker.
  ISel.ReplaceNode(ISelN, N0);
  assert(SubNodes.size() == TmpQ.size());
  NullifyingVector<decltype(TmpQ)::vector_type> Queue(TmpQ.takeVector());
  Deleter DUQ(DAG, Queue);
  for (SDNode *S : reverse(Queue)) {
    if (S == nullptr)
      continue;
    DEBUG_WITH_TYPE("isel", {dbgs() << "HVX selecting: "; S->dump(&DAG);});
    ISel.Select(S);
  }
}
bool HvxSelector::scalarizeShuffle(ArrayRef<int> Mask, const SDLoc &dl,
                                   MVT ResTy, SDValue Va, SDValue Vb,
                                   SDNode *N) {
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
  MVT ElemTy = ResTy.getVectorElementType();
  assert(ElemTy == MVT::i8);
  unsigned VecLen = Mask.size();
  bool HavePairs = (2*HwLen == VecLen);
  MVT SingleTy = getSingleVT(MVT::i8);
  // The prior attempts to handle this shuffle may have left a bunch of
  // dead nodes in the DAG (such as constants). These nodes will be added
  // at the end of DAG's node list, which at that point had already been
  // sorted topologically. In the main selection loop, the node list is
  // traversed backwards from the root node, which means that any new
  // nodes (from the end of the list) will not be visited.
  // Scalarization will replace the shuffle node with the scalarized
  // expression, and if that expression reused any if the leftoever (dead)
  // nodes, these nodes would not be selected (since the "local" selection
  // only visits nodes that are not in AllNodes).
  // To avoid this issue, remove all dead nodes from the DAG now.
//  DAG.RemoveDeadNodes();
  SmallVector<SDValue,128> Ops;
  LLVMContext &Ctx = *DAG.getContext();
  MVT LegalTy = Lower.getTypeToTransformTo(Ctx, ElemTy).getSimpleVT();
  for (int I : Mask) {
    if (I < 0) {
      Ops.push_back(ISel.selectUndef(dl, LegalTy));
      continue;
    }
    SDValue Vec;
    unsigned M = I;
    if (M < VecLen) {
      Vec = Va;
    } else {
      Vec = Vb;
      M -= VecLen;
    }
    if (HavePairs) {
      if (M < HwLen) {
        Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, Vec);
      } else {
        Vec = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, Vec);
        M -= HwLen;
      }
    }
    SDValue Idx = DAG.getConstant(M, dl, MVT::i32);
    SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, LegalTy, {Vec, Idx});
    SDValue L = Lower.LowerOperation(Ex, DAG);
    assert(L.getNode());
    Ops.push_back(L);
  }
  SDValue LV;
  if (2*HwLen == VecLen) {
    SDValue B0 = DAG.getBuildVector(SingleTy, dl, {Ops.data(), HwLen});
    SDValue L0 = Lower.LowerOperation(B0, DAG);
    SDValue B1 = DAG.getBuildVector(SingleTy, dl, {Ops.data()+HwLen, HwLen});
    SDValue L1 = Lower.LowerOperation(B1, DAG);
    // XXX CONCAT_VECTORS is legal for HVX vectors. Legalizing (lowering)
    // functions may expect to be called only for illegal operations, so
    // make sure that they are not called for legal ones. Develop a better
    // mechanism for dealing with this.
    LV = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, {L0, L1});
  } else {
    SDValue BV = DAG.getBuildVector(ResTy, dl, Ops);
    LV = Lower.LowerOperation(BV, DAG);
  }
  assert(!N->use_empty());
  SDValue IS = DAG.getNode(HexagonISD::ISEL, dl, ResTy, LV);
  ISel.ReplaceNode(N, IS.getNode());
  select(IS.getNode());
  DAG.RemoveDeadNodes();
  return true;
}
SmallVector<uint32_t, 8> HvxSelector::getPerfectCompletions(ShuffleMask SM,
                                                            unsigned Width) {
  auto possibilities = [](ArrayRef<uint8_t> Bs, unsigned Width) -> uint32_t {
    unsigned Impossible = ~(1u << Width) + 1;
    for (unsigned I = 0, E = Bs.size(); I != E; ++I) {
      uint8_t B = Bs[I];
      if (B == 0xff)
        continue;
      if (~Impossible == 0)
        break;
      for (unsigned Log = 0; Log != Width; ++Log) {
        if (Impossible & (1u << Log))
          continue;
        unsigned Expected = (I >> Log) % 2;
        if (B != Expected)
          Impossible |= (1u << Log);
      }
    }
    return ~Impossible;
  };
  SmallVector<uint32_t, 8> Worklist(Width);
  for (unsigned BitIdx = 0; BitIdx != Width; ++BitIdx) {
    SmallVector<uint8_t> BitValues(SM.Mask.size());
    for (int i = 0, e = SM.Mask.size(); i != e; ++i) {
      int M = SM.Mask[i];
      if (M < 0)
        BitValues[i] = 0xff;
      else
        BitValues[i] = (M & (1u << BitIdx)) != 0;
    }
    Worklist[BitIdx] = possibilities(BitValues, Width);
  }
  // If there is a word P in Worklist that matches multiple possibilities,
  // then if any other word Q matches any of the possibilities matched by P,
  // then Q matches all the possibilities matched by P. In fact, P == Q.
  // In other words, for each words P, Q, the sets of possibilities matched
  // by P and Q are either equal or disjoint (no partial overlap).
  //
  // Illustration: For 4-bit values there are 4 complete sequences:
  // a:  0 1 0 1  0 1 0 1  0 1 0 1  0 1 0 1
  // b:  0 0 1 1  0 0 1 1  0 0 1 1  0 0 1 1
  // c:  0 0 0 0  1 1 1 1  0 0 0 0  1 1 1 1
  // d:  0 0 0 0  0 0 0 0  1 1 1 1  1 1 1 1
  //
  // Words containing unknown bits that match two of the complete
  // sequences:
  // ab: 0 u u 1  0 u u 1  0 u u 1  0 u u 1
  // ac: 0 u 0 u  u 1 u 1  0 u 0 u  u 1 u 1
  // ad: 0 u 0 u  0 u 0 u  u 1 u 1  u 1 u 1
  // bc: 0 0 u u  u u 1 1  0 0 u u  u u 1 1
  // bd: 0 0 u u  0 0 u u  u u 1 1  u u 1 1
  // cd: 0 0 0 0  u u u u  u u u u  1 1 1 1
  //
  // Proof of the claim above:
  // Let P be a word that matches s0 and s1. For that to happen, all known
  // bits in P must match s0 and s1 exactly.
  // Assume there is Q that matches s1. Note that since P and Q came from
  // the same shuffle mask, the positions of unknown bits in P and Q match
  // exactly, which makes the indices of known bits be exactly the same
  // between P and Q. Since P matches s0 and s1, the known bits of P much
  // match both s0 and s1. Also, since Q matches s1, the known bits in Q
  // are exactly the same as in s1, which means that they are exactly the
  // same as in P. This implies that P == Q.
  // There can be a situation where there are more entries with the same
  // bits set than there are set bits (e.g. value 9 occuring more than 2
  // times). In such cases it will be impossible to complete this to a
  // perfect shuffle.
  SmallVector<uint32_t, 8> Sorted(Worklist);
  llvm::sort(Sorted.begin(), Sorted.end());
  for (unsigned I = 0, E = Sorted.size(); I != E;) {
    unsigned P = Sorted[I], Count = 1;
    while (++I != E && P == Sorted[I])
      ++Count;
    if ((unsigned)llvm::popcount(P) < Count) {
      // Reset all occurences of P, if there are more occurrences of P
      // than there are bits in P.
      for (unsigned &Q : Worklist) {
        if (Q == P)
          Q = 0;
      }
    }
  }
  return Worklist;
}
SmallVector<uint32_t, 8>
HvxSelector::completeToPerfect(ArrayRef<uint32_t> Completions, unsigned Width) {
  // Pick a completion if there are multiple possibilities. For now just
  // select any valid completion.
  SmallVector<uint32_t, 8> Comps(Completions);
  for (unsigned I = 0; I != Width; ++I) {
    uint32_t P = Comps[I];
    assert(P != 0);
    if (isPowerOf2_32(P))
      continue;
    // T = least significant bit of P.
    uint32_t T = P ^ ((P - 1) & P);
    // Clear T in all remaining words matching P.
    for (unsigned J = I + 1; J != Width; ++J) {
      if (Comps[J] == P)
        Comps[J] ^= T;
    }
    Comps[I] = T;
  }
#ifndef NDEBUG
  // Check that we have generated a valid completion.
  uint32_t OrAll = 0;
  for (uint32_t C : Comps) {
    assert(isPowerOf2_32(C));
    OrAll |= C;
  }
  assert(OrAll == (1u << Width) -1);
#endif
  return Comps;
}
std::optional<int> HvxSelector::rotationDistance(ShuffleMask SM,
                                                 unsigned WrapAt) {
  std::optional<int> Dist;
  for (int I = 0, E = SM.Mask.size(); I != E; ++I) {
    int M = SM.Mask[I];
    if (M < 0)
      continue;
    if (Dist) {
      if ((I + *Dist) % static_cast<int>(WrapAt) != M)
        return std::nullopt;
    } else {
      // Integer a%b operator assumes rounding towards zero by /, so it
      // "misbehaves" when a crosses 0 (the remainder also changes sign).
      // Add WrapAt in an attempt to keep I+Dist non-negative.
      Dist = M - I;
      if (Dist < 0)
        Dist = *Dist + WrapAt;
    }
  }
  return Dist;
}
OpRef HvxSelector::contracting(ShuffleMask SM, OpRef Va, OpRef Vb,
                               ResultStack &Results) {
  DEBUG_WITH_TYPE("isel", { dbgs() << __func__ << '\n'; });
  if (!Va.isValid() || !Vb.isValid())
    return OpRef::fail();
  // Contracting shuffles, i.e. instructions that always discard some bytes
  // from the operand vectors.
  //
  // Funnel shifts
  // V6_vshuff{e,o}b
  // V6_vshuf{e,o}h
  // V6_vdealb4w
  // V6_vpack{e,o}{b,h}
  int VecLen = SM.Mask.size();
  // First, check for funnel shifts.
  if (auto Dist = rotationDistance(SM, 2 * VecLen)) {
    OpRef Funnel = funnels(Va, Vb, *Dist, Results);
    if (Funnel.isValid())
      return Funnel;
  }
  MVT SingleTy = getSingleVT(MVT::i8);
  MVT PairTy = getPairVT(MVT::i8);
  auto same = [](ArrayRef<int> Mask1, ArrayRef<int> Mask2) -> bool {
    return Mask1 == Mask2;
  };
  using PackConfig = std::pair<unsigned, bool>;
  PackConfig Packs[] = {
      {1, false}, // byte, even
      {1, true},  // byte, odd
      {2, false}, // half, even
      {2, true},  // half, odd
  };
  { // Check vpack
    unsigned Opcodes[] = {
        Hexagon::V6_vpackeb,
        Hexagon::V6_vpackob,
        Hexagon::V6_vpackeh,
        Hexagon::V6_vpackoh,
    };
    for (int i = 0, e = std::size(Opcodes); i != e; ++i) {
      auto [Size, Odd] = Packs[i];
      if (same(SM.Mask, shuffles::mask(shuffles::vpack, HwLen, Size, Odd))) {
        Results.push(Opcodes[i], SingleTy, {Vb, Va});
        return OpRef::res(Results.top());
      }
    }
  }
  { // Check vshuff
    unsigned Opcodes[] = {
        Hexagon::V6_vshuffeb,
        Hexagon::V6_vshuffob,
        Hexagon::V6_vshufeh,
        Hexagon::V6_vshufoh,
    };
    for (int i = 0, e = std::size(Opcodes); i != e; ++i) {
      auto [Size, Odd] = Packs[i];
      if (same(SM.Mask, shuffles::mask(shuffles::vshuff, HwLen, Size, Odd))) {
        Results.push(Opcodes[i], SingleTy, {Vb, Va});
        return OpRef::res(Results.top());
      }
    }
  }
  { // Check vdeal
    // There is no "V6_vdealeb", etc, but the supposed behavior of vdealeb
    // is equivalent to "(V6_vpackeb (V6_vdealvdd Vu, Vv, -2))". Other such
    // variants of "deal" can be done similarly.
    unsigned Opcodes[] = {
        Hexagon::V6_vpackeb,
        Hexagon::V6_vpackob,
        Hexagon::V6_vpackeh,
        Hexagon::V6_vpackoh,
    };
    const SDLoc &dl(Results.InpNode);
    for (int i = 0, e = std::size(Opcodes); i != e; ++i) {
      auto [Size, Odd] = Packs[i];
      if (same(SM.Mask, shuffles::mask(shuffles::vdeal, HwLen, Size, Odd))) {
        Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(-2 * Size, dl)});
        Results.push(Hexagon::V6_vdealvdd, PairTy, {Vb, Va, OpRef::res(-1)});
        auto vdeal = OpRef::res(Results.top());
        Results.push(Opcodes[i], SingleTy,
                     {OpRef::hi(vdeal), OpRef::lo(vdeal)});
        return OpRef::res(Results.top());
      }
    }
  }
  if (same(SM.Mask, shuffles::mask(shuffles::vdealb4w, HwLen))) {
    Results.push(Hexagon::V6_vdealb4w, SingleTy, {Vb, Va});
    return OpRef::res(Results.top());
  }
  return OpRef::fail();
}
OpRef HvxSelector::expanding(ShuffleMask SM, OpRef Va, ResultStack &Results) {
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
  // Expanding shuffles (using all elements and inserting into larger vector):
  //
  // V6_vunpacku{b,h} [*]
  //
  // [*] Only if the upper elements (filled with 0s) are "don't care" in Mask.
  //
  // Note: V6_vunpacko{b,h} are or-ing the high byte/half in the result, so
  // they are not shuffles.
  //
  // The argument is a single vector.
  int VecLen = SM.Mask.size();
  assert(2*HwLen == unsigned(VecLen) && "Expecting vector-pair type");
  std::pair<int,unsigned> Strip = findStrip(SM.Mask, 1, VecLen);
  // The patterns for the unpacks, in terms of the starting offsets of the
  // consecutive strips (L = length of the strip, N = VecLen):
  //
  // vunpacku:  0, -1, L, -1, 2L, -1 ...
  if (Strip.first != 0)
    return OpRef::fail();
  // The vunpackus only handle byte and half-word.
  if (Strip.second != 1 && Strip.second != 2)
    return OpRef::fail();
  int N = VecLen;
  int L = Strip.second;
  // First, check the non-ignored strips.
  for (int I = 2*L; I < N; I += 2*L) {
    auto S = findStrip(SM.Mask.drop_front(I), 1, N-I);
    if (S.second != unsigned(L))
      return OpRef::fail();
    if (2*S.first != I)
      return OpRef::fail();
  }
  // Check the -1s.
  for (int I = L; I < N; I += 2*L) {
    auto S = findStrip(SM.Mask.drop_front(I), 0, N-I);
    if (S.first != -1 || S.second != unsigned(L))
      return OpRef::fail();
  }
  unsigned Opc = Strip.second == 1 ? Hexagon::V6_vunpackub
                                   : Hexagon::V6_vunpackuh;
  Results.push(Opc, getPairVT(MVT::i8), {Va});
  return OpRef::res(Results.top());
}
OpRef HvxSelector::perfect(ShuffleMask SM, OpRef Va, ResultStack &Results) {
  DEBUG_WITH_TYPE("isel", { dbgs() << __func__ << '\n'; });
  // V6_vdeal{b,h}
  // V6_vshuff{b,h}
  // V6_vshufoe{b,h}  those are quivalent to vshuffvdd(..,{1,2})
  // V6_vshuffvdd (V6_vshuff)
  // V6_dealvdd (V6_vdeal)
  int VecLen = SM.Mask.size();
  assert(isPowerOf2_32(VecLen) && Log2_32(VecLen) <= 8);
  unsigned LogLen = Log2_32(VecLen);
  unsigned HwLog = Log2_32(HwLen);
  // The result length must be the same as the length of a single vector,
  // or a vector pair.
  assert(LogLen == HwLog || LogLen == HwLog + 1);
  bool HavePairs = LogLen == HwLog + 1;
  SmallVector<unsigned, 8> Perm(LogLen);
  // Check if this could be a perfect shuffle, or a combination of perfect
  // shuffles.
  //
  // Consider this permutation (using hex digits to make the ASCII diagrams
  // easier to read):
  //   { 0, 8, 1, 9, 2, A, 3, B, 4, C, 5, D, 6, E, 7, F }.
  // This is a "deal" operation: divide the input into two halves, and
  // create the output by picking elements by alternating between these two
  // halves:
  //   0 1 2 3 4 5 6 7    -->    0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F  [*]
  //   8 9 A B C D E F
  //
  // Aside from a few special explicit cases (V6_vdealb, etc.), HVX provides
  // a somwehat different mechanism that could be used to perform shuffle/
  // deal operations: a 2x2 transpose.
  // Consider the halves of inputs again, they can be interpreted as a 2x8
  // matrix. A 2x8 matrix can be looked at four 2x2 matrices concatenated
  // together. Now, when considering 2 elements at a time, it will be a 2x4
  // matrix (with elements 01, 23, 45, etc.), or two 2x2 matrices:
  //   01 23  45 67
  //   89 AB  CD EF
  // With groups of 4, this will become a single 2x2 matrix, and so on.
  //
  // The 2x2 transpose instruction works by transposing each of the 2x2
  // matrices (or "sub-matrices"), given a specific group size. For example,
  // if the group size is 1 (i.e. each element is its own group), there
  // will be four transposes of the four 2x2 matrices that form the 2x8.
  // For example, with the inputs as above, the result will be:
  //   0 8  2 A  4 C  6 E
  //   1 9  3 B  5 D  7 F
  // Now, this result can be tranposed again, but with the group size of 2:
  //   08 19  4C 5D
  //   2A 3B  6E 7F
  // If we then transpose that result, but with the group size of 4, we get:
  //   0819 2A3B
  //   4C5D 6E7F
  // If we concatenate these two rows, it will be
  //   0 8 1 9 2 A 3 B 4 C 5 D 6 E 7 F
  // which is the same as the "deal" [*] above.
  //
  // In general, a "deal" of individual elements is a series of 2x2 transposes,
  // with changing group size. HVX has two instructions:
  //   Vdd = V6_vdealvdd Vu, Vv, Rt
  //   Vdd = V6_shufvdd  Vu, Vv, Rt
  // that perform exactly that. The register Rt controls which transposes are
  // going to happen: a bit at position n (counting from 0) indicates that a
  // transpose with a group size of 2^n will take place. If multiple bits are
  // set, multiple transposes will happen: vdealvdd will perform them starting
  // with the largest group size, vshuffvdd will do them in the reverse order.
  //
  // The main observation is that each 2x2 transpose corresponds to swapping
  // columns of bits in the binary representation of the values.
  //
  // The numbers {3,2,1,0} and the log2 of the number of contiguous 1 bits
  // in a given column. The * denote the columns that will be swapped.
  // The transpose with the group size 2^n corresponds to swapping columns
  // 3 (the highest log) and log2(n):
  //
  //     3 2 1 0         0 2 1 3         0 2 3 1
  //     *     *             * *           * *
  //  0  0 0 0 0      0  0 0 0 0      0  0 0 0 0      0  0 0 0 0
  //  1  0 0 0 1      8  1 0 0 0      8  1 0 0 0      8  1 0 0 0
  //  2  0 0 1 0      2  0 0 1 0      1  0 0 0 1      1  0 0 0 1
  //  3  0 0 1 1      A  1 0 1 0      9  1 0 0 1      9  1 0 0 1
  //  4  0 1 0 0      4  0 1 0 0      4  0 1 0 0      2  0 0 1 0
  //  5  0 1 0 1      C  1 1 0 0      C  1 1 0 0      A  1 0 1 0
  //  6  0 1 1 0      6  0 1 1 0      5  0 1 0 1      3  0 0 1 1
  //  7  0 1 1 1      E  1 1 1 0      D  1 1 0 1      B  1 0 1 1
  //  8  1 0 0 0      1  0 0 0 1      2  0 0 1 0      4  0 1 0 0
  //  9  1 0 0 1      9  1 0 0 1      A  1 0 1 0      C  1 1 0 0
  //  A  1 0 1 0      3  0 0 1 1      3  0 0 1 1      5  0 1 0 1
  //  B  1 0 1 1      B  1 0 1 1      B  1 0 1 1      D  1 1 0 1
  //  C  1 1 0 0      5  0 1 0 1      6  0 1 1 0      6  0 1 1 0
  //  D  1 1 0 1      D  1 1 0 1      E  1 1 1 0      E  1 1 1 0
  //  E  1 1 1 0      7  0 1 1 1      7  0 1 1 1      7  0 1 1 1
  //  F  1 1 1 1      F  1 1 1 1      F  1 1 1 1      F  1 1 1 1
  // There is one special case that is not a perfect shuffle, but can be
  // turned into one easily: when the shuffle operates on a vector pair,
  // but the two vectors in the pair are swapped. The code that identifies
  // perfect shuffles will reject it, unless the order is reversed.
  shuffles::MaskT MaskStorage(SM.Mask);
  bool InvertedPair = false;
  if (HavePairs && SM.Mask[0] >= int(HwLen)) {
    for (int i = 0, e = SM.Mask.size(); i != e; ++i) {
      int M = SM.Mask[i];
      MaskStorage[i] = M >= int(HwLen) ? M - HwLen : M + HwLen;
    }
    InvertedPair = true;
    SM = ShuffleMask(MaskStorage);
  }
  auto Comps = getPerfectCompletions(SM, LogLen);
  if (llvm::is_contained(Comps, 0))
    return OpRef::fail();
  auto Pick = completeToPerfect(Comps, LogLen);
  for (unsigned I = 0; I != LogLen; ++I)
    Perm[I] = Log2_32(Pick[I]);
  // Once we have Perm, represent it as cycles. Denote the maximum log2
  // (equal to log2(VecLen)-1) as M. The cycle containing M can then be
  // written as (M a1 a2 a3 ... an). That cycle can be broken up into
  // simple swaps as (M a1)(M a2)(M a3)...(M an), with the composition
  // order being from left to right. Any (contiguous) segment where the
  // values ai, ai+1...aj are either all increasing or all decreasing,
  // can be implemented via a single vshuffvdd/vdealvdd respectively.
  //
  // If there is a cycle (a1 a2 ... an) that does not involve M, it can
  // be written as (M an)(a1 a2 ... an)(M a1). The first two cycles can
  // then be folded to get (M a1 a2 ... an)(M a1), and the above procedure
  // can be used to generate a sequence of vshuffvdd/vdealvdd.
  //
  // Example:
  // Assume M = 4 and consider a permutation (0 1)(2 3). It can be written
  // as (4 0 1)(4 0) composed with (4 2 3)(4 2), or simply
  //   (4 0 1)(4 0)(4 2 3)(4 2).
  // It can then be expanded into swaps as
  //   (4 0)(4 1)(4 0)(4 2)(4 3)(4 2),
  // and broken up into "increasing" segments as
  //   [(4 0)(4 1)] [(4 0)(4 2)(4 3)] [(4 2)].
  // This is equivalent to
  //   (4 0 1)(4 0 2 3)(4 2),
  // which can be implemented as 3 vshufvdd instructions.
  using CycleType = SmallVector<unsigned, 8>;
  std::set<CycleType> Cycles;
  std::set<unsigned> All;
  for (unsigned I : Perm)
    All.insert(I);
  // If the cycle contains LogLen-1, move it to the front of the cycle.
  // Otherwise, return the cycle unchanged.
  auto canonicalize = [LogLen](const CycleType &C) -> CycleType {
    unsigned LogPos, N = C.size();
    for (LogPos = 0; LogPos != N; ++LogPos)
      if (C[LogPos] == LogLen - 1)
        break;
    if (LogPos == N)
      return C;
    CycleType NewC(C.begin() + LogPos, C.end());
    NewC.append(C.begin(), C.begin() + LogPos);
    return NewC;
  };
  auto pfs = [](const std::set<CycleType> &Cs, unsigned Len) {
    // Ordering: shuff: 5 0 1 2 3 4, deal: 5 4 3 2 1 0 (for Log=6),
    // for bytes zero is included, for halfwords is not.
    if (Cs.size() != 1)
      return 0u;
    const CycleType &C = *Cs.begin();
    if (C[0] != Len - 1)
      return 0u;
    int D = Len - C.size();
    if (D != 0 && D != 1)
      return 0u;
    bool IsDeal = true, IsShuff = true;
    for (unsigned I = 1; I != Len - D; ++I) {
      if (C[I] != Len - 1 - I)
        IsDeal = false;
      if (C[I] != I - (1 - D)) // I-1, I
        IsShuff = false;
    }
    // At most one, IsDeal or IsShuff, can be non-zero.
    assert(!(IsDeal || IsShuff) || IsDeal != IsShuff);
    static unsigned Deals[] = {Hexagon::V6_vdealb, Hexagon::V6_vdealh};
    static unsigned Shufs[] = {Hexagon::V6_vshuffb, Hexagon::V6_vshuffh};
    return IsDeal ? Deals[D] : (IsShuff ? Shufs[D] : 0);
  };
  while (!All.empty()) {
    unsigned A = *All.begin();
    All.erase(A);
    CycleType C;
    C.push_back(A);
    for (unsigned B = Perm[A]; B != A; B = Perm[B]) {
      C.push_back(B);
      All.erase(B);
    }
    if (C.size() <= 1)
      continue;
    Cycles.insert(canonicalize(C));
  }
  MVT SingleTy = getSingleVT(MVT::i8);
  MVT PairTy = getPairVT(MVT::i8);
  // Recognize patterns for V6_vdeal{b,h} and V6_vshuff{b,h}.
  if (unsigned(VecLen) == HwLen) {
    if (unsigned SingleOpc = pfs(Cycles, LogLen)) {
      Results.push(SingleOpc, SingleTy, {Va});
      return OpRef::res(Results.top());
    }
  }
  // From the cycles, construct the sequence of values that will
  // then form the control values for vdealvdd/vshuffvdd, i.e.
  // (M a1 a2)(M a3 a4 a5)... -> a1 a2 a3 a4 a5
  // This essentially strips the M value from the cycles where
  // it's present, and performs the insertion of M (then stripping)
  // for cycles without M (as described in an earlier comment).
  SmallVector<unsigned, 8> SwapElems;
  // When the input is extended (i.e. single vector becomes a pair),
  // this is done by using an "undef" vector as the second input.
  // However, then we get
  //   input 1: GOODBITS
  //   input 2: ........
  // but we need
  //   input 1: ....BITS
  //   input 2: ....GOOD
  // Then at the end, this needs to be undone. To accomplish this,
  // artificially add "LogLen-1" at both ends of the sequence.
  if (!HavePairs)
    SwapElems.push_back(LogLen - 1);
  for (const CycleType &C : Cycles) {
    // Do the transformation: (a1..an) -> (M a1..an)(M a1).
    unsigned First = (C[0] == LogLen - 1) ? 1 : 0;
    SwapElems.append(C.begin() + First, C.end());
    if (First == 0)
      SwapElems.push_back(C[0]);
  }
  if (!HavePairs)
    SwapElems.push_back(LogLen - 1);
  const SDLoc &dl(Results.InpNode);
  OpRef Arg = HavePairs ? Va : concats(Va, OpRef::undef(SingleTy), Results);
  if (InvertedPair)
    Arg = concats(OpRef::hi(Arg), OpRef::lo(Arg), Results);
  for (unsigned I = 0, E = SwapElems.size(); I != E;) {
    bool IsInc = I == E - 1 || SwapElems[I] < SwapElems[I + 1];
    unsigned S = (1u << SwapElems[I]);
    if (I < E - 1) {
      while (++I < E - 1 && IsInc == (SwapElems[I] < SwapElems[I + 1]))
        S |= 1u << SwapElems[I];
      // The above loop will not add a bit for the final SwapElems[I+1],
      // so add it here.
      S |= 1u << SwapElems[I];
    }
    ++I;
    NodeTemplate Res;
    Results.push(Hexagon::A2_tfrsi, MVT::i32, {getConst32(S, dl)});
    Res.Opc = IsInc ? Hexagon::V6_vshuffvdd : Hexagon::V6_vdealvdd;
    Res.Ty = PairTy;
    Res.Ops = {OpRef::hi(Arg), OpRef::lo(Arg), OpRef::res(-1)};
    Results.push(Res);
    Arg = OpRef::res(Results.top());
  }
  return HavePairs ? Arg : OpRef::lo(Arg);
}
OpRef HvxSelector::butterfly(ShuffleMask SM, OpRef Va, ResultStack &Results) {
  DEBUG_WITH_TYPE("isel", {dbgs() << __func__ << '\n';});
  // Butterfly shuffles.
  //
  // V6_vdelta
  // V6_vrdelta
  // V6_vror
  // The assumption here is that all elements picked by Mask are in the
  // first operand to the vector_shuffle. This assumption is enforced
  // by the caller.
  MVT ResTy = getSingleVT(MVT::i8);
  PermNetwork::Controls FC, RC;
  const SDLoc &dl(Results.InpNode);
  int VecLen = SM.Mask.size();
  for (int M : SM.Mask) {
    if (M != -1 && M >= VecLen)
      return OpRef::fail();
  }
  // Try the deltas/benes for both single vectors and vector pairs.
  ForwardDeltaNetwork FN(SM.Mask);
  if (FN.run(FC)) {
    SDValue Ctl = getVectorConstant(FC, dl);
    Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(Ctl)});
    return OpRef::res(Results.top());
  }
  // Try reverse delta.
  ReverseDeltaNetwork RN(SM.Mask);
  if (RN.run(RC)) {
    SDValue Ctl = getVectorConstant(RC, dl);
    Results.push(Hexagon::V6_vrdelta, ResTy, {Va, OpRef(Ctl)});
    return OpRef::res(Results.top());
  }
  // Do Benes.
  BenesNetwork BN(SM.Mask);
  if (BN.run(FC, RC)) {
    SDValue CtlF = getVectorConstant(FC, dl);
    SDValue CtlR = getVectorConstant(RC, dl);
    Results.push(Hexagon::V6_vdelta, ResTy, {Va, OpRef(CtlF)});
    Results.push(Hexagon::V6_vrdelta, ResTy,
                 {OpRef::res(-1), OpRef(CtlR)});
    return OpRef::res(Results.top());
  }
  return OpRef::fail();
}
SDValue HvxSelector::getConst32(int Val, const SDLoc &dl) {
  return DAG.getTargetConstant(Val, dl, MVT::i32);
}
SDValue HvxSelector::getVectorConstant(ArrayRef<uint8_t> Data,
                                       const SDLoc &dl) {
  SmallVector<SDValue, 128> Elems;
  for (uint8_t C : Data)
    Elems.push_back(DAG.getConstant(C, dl, MVT::i8));
  MVT VecTy = MVT::getVectorVT(MVT::i8, Data.size());
  SDValue BV = DAG.getBuildVector(VecTy, dl, Elems);
  SDValue LV = Lower.LowerOperation(BV, DAG);
  DAG.RemoveDeadNode(BV.getNode());
  return DAG.getNode(HexagonISD::ISEL, dl, VecTy, LV);
}
void HvxSelector::selectExtractSubvector(SDNode *N) {
  SDValue Inp = N->getOperand(0);
  MVT ResTy = N->getValueType(0).getSimpleVT();
  unsigned Idx = N->getConstantOperandVal(1);
  [[maybe_unused]] MVT InpTy = Inp.getValueType().getSimpleVT();
  [[maybe_unused]] unsigned ResLen = ResTy.getVectorNumElements();
  assert(InpTy.getVectorElementType() == ResTy.getVectorElementType());
  assert(2 * ResLen == InpTy.getVectorNumElements());
  assert(Idx == 0 || Idx == ResLen);
  unsigned SubReg = Idx == 0 ? Hexagon::vsub_lo : Hexagon::vsub_hi;
  SDValue Ext = DAG.getTargetExtractSubreg(SubReg, SDLoc(N), ResTy, Inp);
  ISel.ReplaceNode(N, Ext.getNode());
}
void HvxSelector::selectShuffle(SDNode *N) {
  DEBUG_WITH_TYPE("isel", {
    dbgs() << "Starting " << __func__ << " on node:\n";
    N->dump(&DAG);
  });
  MVT ResTy = N->getValueType(0).getSimpleVT();
  // Assume that vector shuffles operate on vectors of bytes.
  assert(ResTy.isVector() && ResTy.getVectorElementType() == MVT::i8);
  auto *SN = cast<ShuffleVectorSDNode>(N);
  std::vector<int> Mask(SN->getMask().begin(), SN->getMask().end());
  // This shouldn't really be necessary. Is it?
  for (int &Idx : Mask)
    if (Idx != -1 && Idx < 0)
      Idx = -1;
  unsigned VecLen = Mask.size();
  bool HavePairs = (2*HwLen == VecLen);
  assert(ResTy.getSizeInBits() / 8 == VecLen);
  // Vd = vector_shuffle Va, Vb, Mask
  //
  bool UseLeft = false, UseRight = false;
  for (unsigned I = 0; I != VecLen; ++I) {
    if (Mask[I] == -1)
      continue;
    unsigned Idx = Mask[I];
    assert(Idx < 2*VecLen);
    if (Idx < VecLen)
      UseLeft = true;
    else
      UseRight = true;
  }
  DEBUG_WITH_TYPE("isel", {
    dbgs() << "VecLen=" << VecLen << " HwLen=" << HwLen << " UseLeft="
           << UseLeft << " UseRight=" << UseRight << " HavePairs="
           << HavePairs << '\n';
  });
  // If the mask is all -1's, generate "undef".
  if (!UseLeft && !UseRight) {
    ISel.ReplaceNode(N, ISel.selectUndef(SDLoc(SN), ResTy).getNode());
    return;
  }
  SDValue Vec0 = N->getOperand(0);
  SDValue Vec1 = N->getOperand(1);
  assert(Vec0.getValueType() == ResTy && Vec1.getValueType() == ResTy);
  ResultStack Results(SN);
  OpRef Va = OpRef::undef(ResTy);
  OpRef Vb = OpRef::undef(ResTy);
  if (!Vec0.isUndef()) {
    Results.push(TargetOpcode::COPY, ResTy, {Vec0});
    Va = OpRef::OpRef::res(Results.top());
  }
  if (!Vec1.isUndef()) {
    Results.push(TargetOpcode::COPY, ResTy, {Vec1});
    Vb = OpRef::res(Results.top());
  }
  OpRef Res = !HavePairs ? shuffs2(ShuffleMask(Mask), Va, Vb, Results)
                         : shuffp2(ShuffleMask(Mask), Va, Vb, Results);
  bool Done = Res.isValid();
  if (Done) {
    // Make sure that Res is on the stack before materializing.
    Results.push(TargetOpcode::COPY, ResTy, {Res});
    materialize(Results);
  } else {
    Done = scalarizeShuffle(Mask, SDLoc(N), ResTy, Vec0, Vec1, N);
  }
  if (!Done) {
#ifndef NDEBUG
    dbgs() << "Unhandled shuffle:\n";
    SN->dumpr(&DAG);
#endif
    llvm_unreachable("Failed to select vector shuffle");
  }
}
void HvxSelector::selectRor(SDNode *N) {
  // If this is a rotation by less than 8, use V6_valignbi.
  MVT Ty = N->getValueType(0).getSimpleVT();
  const SDLoc &dl(N);
  SDValue VecV = N->getOperand(0);
  SDValue RotV = N->getOperand(1);
  SDNode *NewN = nullptr;
  if (auto *CN = dyn_cast<ConstantSDNode>(RotV.getNode())) {
    unsigned S = CN->getZExtValue() % HST.getVectorLength();
    if (S == 0) {
      NewN = VecV.getNode();
    } else if (isUInt<3>(S)) {
      NewN = DAG.getMachineNode(Hexagon::V6_valignbi, dl, Ty,
                                {VecV, VecV, getConst32(S, dl)});
    }
  }
  if (!NewN)
    NewN = DAG.getMachineNode(Hexagon::V6_vror, dl, Ty, {VecV, RotV});
  ISel.ReplaceNode(N, NewN);
}
void HvxSelector::selectVAlign(SDNode *N) {
  SDValue Vv = N->getOperand(0);
  SDValue Vu = N->getOperand(1);
  SDValue Rt = N->getOperand(2);
  SDNode *NewN = DAG.getMachineNode(Hexagon::V6_valignb, SDLoc(N),
                                    N->getValueType(0), {Vv, Vu, Rt});
  ISel.ReplaceNode(N, NewN);
  DAG.RemoveDeadNode(N);
}
void HexagonDAGToDAGISel::PreprocessHvxISelDAG() {
  auto getNodes = [this]() -> std::vector<SDNode *> {
    std::vector<SDNode *> T;
    T.reserve(CurDAG->allnodes_size());
    for (SDNode &N : CurDAG->allnodes())
      T.push_back(&N);
    return T;
  };
  ppHvxShuffleOfShuffle(getNodes());
}
template <> struct std::hash<SDValue> {
  std::size_t operator()(SDValue V) const {
    return std::hash<const void *>()(V.getNode()) +
           std::hash<unsigned>()(V.getResNo());
  };
};
void HexagonDAGToDAGISel::ppHvxShuffleOfShuffle(std::vector<SDNode *> &&Nodes) {
  // Motivating case:
  //   t10: v64i32 = ...
  //         t46: v128i8 = vector_shuffle<...> t44, t45
  //         t48: v128i8 = vector_shuffle<...> t44, t45
  //       t42: v128i8 = vector_shuffle<...> t46, t48
  //     t12: v32i32 = extract_subvector t10, Constant:i32<0>
  //   t44: v128i8 = bitcast t12
  //     t15: v32i32 = extract_subvector t10, Constant:i32<32>
  //   t45: v128i8 = bitcast t15
  SelectionDAG &DAG = *CurDAG;
  unsigned HwLen = HST->getVectorLength();
  struct SubVectorInfo {
    SubVectorInfo(SDValue S, unsigned H) : Src(S), HalfIdx(H) {}
    SDValue Src;
    unsigned HalfIdx;
  };
  using MapType = std::unordered_map<SDValue, unsigned>;
  auto getMaskElt = [&](unsigned Idx, ShuffleVectorSDNode *Shuff0,
                        ShuffleVectorSDNode *Shuff1,
                        const MapType &OpMap) -> int {
    // Treat Shuff0 and Shuff1 as operands to another vector shuffle, and
    // Idx as a (non-undef) element of the top level shuffle's mask, that
    // is, index into concat(Shuff0, Shuff1).
    // Assuming that Shuff0 and Shuff1 both operate on subvectors of the
    // same source vector (as described by OpMap), return the index of
    // that source vector corresponding to Idx.
    ShuffleVectorSDNode *OpShuff = Idx < HwLen ? Shuff0 : Shuff1;
    if (Idx >= HwLen)
      Idx -= HwLen;
    // Get the mask index that M points at in the corresponding operand.
    int MaybeN = OpShuff->getMaskElt(Idx);
    if (MaybeN < 0)
      return -1;
    auto N = static_cast<unsigned>(MaybeN);
    unsigned SrcBase = N < HwLen ? OpMap.at(OpShuff->getOperand(0))
                                 : OpMap.at(OpShuff->getOperand(1));
    if (N >= HwLen)
      N -= HwLen;
    return N + SrcBase;
  };
  auto fold3 = [&](SDValue TopShuff, SDValue Inp, MapType &&OpMap) -> SDValue {
    // Fold all 3 shuffles into a single one.
    auto *This = cast<ShuffleVectorSDNode>(TopShuff);
    auto *S0 = cast<ShuffleVectorSDNode>(TopShuff.getOperand(0));
    auto *S1 = cast<ShuffleVectorSDNode>(TopShuff.getOperand(1));
    ArrayRef<int> TopMask = This->getMask();
    // This should be guaranteed by type checks in the caller, and the fact
    // that all shuffles should have been promoted to operate on MVT::i8.
    assert(TopMask.size() == S0->getMask().size() &&
           TopMask.size() == S1->getMask().size());
    assert(TopMask.size() == HwLen);
    SmallVector<int, 256> FoldedMask(2 * HwLen);
    for (unsigned I = 0; I != HwLen; ++I) {
      int MaybeM = TopMask[I];
      if (MaybeM >= 0) {
        FoldedMask[I] =
            getMaskElt(static_cast<unsigned>(MaybeM), S0, S1, OpMap);
      } else {
        FoldedMask[I] = -1;
      }
    }
    // The second half of the result will be all-undef.
    std::fill(FoldedMask.begin() + HwLen, FoldedMask.end(), -1);
    // Return
    //   FoldedShuffle = (Shuffle Inp, undef, FoldedMask)
    //   (LoHalf FoldedShuffle)
    const SDLoc &dl(TopShuff);
    MVT SingleTy = MVT::getVectorVT(MVT::i8, HwLen);
    MVT PairTy = MVT::getVectorVT(MVT::i8, 2 * HwLen);
    SDValue FoldedShuff =
        DAG.getVectorShuffle(PairTy, dl, DAG.getBitcast(PairTy, Inp),
                             DAG.getUNDEF(PairTy), FoldedMask);
    return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SingleTy, FoldedShuff,
                       DAG.getConstant(0, dl, MVT::i32));
  };
  auto getSourceInfo = [](SDValue V) -> std::optional<SubVectorInfo> {
    while (V.getOpcode() == ISD::BITCAST)
      V = V.getOperand(0);
    if (V.getOpcode() != ISD::EXTRACT_SUBVECTOR)
      return std::nullopt;
    return SubVectorInfo(V.getOperand(0),
                         !cast<ConstantSDNode>(V.getOperand(1))->isZero());
  };
  for (SDNode *N : Nodes) {
    if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
      continue;
    EVT ResTy = N->getValueType(0);
    if (ResTy.getVectorElementType() != MVT::i8)
      continue;
    if (ResTy.getVectorNumElements() != HwLen)
      continue;
    SDValue V0 = N->getOperand(0);
    SDValue V1 = N->getOperand(1);
    if (V0.getOpcode() != ISD::VECTOR_SHUFFLE)
      continue;
    if (V1.getOpcode() != ISD::VECTOR_SHUFFLE)
      continue;
    if (V0.getValueType() != ResTy || V1.getValueType() != ResTy)
      continue;
    // Check if all operands of the two operand shuffles are extract_subvectors
    // from the same vector pair.
    auto V0A = getSourceInfo(V0.getOperand(0));
    if (!V0A.has_value())
      continue;
    auto V0B = getSourceInfo(V0.getOperand(1));
    if (!V0B.has_value() || V0B->Src != V0A->Src)
      continue;
    auto V1A = getSourceInfo(V1.getOperand(0));
    if (!V1A.has_value() || V1A->Src != V0A->Src)
      continue;
    auto V1B = getSourceInfo(V1.getOperand(1));
    if (!V1B.has_value() || V1B->Src != V0A->Src)
      continue;
    // The source must be a pair. This should be guaranteed here,
    // but check just in case.
    assert(V0A->Src.getValueType().getSizeInBits() == 16 * HwLen);
    MapType OpMap = {
        {V0.getOperand(0), V0A->HalfIdx * HwLen},
        {V0.getOperand(1), V0B->HalfIdx * HwLen},
        {V1.getOperand(0), V1A->HalfIdx * HwLen},
        {V1.getOperand(1), V1B->HalfIdx * HwLen},
    };
    SDValue NewS = fold3(SDValue(N, 0), V0A->Src, std::move(OpMap));
    ReplaceNode(N, NewS.getNode());
  }
}
void HexagonDAGToDAGISel::SelectHvxExtractSubvector(SDNode *N) {
  HvxSelector(*this, *CurDAG).selectExtractSubvector(N);
}
void HexagonDAGToDAGISel::SelectHvxShuffle(SDNode *N) {
  HvxSelector(*this, *CurDAG).selectShuffle(N);
}
void HexagonDAGToDAGISel::SelectHvxRor(SDNode *N) {
  HvxSelector(*this, *CurDAG).selectRor(N);
}
void HexagonDAGToDAGISel::SelectHvxVAlign(SDNode *N) {
  HvxSelector(*this, *CurDAG).selectVAlign(N);
}
void HexagonDAGToDAGISel::SelectV65GatherPred(SDNode *N) {
  const SDLoc &dl(N);
  SDValue Chain = N->getOperand(0);
  SDValue Address = N->getOperand(2);
  SDValue Predicate = N->getOperand(3);
  SDValue Base = N->getOperand(4);
  SDValue Modifier = N->getOperand(5);
  SDValue Offset = N->getOperand(6);
  SDValue ImmOperand = CurDAG->getTargetConstant(0, dl, MVT::i32);
  unsigned Opcode;
  unsigned IntNo = N->getConstantOperandVal(1);
  switch (IntNo) {
  default:
    llvm_unreachable("Unexpected HVX gather intrinsic.");
  case Intrinsic::hexagon_V6_vgathermhq:
  case Intrinsic::hexagon_V6_vgathermhq_128B:
    Opcode = Hexagon::V6_vgathermhq_pseudo;
    break;
  case Intrinsic::hexagon_V6_vgathermwq:
  case Intrinsic::hexagon_V6_vgathermwq_128B:
    Opcode = Hexagon::V6_vgathermwq_pseudo;
    break;
  case Intrinsic::hexagon_V6_vgathermhwq:
  case Intrinsic::hexagon_V6_vgathermhwq_128B:
    Opcode = Hexagon::V6_vgathermhwq_pseudo;
    break;
  }
  SDVTList VTs = CurDAG->getVTList(MVT::Other);
  SDValue Ops[] = { Address, ImmOperand,
                    Predicate, Base, Modifier, Offset, Chain };
  SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
  ReplaceNode(N, Result);
}
void HexagonDAGToDAGISel::SelectV65Gather(SDNode *N) {
  const SDLoc &dl(N);
  SDValue Chain = N->getOperand(0);
  SDValue Address = N->getOperand(2);
  SDValue Base = N->getOperand(3);
  SDValue Modifier = N->getOperand(4);
  SDValue Offset = N->getOperand(5);
  SDValue ImmOperand = CurDAG->getTargetConstant(0, dl, MVT::i32);
  unsigned Opcode;
  unsigned IntNo = N->getConstantOperandVal(1);
  switch (IntNo) {
  default:
    llvm_unreachable("Unexpected HVX gather intrinsic.");
  case Intrinsic::hexagon_V6_vgathermh:
  case Intrinsic::hexagon_V6_vgathermh_128B:
    Opcode = Hexagon::V6_vgathermh_pseudo;
    break;
  case Intrinsic::hexagon_V6_vgathermw:
  case Intrinsic::hexagon_V6_vgathermw_128B:
    Opcode = Hexagon::V6_vgathermw_pseudo;
    break;
  case Intrinsic::hexagon_V6_vgathermhw:
  case Intrinsic::hexagon_V6_vgathermhw_128B:
    Opcode = Hexagon::V6_vgathermhw_pseudo;
    break;
  }
  SDVTList VTs = CurDAG->getVTList(MVT::Other);
  SDValue Ops[] = { Address, ImmOperand, Base, Modifier, Offset, Chain };
  SDNode *Result = CurDAG->getMachineNode(Opcode, dl, VTs, Ops);
  MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
  ReplaceNode(N, Result);
}
void HexagonDAGToDAGISel::SelectHVXDualOutput(SDNode *N) {
  unsigned IID = N->getConstantOperandVal(0);
  SDNode *Result;
  switch (IID) {
  case Intrinsic::hexagon_V6_vaddcarry: {
    std::array<SDValue, 3> Ops = {
        {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
    SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1);
    Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
    break;
  }
  case Intrinsic::hexagon_V6_vaddcarry_128B: {
    std::array<SDValue, 3> Ops = {
        {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
    SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1);
    Result = CurDAG->getMachineNode(Hexagon::V6_vaddcarry, SDLoc(N), VTs, Ops);
    break;
  }
  case Intrinsic::hexagon_V6_vsubcarry: {
    std::array<SDValue, 3> Ops = {
        {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
    SDVTList VTs = CurDAG->getVTList(MVT::v16i32, MVT::v64i1);
    Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
    break;
  }
  case Intrinsic::hexagon_V6_vsubcarry_128B: {
    std::array<SDValue, 3> Ops = {
        {N->getOperand(1), N->getOperand(2), N->getOperand(3)}};
    SDVTList VTs = CurDAG->getVTList(MVT::v32i32, MVT::v128i1);
    Result = CurDAG->getMachineNode(Hexagon::V6_vsubcarry, SDLoc(N), VTs, Ops);
    break;
  }
  default:
    llvm_unreachable("Unexpected HVX dual output intrinsic.");
  }
  ReplaceUses(N, Result);
  ReplaceUses(SDValue(N, 0), SDValue(Result, 0));
  ReplaceUses(SDValue(N, 1), SDValue(Result, 1));
  CurDAG->RemoveDeadNode(N);
}
 |