| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 
 | //===- HexagonPacketizer.cpp - VLIW packetizer ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements a simple VLIW packetizer using DFA. The packetizer works on
// machine basic blocks. For each instruction I in BB, the packetizer consults
// the DFA to see if machine resources are available to execute I. If so, the
// packetizer checks if I depends on any instruction J in the current packet.
// If no dependency is found, I is added to current packet and machine resource
// is marked as taken. If any dependency is found, a target API call is made to
// prune the dependence.
//
//===----------------------------------------------------------------------===//
#include "HexagonVLIWPacketizer.h"
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
using namespace llvm;
#define DEBUG_TYPE "packets"
static cl::opt<bool>
    DisablePacketizer("disable-packetizer", cl::Hidden,
                      cl::desc("Disable Hexagon packetizer pass"));
static cl::opt<bool> Slot1Store("slot1-store-slot0-load", cl::Hidden,
                                cl::init(true),
                                cl::desc("Allow slot1 store and slot0 load"));
static cl::opt<bool> PacketizeVolatiles(
    "hexagon-packetize-volatiles", cl::Hidden, cl::init(true),
    cl::desc("Allow non-solo packetization of volatile memory references"));
static cl::opt<bool>
    EnableGenAllInsnClass("enable-gen-insn", cl::Hidden,
                          cl::desc("Generate all instruction with TC"));
static cl::opt<bool>
    DisableVecDblNVStores("disable-vecdbl-nv-stores", cl::Hidden,
                          cl::desc("Disable vector double new-value-stores"));
extern cl::opt<bool> ScheduleInlineAsm;
namespace llvm {
FunctionPass *createHexagonPacketizer(bool Minimal);
void initializeHexagonPacketizerPass(PassRegistry&);
} // end namespace llvm
namespace {
  class HexagonPacketizer : public MachineFunctionPass {
  public:
    static char ID;
    HexagonPacketizer(bool Min = false)
      : MachineFunctionPass(ID), Minimal(Min) {}
    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      AU.addRequired<AAResultsWrapperPass>();
      AU.addRequired<MachineBranchProbabilityInfoWrapperPass>();
      AU.addRequired<MachineDominatorTreeWrapperPass>();
      AU.addRequired<MachineLoopInfoWrapperPass>();
      AU.addPreserved<MachineDominatorTreeWrapperPass>();
      AU.addPreserved<MachineLoopInfoWrapperPass>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }
    StringRef getPassName() const override { return "Hexagon Packetizer"; }
    bool runOnMachineFunction(MachineFunction &Fn) override;
    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }
  private:
    const HexagonInstrInfo *HII = nullptr;
    const HexagonRegisterInfo *HRI = nullptr;
    const bool Minimal = false;
  };
} // end anonymous namespace
char HexagonPacketizer::ID = 0;
INITIALIZE_PASS_BEGIN(HexagonPacketizer, "hexagon-packetizer",
                      "Hexagon Packetizer", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(HexagonPacketizer, "hexagon-packetizer",
                    "Hexagon Packetizer", false, false)
HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF,
      MachineLoopInfo &MLI, AAResults *AA,
      const MachineBranchProbabilityInfo *MBPI, bool Minimal)
    : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI),
      Minimal(Minimal) {
  HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
  HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
  addMutation(std::make_unique<HexagonSubtarget::UsrOverflowMutation>());
  addMutation(std::make_unique<HexagonSubtarget::HVXMemLatencyMutation>());
  addMutation(std::make_unique<HexagonSubtarget::BankConflictMutation>());
}
// Check if FirstI modifies a register that SecondI reads.
static bool hasWriteToReadDep(const MachineInstr &FirstI,
                              const MachineInstr &SecondI,
                              const TargetRegisterInfo *TRI) {
  for (auto &MO : FirstI.operands()) {
    if (!MO.isReg() || !MO.isDef())
      continue;
    Register R = MO.getReg();
    if (SecondI.readsRegister(R, TRI))
      return true;
  }
  return false;
}
static MachineBasicBlock::iterator moveInstrOut(MachineInstr &MI,
      MachineBasicBlock::iterator BundleIt, bool Before) {
  MachineBasicBlock::instr_iterator InsertPt;
  if (Before)
    InsertPt = BundleIt.getInstrIterator();
  else
    InsertPt = std::next(BundleIt).getInstrIterator();
  MachineBasicBlock &B = *MI.getParent();
  // The instruction should at least be bundled with the preceding instruction
  // (there will always be one, i.e. BUNDLE, if nothing else).
  assert(MI.isBundledWithPred());
  if (MI.isBundledWithSucc()) {
    MI.clearFlag(MachineInstr::BundledSucc);
    MI.clearFlag(MachineInstr::BundledPred);
  } else {
    // If it's not bundled with the successor (i.e. it is the last one
    // in the bundle), then we can simply unbundle it from the predecessor,
    // which will take care of updating the predecessor's flag.
    MI.unbundleFromPred();
  }
  B.splice(InsertPt, &B, MI.getIterator());
  // Get the size of the bundle without asserting.
  MachineBasicBlock::const_instr_iterator I = BundleIt.getInstrIterator();
  MachineBasicBlock::const_instr_iterator E = B.instr_end();
  unsigned Size = 0;
  for (++I; I != E && I->isBundledWithPred(); ++I)
    ++Size;
  // If there are still two or more instructions, then there is nothing
  // else to be done.
  if (Size > 1)
    return BundleIt;
  // Otherwise, extract the single instruction out and delete the bundle.
  MachineBasicBlock::iterator NextIt = std::next(BundleIt);
  MachineInstr &SingleI = *BundleIt->getNextNode();
  SingleI.unbundleFromPred();
  assert(!SingleI.isBundledWithSucc());
  BundleIt->eraseFromParent();
  return NextIt;
}
bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) {
  // FIXME: This pass causes verification failures.
  MF.getProperties().set(
      MachineFunctionProperties::Property::FailsVerification);
  auto &HST = MF.getSubtarget<HexagonSubtarget>();
  HII = HST.getInstrInfo();
  HRI = HST.getRegisterInfo();
  auto &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
  auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
  auto *MBPI =
      &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI();
  if (EnableGenAllInsnClass)
    HII->genAllInsnTimingClasses(MF);
  // Instantiate the packetizer.
  bool MinOnly = Minimal || DisablePacketizer || !HST.usePackets() ||
                 skipFunction(MF.getFunction());
  HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI, MinOnly);
  // DFA state table should not be empty.
  assert(Packetizer.getResourceTracker() && "Empty DFA table!");
  // Loop over all basic blocks and remove KILL pseudo-instructions
  // These instructions confuse the dependence analysis. Consider:
  // D0 = ...   (Insn 0)
  // R0 = KILL R0, D0 (Insn 1)
  // R0 = ... (Insn 2)
  // Here, Insn 1 will result in the dependence graph not emitting an output
  // dependence between Insn 0 and Insn 2. This can lead to incorrect
  // packetization
  for (MachineBasicBlock &MB : MF) {
    for (MachineInstr &MI : llvm::make_early_inc_range(MB))
      if (MI.isKill())
        MB.erase(&MI);
  }
  // TinyCore with Duplexes: Translate to big-instructions.
  if (HST.isTinyCoreWithDuplex())
    HII->translateInstrsForDup(MF, true);
  // Loop over all of the basic blocks.
  for (auto &MB : MF) {
    auto Begin = MB.begin(), End = MB.end();
    while (Begin != End) {
      // Find the first non-boundary starting from the end of the last
      // scheduling region.
      MachineBasicBlock::iterator RB = Begin;
      while (RB != End && HII->isSchedulingBoundary(*RB, &MB, MF))
        ++RB;
      // Find the first boundary starting from the beginning of the new
      // region.
      MachineBasicBlock::iterator RE = RB;
      while (RE != End && !HII->isSchedulingBoundary(*RE, &MB, MF))
        ++RE;
      // Add the scheduling boundary if it's not block end.
      if (RE != End)
        ++RE;
      // If RB == End, then RE == End.
      if (RB != End)
        Packetizer.PacketizeMIs(&MB, RB, RE);
      Begin = RE;
    }
  }
  // TinyCore with Duplexes: Translate to tiny-instructions.
  if (HST.isTinyCoreWithDuplex())
    HII->translateInstrsForDup(MF, false);
  Packetizer.unpacketizeSoloInstrs(MF);
  return true;
}
// Reserve resources for a constant extender. Trigger an assertion if the
// reservation fails.
void HexagonPacketizerList::reserveResourcesForConstExt() {
  if (!tryAllocateResourcesForConstExt(true))
    llvm_unreachable("Resources not available");
}
bool HexagonPacketizerList::canReserveResourcesForConstExt() {
  return tryAllocateResourcesForConstExt(false);
}
// Allocate resources (i.e. 4 bytes) for constant extender. If succeeded,
// return true, otherwise, return false.
bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) {
  auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc());
  bool Avail = ResourceTracker->canReserveResources(*ExtMI);
  if (Reserve && Avail)
    ResourceTracker->reserveResources(*ExtMI);
  MF.deleteMachineInstr(ExtMI);
  return Avail;
}
bool HexagonPacketizerList::isCallDependent(const MachineInstr &MI,
      SDep::Kind DepType, unsigned DepReg) {
  // Check for LR dependence.
  if (DepReg == HRI->getRARegister())
    return true;
  if (HII->isDeallocRet(MI))
    if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister())
      return true;
  // Call-like instructions can be packetized with preceding instructions
  // that define registers implicitly used or modified by the call. Explicit
  // uses are still prohibited, as in the case of indirect calls:
  //   r0 = ...
  //   J2_jumpr r0
  if (DepType == SDep::Data) {
    for (const MachineOperand &MO : MI.operands())
      if (MO.isReg() && MO.getReg() == DepReg && !MO.isImplicit())
        return true;
  }
  return false;
}
static bool isRegDependence(const SDep::Kind DepType) {
  return DepType == SDep::Data || DepType == SDep::Anti ||
         DepType == SDep::Output;
}
static bool isDirectJump(const MachineInstr &MI) {
  return MI.getOpcode() == Hexagon::J2_jump;
}
static bool isSchedBarrier(const MachineInstr &MI) {
  switch (MI.getOpcode()) {
  case Hexagon::Y2_barrier:
    return true;
  }
  return false;
}
static bool isControlFlow(const MachineInstr &MI) {
  return MI.getDesc().isTerminator() || MI.getDesc().isCall();
}
/// Returns true if the instruction modifies a callee-saved register.
static bool doesModifyCalleeSavedReg(const MachineInstr &MI,
                                     const TargetRegisterInfo *TRI) {
  const MachineFunction &MF = *MI.getParent()->getParent();
  for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR)
    if (MI.modifiesRegister(*CSR, TRI))
      return true;
  return false;
}
// Returns true if an instruction can be promoted to .new predicate or
// new-value store.
bool HexagonPacketizerList::isNewifiable(const MachineInstr &MI,
      const TargetRegisterClass *NewRC) {
  // Vector stores can be predicated, and can be new-value stores, but
  // they cannot be predicated on a .new predicate value.
  if (NewRC == &Hexagon::PredRegsRegClass) {
    if (HII->isHVXVec(MI) && MI.mayStore())
      return false;
    return HII->isPredicated(MI) && HII->getDotNewPredOp(MI, nullptr) > 0;
  }
  // If the class is not PredRegs, it could only apply to new-value stores.
  return HII->mayBeNewStore(MI);
}
// Promote an instructiont to its .cur form.
// At this time, we have already made a call to canPromoteToDotCur and made
// sure that it can *indeed* be promoted.
bool HexagonPacketizerList::promoteToDotCur(MachineInstr &MI,
      SDep::Kind DepType, MachineBasicBlock::iterator &MII,
      const TargetRegisterClass* RC) {
  assert(DepType == SDep::Data);
  int CurOpcode = HII->getDotCurOp(MI);
  MI.setDesc(HII->get(CurOpcode));
  return true;
}
void HexagonPacketizerList::cleanUpDotCur() {
  MachineInstr *MI = nullptr;
  for (auto *BI : CurrentPacketMIs) {
    LLVM_DEBUG(dbgs() << "Cleanup packet has "; BI->dump(););
    if (HII->isDotCurInst(*BI)) {
      MI = BI;
      continue;
    }
    if (MI) {
      for (auto &MO : BI->operands())
        if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg())
          return;
    }
  }
  if (!MI)
    return;
  // We did not find a use of the CUR, so de-cur it.
  MI->setDesc(HII->get(HII->getNonDotCurOp(*MI)));
  LLVM_DEBUG(dbgs() << "Demoted CUR "; MI->dump(););
}
// Check to see if an instruction can be dot cur.
bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr &MI,
      const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
      const TargetRegisterClass *RC) {
  if (!HII->isHVXVec(MI))
    return false;
  if (!HII->isHVXVec(*MII))
    return false;
  // Already a dot new instruction.
  if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI))
    return false;
  if (!HII->mayBeCurLoad(MI))
    return false;
  // The "cur value" cannot come from inline asm.
  if (PacketSU->getInstr()->isInlineAsm())
    return false;
  // Make sure candidate instruction uses cur.
  LLVM_DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; MI.dump();
             dbgs() << "in packet\n";);
  MachineInstr &MJ = *MII;
  LLVM_DEBUG({
    dbgs() << "Checking CUR against ";
    MJ.dump();
  });
  Register DestReg = MI.getOperand(0).getReg();
  bool FoundMatch = false;
  for (auto &MO : MJ.operands())
    if (MO.isReg() && MO.getReg() == DestReg)
      FoundMatch = true;
  if (!FoundMatch)
    return false;
  // Check for existing uses of a vector register within the packet which
  // would be affected by converting a vector load into .cur formt.
  for (auto *BI : CurrentPacketMIs) {
    LLVM_DEBUG(dbgs() << "packet has "; BI->dump(););
    if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo()))
      return false;
  }
  LLVM_DEBUG(dbgs() << "Can Dot CUR MI\n"; MI.dump(););
  // We can convert the opcode into a .cur.
  return true;
}
// Promote an instruction to its .new form. At this time, we have already
// made a call to canPromoteToDotNew and made sure that it can *indeed* be
// promoted.
bool HexagonPacketizerList::promoteToDotNew(MachineInstr &MI,
      SDep::Kind DepType, MachineBasicBlock::iterator &MII,
      const TargetRegisterClass* RC) {
  assert(DepType == SDep::Data);
  int NewOpcode;
  if (RC == &Hexagon::PredRegsRegClass)
    NewOpcode = HII->getDotNewPredOp(MI, MBPI);
  else
    NewOpcode = HII->getDotNewOp(MI);
  MI.setDesc(HII->get(NewOpcode));
  return true;
}
bool HexagonPacketizerList::demoteToDotOld(MachineInstr &MI) {
  int NewOpcode = HII->getDotOldOp(MI);
  MI.setDesc(HII->get(NewOpcode));
  return true;
}
bool HexagonPacketizerList::useCallersSP(MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::S2_storerd_io:
    case Hexagon::S2_storeri_io:
    case Hexagon::S2_storerh_io:
    case Hexagon::S2_storerb_io:
      break;
    default:
      llvm_unreachable("Unexpected instruction");
  }
  unsigned FrameSize = MF.getFrameInfo().getStackSize();
  MachineOperand &Off = MI.getOperand(1);
  int64_t NewOff = Off.getImm() - (FrameSize + HEXAGON_LRFP_SIZE);
  if (HII->isValidOffset(Opc, NewOff, HRI)) {
    Off.setImm(NewOff);
    return true;
  }
  return false;
}
void HexagonPacketizerList::useCalleesSP(MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::S2_storerd_io:
    case Hexagon::S2_storeri_io:
    case Hexagon::S2_storerh_io:
    case Hexagon::S2_storerb_io:
      break;
    default:
      llvm_unreachable("Unexpected instruction");
  }
  unsigned FrameSize = MF.getFrameInfo().getStackSize();
  MachineOperand &Off = MI.getOperand(1);
  Off.setImm(Off.getImm() + FrameSize + HEXAGON_LRFP_SIZE);
}
/// Return true if we can update the offset in MI so that MI and MJ
/// can be packetized together.
bool HexagonPacketizerList::updateOffset(SUnit *SUI, SUnit *SUJ) {
  assert(SUI->getInstr() && SUJ->getInstr());
  MachineInstr &MI = *SUI->getInstr();
  MachineInstr &MJ = *SUJ->getInstr();
  unsigned BPI, OPI;
  if (!HII->getBaseAndOffsetPosition(MI, BPI, OPI))
    return false;
  unsigned BPJ, OPJ;
  if (!HII->getBaseAndOffsetPosition(MJ, BPJ, OPJ))
    return false;
  Register Reg = MI.getOperand(BPI).getReg();
  if (Reg != MJ.getOperand(BPJ).getReg())
    return false;
  // Make sure that the dependences do not restrict adding MI to the packet.
  // That is, ignore anti dependences, and make sure the only data dependence
  // involves the specific register.
  for (const auto &PI : SUI->Preds)
    if (PI.getKind() != SDep::Anti &&
        (PI.getKind() != SDep::Data || PI.getReg() != Reg))
      return false;
  int Incr;
  if (!HII->getIncrementValue(MJ, Incr))
    return false;
  int64_t Offset = MI.getOperand(OPI).getImm();
  if (!HII->isValidOffset(MI.getOpcode(), Offset+Incr, HRI))
    return false;
  MI.getOperand(OPI).setImm(Offset + Incr);
  ChangedOffset = Offset;
  return true;
}
/// Undo the changed offset. This is needed if the instruction cannot be
/// added to the current packet due to a different instruction.
void HexagonPacketizerList::undoChangedOffset(MachineInstr &MI) {
  unsigned BP, OP;
  if (!HII->getBaseAndOffsetPosition(MI, BP, OP))
    llvm_unreachable("Unable to find base and offset operands.");
  MI.getOperand(OP).setImm(ChangedOffset);
}
enum PredicateKind {
  PK_False,
  PK_True,
  PK_Unknown
};
/// Returns true if an instruction is predicated on p0 and false if it's
/// predicated on !p0.
static PredicateKind getPredicateSense(const MachineInstr &MI,
                                       const HexagonInstrInfo *HII) {
  if (!HII->isPredicated(MI))
    return PK_Unknown;
  if (HII->isPredicatedTrue(MI))
    return PK_True;
  return PK_False;
}
static const MachineOperand &getPostIncrementOperand(const MachineInstr &MI,
      const HexagonInstrInfo *HII) {
  assert(HII->isPostIncrement(MI) && "Not a post increment operation.");
#ifndef NDEBUG
  // Post Increment means duplicates. Use dense map to find duplicates in the
  // list. Caution: Densemap initializes with the minimum of 64 buckets,
  // whereas there are at most 5 operands in the post increment.
  DenseSet<unsigned> DefRegsSet;
  for (auto &MO : MI.operands())
    if (MO.isReg() && MO.isDef())
      DefRegsSet.insert(MO.getReg());
  for (auto &MO : MI.operands())
    if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg()))
      return MO;
#else
  if (MI.mayLoad()) {
    const MachineOperand &Op1 = MI.getOperand(1);
    // The 2nd operand is always the post increment operand in load.
    assert(Op1.isReg() && "Post increment operand has be to a register.");
    return Op1;
  }
  if (MI.getDesc().mayStore()) {
    const MachineOperand &Op0 = MI.getOperand(0);
    // The 1st operand is always the post increment operand in store.
    assert(Op0.isReg() && "Post increment operand has be to a register.");
    return Op0;
  }
#endif
  // we should never come here.
  llvm_unreachable("mayLoad or mayStore not set for Post Increment operation");
}
// Get the value being stored.
static const MachineOperand& getStoreValueOperand(const MachineInstr &MI) {
  // value being stored is always the last operand.
  return MI.getOperand(MI.getNumOperands()-1);
}
static bool isLoadAbsSet(const MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::L4_loadrd_ap:
    case Hexagon::L4_loadrb_ap:
    case Hexagon::L4_loadrh_ap:
    case Hexagon::L4_loadrub_ap:
    case Hexagon::L4_loadruh_ap:
    case Hexagon::L4_loadri_ap:
      return true;
  }
  return false;
}
static const MachineOperand &getAbsSetOperand(const MachineInstr &MI) {
  assert(isLoadAbsSet(MI));
  return MI.getOperand(1);
}
// Can be new value store?
// Following restrictions are to be respected in convert a store into
// a new value store.
// 1. If an instruction uses auto-increment, its address register cannot
//    be a new-value register. Arch Spec 5.4.2.1
// 2. If an instruction uses absolute-set addressing mode, its address
//    register cannot be a new-value register. Arch Spec 5.4.2.1.
// 3. If an instruction produces a 64-bit result, its registers cannot be used
//    as new-value registers. Arch Spec 5.4.2.2.
// 4. If the instruction that sets the new-value register is conditional, then
//    the instruction that uses the new-value register must also be conditional,
//    and both must always have their predicates evaluate identically.
//    Arch Spec 5.4.2.3.
// 5. There is an implied restriction that a packet cannot have another store,
//    if there is a new value store in the packet. Corollary: if there is
//    already a store in a packet, there can not be a new value store.
//    Arch Spec: 3.4.4.2
bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr &MI,
      const MachineInstr &PacketMI, unsigned DepReg) {
  // Make sure we are looking at the store, that can be promoted.
  if (!HII->mayBeNewStore(MI))
    return false;
  // Make sure there is dependency and can be new value'd.
  const MachineOperand &Val = getStoreValueOperand(MI);
  if (Val.isReg() && Val.getReg() != DepReg)
    return false;
  const MCInstrDesc& MCID = PacketMI.getDesc();
  // First operand is always the result.
  const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF);
  // Double regs can not feed into new value store: PRM section: 5.4.2.2.
  if (PacketRC == &Hexagon::DoubleRegsRegClass)
    return false;
  // New-value stores are of class NV (slot 0), dual stores require class ST
  // in slot 0 (PRM 5.5).
  for (auto *I : CurrentPacketMIs) {
    SUnit *PacketSU = MIToSUnit.find(I)->second;
    if (PacketSU->getInstr()->mayStore())
      return false;
  }
  // Make sure it's NOT the post increment register that we are going to
  // new value.
  if (HII->isPostIncrement(MI) &&
      getPostIncrementOperand(MI, HII).getReg() == DepReg) {
    return false;
  }
  if (HII->isPostIncrement(PacketMI) && PacketMI.mayLoad() &&
      getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) {
    // If source is post_inc, or absolute-set addressing, it can not feed
    // into new value store
    //   r3 = memw(r2++#4)
    //   memw(r30 + #-1404) = r2.new -> can not be new value store
    // arch spec section: 5.4.2.1.
    return false;
  }
  if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg)
    return false;
  // If the source that feeds the store is predicated, new value store must
  // also be predicated.
  if (HII->isPredicated(PacketMI)) {
    if (!HII->isPredicated(MI))
      return false;
    // Check to make sure that they both will have their predicates
    // evaluate identically.
    unsigned predRegNumSrc = 0;
    unsigned predRegNumDst = 0;
    const TargetRegisterClass* predRegClass = nullptr;
    // Get predicate register used in the source instruction.
    for (auto &MO : PacketMI.operands()) {
      if (!MO.isReg())
        continue;
      predRegNumSrc = MO.getReg();
      predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc);
      if (predRegClass == &Hexagon::PredRegsRegClass)
        break;
    }
    assert((predRegClass == &Hexagon::PredRegsRegClass) &&
        "predicate register not found in a predicated PacketMI instruction");
    // Get predicate register used in new-value store instruction.
    for (auto &MO : MI.operands()) {
      if (!MO.isReg())
        continue;
      predRegNumDst = MO.getReg();
      predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst);
      if (predRegClass == &Hexagon::PredRegsRegClass)
        break;
    }
    assert((predRegClass == &Hexagon::PredRegsRegClass) &&
           "predicate register not found in a predicated MI instruction");
    // New-value register producer and user (store) need to satisfy these
    // constraints:
    // 1) Both instructions should be predicated on the same register.
    // 2) If producer of the new-value register is .new predicated then store
    // should also be .new predicated and if producer is not .new predicated
    // then store should not be .new predicated.
    // 3) Both new-value register producer and user should have same predicate
    // sense, i.e, either both should be negated or both should be non-negated.
    if (predRegNumDst != predRegNumSrc ||
        HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) ||
        getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII))
      return false;
  }
  // Make sure that other than the new-value register no other store instruction
  // register has been modified in the same packet. Predicate registers can be
  // modified by they should not be modified between the producer and the store
  // instruction as it will make them both conditional on different values.
  // We already know this to be true for all the instructions before and
  // including PacketMI. Howerver, we need to perform the check for the
  // remaining instructions in the packet.
  unsigned StartCheck = 0;
  for (auto *I : CurrentPacketMIs) {
    SUnit *TempSU = MIToSUnit.find(I)->second;
    MachineInstr &TempMI = *TempSU->getInstr();
    // Following condition is true for all the instructions until PacketMI is
    // reached (StartCheck is set to 0 before the for loop).
    // StartCheck flag is 1 for all the instructions after PacketMI.
    if (&TempMI != &PacketMI && !StartCheck) // Start processing only after
      continue;                              // encountering PacketMI.
    StartCheck = 1;
    if (&TempMI == &PacketMI) // We don't want to check PacketMI for dependence.
      continue;
    for (auto &MO : MI.operands())
      if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI))
        return false;
  }
  // Make sure that for non-POST_INC stores:
  // 1. The only use of reg is DepReg and no other registers.
  //    This handles base+index registers.
  //    The following store can not be dot new.
  //    Eg.   r0 = add(r0, #3)
  //          memw(r1+r0<<#2) = r0
  if (!HII->isPostIncrement(MI)) {
    for (unsigned opNum = 0; opNum < MI.getNumOperands()-1; opNum++) {
      const MachineOperand &MO = MI.getOperand(opNum);
      if (MO.isReg() && MO.getReg() == DepReg)
        return false;
    }
  }
  // If data definition is because of implicit definition of the register,
  // do not newify the store. Eg.
  // %r9 = ZXTH %r12, implicit %d6, implicit-def %r12
  // S2_storerh_io %r8, 2, killed %r12; mem:ST2[%scevgep343]
  for (auto &MO : PacketMI.operands()) {
    if (MO.isRegMask() && MO.clobbersPhysReg(DepReg))
      return false;
    if (!MO.isReg() || !MO.isDef() || !MO.isImplicit())
      continue;
    Register R = MO.getReg();
    if (R == DepReg || HRI->isSuperRegister(DepReg, R))
      return false;
  }
  // Handle imp-use of super reg case. There is a target independent side
  // change that should prevent this situation but I am handling it for
  // just-in-case. For example, we cannot newify R2 in the following case:
  // %r3 = A2_tfrsi 0;
  // S2_storeri_io killed %r0, 0, killed %r2, implicit killed %d1;
  for (auto &MO : MI.operands()) {
    if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg)
      return false;
  }
  // Can be dot new store.
  return true;
}
// Can this MI to promoted to either new value store or new value jump.
bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr &MI,
      const SUnit *PacketSU, unsigned DepReg,
      MachineBasicBlock::iterator &MII) {
  if (!HII->mayBeNewStore(MI))
    return false;
  // Check to see the store can be new value'ed.
  MachineInstr &PacketMI = *PacketSU->getInstr();
  if (canPromoteToNewValueStore(MI, PacketMI, DepReg))
    return true;
  // Check to see the compare/jump can be new value'ed.
  // This is done as a pass on its own. Don't need to check it here.
  return false;
}
static bool isImplicitDependency(const MachineInstr &I, bool CheckDef,
      unsigned DepReg) {
  for (auto &MO : I.operands()) {
    if (CheckDef && MO.isRegMask() && MO.clobbersPhysReg(DepReg))
      return true;
    if (!MO.isReg() || MO.getReg() != DepReg || !MO.isImplicit())
      continue;
    if (CheckDef == MO.isDef())
      return true;
  }
  return false;
}
// Check to see if an instruction can be dot new.
bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr &MI,
      const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII,
      const TargetRegisterClass* RC) {
  // Already a dot new instruction.
  if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI))
    return false;
  if (!isNewifiable(MI, RC))
    return false;
  const MachineInstr &PI = *PacketSU->getInstr();
  // The "new value" cannot come from inline asm.
  if (PI.isInlineAsm())
    return false;
  // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no
  // sense.
  if (PI.isImplicitDef())
    return false;
  // If dependency is trough an implicitly defined register, we should not
  // newify the use.
  if (isImplicitDependency(PI, true, DepReg) ||
      isImplicitDependency(MI, false, DepReg))
    return false;
  const MCInstrDesc& MCID = PI.getDesc();
  const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF);
  if (DisableVecDblNVStores && VecRC == &Hexagon::HvxWRRegClass)
    return false;
  // predicate .new
  if (RC == &Hexagon::PredRegsRegClass)
    return HII->predCanBeUsedAsDotNew(PI, DepReg);
  if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI))
    return false;
  // Create a dot new machine instruction to see if resources can be
  // allocated. If not, bail out now.
  int NewOpcode = (RC != &Hexagon::PredRegsRegClass) ? HII->getDotNewOp(MI) :
    HII->getDotNewPredOp(MI, MBPI);
  const MCInstrDesc &D = HII->get(NewOpcode);
  MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc());
  bool ResourcesAvailable = ResourceTracker->canReserveResources(*NewMI);
  MF.deleteMachineInstr(NewMI);
  if (!ResourcesAvailable)
    return false;
  // New Value Store only. New Value Jump generated as a separate pass.
  if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII))
    return false;
  return true;
}
// Go through the packet instructions and search for an anti dependency between
// them and DepReg from MI. Consider this case:
// Trying to add
// a) %r1 = TFRI_cdNotPt %p3, 2
// to this packet:
// {
//   b) %p0 = C2_or killed %p3, killed %p0
//   c) %p3 = C2_tfrrp %r23
//   d) %r1 = C2_cmovenewit %p3, 4
//  }
// The P3 from a) and d) will be complements after
// a)'s P3 is converted to .new form
// Anti-dep between c) and b) is irrelevant for this case
bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr &MI,
                                                        unsigned DepReg) {
  SUnit *PacketSUDep = MIToSUnit.find(&MI)->second;
  for (auto *I : CurrentPacketMIs) {
    // We only care for dependencies to predicated instructions
    if (!HII->isPredicated(*I))
      continue;
    // Scheduling Unit for current insn in the packet
    SUnit *PacketSU = MIToSUnit.find(I)->second;
    // Look at dependencies between current members of the packet and
    // predicate defining instruction MI. Make sure that dependency is
    // on the exact register we care about.
    if (PacketSU->isSucc(PacketSUDep)) {
      for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
        auto &Dep = PacketSU->Succs[i];
        if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti &&
            Dep.getReg() == DepReg)
          return true;
      }
    }
  }
  return false;
}
/// Gets the predicate register of a predicated instruction.
static unsigned getPredicatedRegister(MachineInstr &MI,
                                      const HexagonInstrInfo *QII) {
  /// We use the following rule: The first predicate register that is a use is
  /// the predicate register of a predicated instruction.
  assert(QII->isPredicated(MI) && "Must be predicated instruction");
  for (auto &Op : MI.operands()) {
    if (Op.isReg() && Op.getReg() && Op.isUse() &&
        Hexagon::PredRegsRegClass.contains(Op.getReg()))
      return Op.getReg();
  }
  llvm_unreachable("Unknown instruction operand layout");
  return 0;
}
// Given two predicated instructions, this function detects whether
// the predicates are complements.
bool HexagonPacketizerList::arePredicatesComplements(MachineInstr &MI1,
                                                     MachineInstr &MI2) {
  // If we don't know the predicate sense of the instructions bail out early, we
  // need it later.
  if (getPredicateSense(MI1, HII) == PK_Unknown ||
      getPredicateSense(MI2, HII) == PK_Unknown)
    return false;
  // Scheduling unit for candidate.
  SUnit *SU = MIToSUnit[&MI1];
  // One corner case deals with the following scenario:
  // Trying to add
  // a) %r24 = A2_tfrt %p0, %r25
  // to this packet:
  // {
  //   b) %r25 = A2_tfrf %p0, %r24
  //   c) %p0 = C2_cmpeqi %r26, 1
  // }
  //
  // On general check a) and b) are complements, but presence of c) will
  // convert a) to .new form, and then it is not a complement.
  // We attempt to detect it by analyzing existing dependencies in the packet.
  // Analyze relationships between all existing members of the packet.
  // Look for Anti dependecy on the same predicate reg as used in the
  // candidate.
  for (auto *I : CurrentPacketMIs) {
    // Scheduling Unit for current insn in the packet.
    SUnit *PacketSU = MIToSUnit.find(I)->second;
    // If this instruction in the packet is succeeded by the candidate...
    if (PacketSU->isSucc(SU)) {
      for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) {
        auto Dep = PacketSU->Succs[i];
        // The corner case exist when there is true data dependency between
        // candidate and one of current packet members, this dep is on
        // predicate reg, and there already exist anti dep on the same pred in
        // the packet.
        if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data &&
            Hexagon::PredRegsRegClass.contains(Dep.getReg())) {
          // Here I know that I is predicate setting instruction with true
          // data dep to candidate on the register we care about - c) in the
          // above example. Now I need to see if there is an anti dependency
          // from c) to any other instruction in the same packet on the pred
          // reg of interest.
          if (restrictingDepExistInPacket(*I, Dep.getReg()))
            return false;
        }
      }
    }
  }
  // If the above case does not apply, check regular complement condition.
  // Check that the predicate register is the same and that the predicate
  // sense is different We also need to differentiate .old vs. .new: !p0
  // is not complementary to p0.new.
  unsigned PReg1 = getPredicatedRegister(MI1, HII);
  unsigned PReg2 = getPredicatedRegister(MI2, HII);
  return PReg1 == PReg2 &&
         Hexagon::PredRegsRegClass.contains(PReg1) &&
         Hexagon::PredRegsRegClass.contains(PReg2) &&
         getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) &&
         HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2);
}
// Initialize packetizer flags.
void HexagonPacketizerList::initPacketizerState() {
  Dependence = false;
  PromotedToDotNew = false;
  GlueToNewValueJump = false;
  GlueAllocframeStore = false;
  FoundSequentialDependence = false;
  ChangedOffset = INT64_MAX;
}
// Ignore bundling of pseudo instructions.
bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr &MI,
                                                    const MachineBasicBlock *) {
  if (MI.isDebugInstr())
    return true;
  if (MI.isCFIInstruction())
    return false;
  // We must print out inline assembly.
  if (MI.isInlineAsm())
    return false;
  if (MI.isImplicitDef())
    return false;
  // We check if MI has any functional units mapped to it. If it doesn't,
  // we ignore the instruction.
  const MCInstrDesc& TID = MI.getDesc();
  auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass());
  return !IS->getUnits();
}
bool HexagonPacketizerList::isSoloInstruction(const MachineInstr &MI) {
  // Ensure any bundles created by gather packetize remain separate.
  if (MI.isBundle())
    return true;
  if (MI.isEHLabel() || MI.isCFIInstruction())
    return true;
  // Consider inline asm to not be a solo instruction by default.
  // Inline asm will be put in a packet temporarily, but then it will be
  // removed, and placed outside of the packet (before or after, depending
  // on dependencies).  This is to reduce the impact of inline asm as a
  // "packet splitting" instruction.
  if (MI.isInlineAsm() && !ScheduleInlineAsm)
    return true;
  if (isSchedBarrier(MI))
    return true;
  if (HII->isSolo(MI))
    return true;
  if (MI.getOpcode() == Hexagon::PATCHABLE_FUNCTION_ENTER ||
      MI.getOpcode() == Hexagon::PATCHABLE_FUNCTION_EXIT ||
      MI.getOpcode() == Hexagon::PATCHABLE_TAIL_CALL)
    return true;
  if (MI.getOpcode() == Hexagon::A2_nop)
    return true;
  return false;
}
// Quick check if instructions MI and MJ cannot coexist in the same packet.
// Limit the tests to be "one-way", e.g.  "if MI->isBranch and MJ->isInlineAsm",
// but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm".
// For full test call this function twice:
//   cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI)
// Doing the test only one way saves the amount of code in this function,
// since every test would need to be repeated with the MI and MJ reversed.
static bool cannotCoexistAsymm(const MachineInstr &MI, const MachineInstr &MJ,
      const HexagonInstrInfo &HII) {
  const MachineFunction *MF = MI.getParent()->getParent();
  if (MF->getSubtarget<HexagonSubtarget>().hasV60OpsOnly() &&
      HII.isHVXMemWithAIndirect(MI, MJ))
    return true;
  // Don't allow a store and an instruction that must be in slot0 and
  // doesn't allow a slot1 instruction.
  if (MI.mayStore() && HII.isRestrictNoSlot1Store(MJ) && HII.isPureSlot0(MJ))
    return true;
  // An inline asm cannot be together with a branch, because we may not be
  // able to remove the asm out after packetizing (i.e. if the asm must be
  // moved past the bundle).  Similarly, two asms cannot be together to avoid
  // complications when determining their relative order outside of a bundle.
  if (MI.isInlineAsm())
    return MJ.isInlineAsm() || MJ.isBranch() || MJ.isBarrier() ||
           MJ.isCall() || MJ.isTerminator();
  // New-value stores cannot coexist with any other stores.
  if (HII.isNewValueStore(MI) && MJ.mayStore())
    return true;
  switch (MI.getOpcode()) {
  case Hexagon::S2_storew_locked:
  case Hexagon::S4_stored_locked:
  case Hexagon::L2_loadw_locked:
  case Hexagon::L4_loadd_locked:
  case Hexagon::Y2_dccleana:
  case Hexagon::Y2_dccleaninva:
  case Hexagon::Y2_dcinva:
  case Hexagon::Y2_dczeroa:
  case Hexagon::Y4_l2fetch:
  case Hexagon::Y5_l2fetch: {
    // These instructions can only be grouped with ALU32 or non-floating-point
    // XTYPE instructions.  Since there is no convenient way of identifying fp
    // XTYPE instructions, only allow grouping with ALU32 for now.
    unsigned TJ = HII.getType(MJ);
    if (TJ != HexagonII::TypeALU32_2op &&
        TJ != HexagonII::TypeALU32_3op &&
        TJ != HexagonII::TypeALU32_ADDI)
      return true;
    break;
  }
  default:
    break;
  }
  // "False" really means that the quick check failed to determine if
  // I and J cannot coexist.
  return false;
}
// Full, symmetric check.
bool HexagonPacketizerList::cannotCoexist(const MachineInstr &MI,
      const MachineInstr &MJ) {
  return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII);
}
void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) {
  for (auto &B : MF) {
    MachineBasicBlock::iterator BundleIt;
    for (MachineInstr &MI : llvm::make_early_inc_range(B.instrs())) {
      if (MI.isBundle())
        BundleIt = MI.getIterator();
      if (!MI.isInsideBundle())
        continue;
      // Decide on where to insert the instruction that we are pulling out.
      // Debug instructions always go before the bundle, but the placement of
      // INLINE_ASM depends on potential dependencies.  By default, try to
      // put it before the bundle, but if the asm writes to a register that
      // other instructions in the bundle read, then we need to place it
      // after the bundle (to preserve the bundle semantics).
      bool InsertBeforeBundle;
      if (MI.isInlineAsm())
        InsertBeforeBundle = !hasWriteToReadDep(MI, *BundleIt, HRI);
      else if (MI.isDebugInstr())
        InsertBeforeBundle = true;
      else
        continue;
      BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle);
    }
  }
}
// Check if a given instruction is of class "system".
static bool isSystemInstr(const MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::Y2_barrier:
    case Hexagon::Y2_dcfetchbo:
    case Hexagon::Y4_l2fetch:
    case Hexagon::Y5_l2fetch:
      return true;
  }
  return false;
}
bool HexagonPacketizerList::hasDeadDependence(const MachineInstr &I,
                                              const MachineInstr &J) {
  // The dependence graph may not include edges between dead definitions,
  // so without extra checks, we could end up packetizing two instruction
  // defining the same (dead) register.
  if (I.isCall() || J.isCall())
    return false;
  if (HII->isPredicated(I) || HII->isPredicated(J))
    return false;
  BitVector DeadDefs(Hexagon::NUM_TARGET_REGS);
  for (auto &MO : I.operands()) {
    if (!MO.isReg() || !MO.isDef() || !MO.isDead())
      continue;
    DeadDefs[MO.getReg()] = true;
  }
  for (auto &MO : J.operands()) {
    if (!MO.isReg() || !MO.isDef() || !MO.isDead())
      continue;
    Register R = MO.getReg();
    if (R != Hexagon::USR_OVF && DeadDefs[R])
      return true;
  }
  return false;
}
bool HexagonPacketizerList::hasControlDependence(const MachineInstr &I,
                                                 const MachineInstr &J) {
  // A save callee-save register function call can only be in a packet
  // with instructions that don't write to the callee-save registers.
  if ((HII->isSaveCalleeSavedRegsCall(I) &&
       doesModifyCalleeSavedReg(J, HRI)) ||
      (HII->isSaveCalleeSavedRegsCall(J) &&
       doesModifyCalleeSavedReg(I, HRI)))
    return true;
  // Two control flow instructions cannot go in the same packet.
  if (isControlFlow(I) && isControlFlow(J))
    return true;
  // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot
  // contain a speculative indirect jump,
  // a new-value compare jump or a dealloc_return.
  auto isBadForLoopN = [this] (const MachineInstr &MI) -> bool {
    if (MI.isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI))
      return true;
    if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI))
      return true;
    return false;
  };
  if (HII->isLoopN(I) && isBadForLoopN(J))
    return true;
  if (HII->isLoopN(J) && isBadForLoopN(I))
    return true;
  // dealloc_return cannot appear in the same packet as a conditional or
  // unconditional jump.
  return HII->isDeallocRet(I) &&
         (J.isBranch() || J.isCall() || J.isBarrier());
}
bool HexagonPacketizerList::hasRegMaskDependence(const MachineInstr &I,
                                                 const MachineInstr &J) {
  // Adding I to a packet that has J.
  // Regmasks are not reflected in the scheduling dependency graph, so
  // we need to check them manually. This code assumes that regmasks only
  // occur on calls, and the problematic case is when we add an instruction
  // defining a register R to a packet that has a call that clobbers R via
  // a regmask. Those cannot be packetized together, because the call will
  // be executed last. That's also a reson why it is ok to add a call
  // clobbering R to a packet that defines R.
  // Look for regmasks in J.
  for (const MachineOperand &OpJ : J.operands()) {
    if (!OpJ.isRegMask())
      continue;
    assert((J.isCall() || HII->isTailCall(J)) && "Regmask on a non-call");
    for (const MachineOperand &OpI : I.operands()) {
      if (OpI.isReg()) {
        if (OpJ.clobbersPhysReg(OpI.getReg()))
          return true;
      } else if (OpI.isRegMask()) {
        // Both are regmasks. Assume that they intersect.
        return true;
      }
    }
  }
  return false;
}
bool HexagonPacketizerList::hasDualStoreDependence(const MachineInstr &I,
                                                   const MachineInstr &J) {
  bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J);
  bool StoreI = I.mayStore(), StoreJ = J.mayStore();
  if ((SysI && StoreJ) || (SysJ && StoreI))
    return true;
  if (StoreI && StoreJ) {
    if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I))
      return true;
  } else {
    // A memop cannot be in the same packet with another memop or a store.
    // Two stores can be together, but here I and J cannot both be stores.
    bool MopStI = HII->isMemOp(I) || StoreI;
    bool MopStJ = HII->isMemOp(J) || StoreJ;
    if (MopStI && MopStJ)
      return true;
  }
  return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J));
}
// SUI is the current instruction that is outside of the current packet.
// SUJ is the current instruction inside the current packet against which that
// SUI will be packetized.
bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
  assert(SUI->getInstr() && SUJ->getInstr());
  MachineInstr &I = *SUI->getInstr();
  MachineInstr &J = *SUJ->getInstr();
  // Clear IgnoreDepMIs when Packet starts.
  if (CurrentPacketMIs.size() == 1)
    IgnoreDepMIs.clear();
  MachineBasicBlock::iterator II = I.getIterator();
  // Solo instructions cannot go in the packet.
  assert(!isSoloInstruction(I) && "Unexpected solo instr!");
  if (cannotCoexist(I, J))
    return false;
  Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J);
  if (Dependence)
    return false;
  // Regmasks are not accounted for in the scheduling graph, so we need
  // to explicitly check for dependencies caused by them. They should only
  // appear on calls, so it's not too pessimistic to reject all regmask
  // dependencies.
  Dependence = hasRegMaskDependence(I, J);
  if (Dependence)
    return false;
  // Dual-store does not allow second store, if the first store is not
  // in SLOT0. New value store, new value jump, dealloc_return and memop
  // always take SLOT0. Arch spec 3.4.4.2.
  Dependence = hasDualStoreDependence(I, J);
  if (Dependence)
    return false;
  // If an instruction feeds new value jump, glue it.
  MachineBasicBlock::iterator NextMII = I.getIterator();
  ++NextMII;
  if (NextMII != I.getParent()->end() && HII->isNewValueJump(*NextMII)) {
    MachineInstr &NextMI = *NextMII;
    bool secondRegMatch = false;
    const MachineOperand &NOp0 = NextMI.getOperand(0);
    const MachineOperand &NOp1 = NextMI.getOperand(1);
    if (NOp1.isReg() && I.getOperand(0).getReg() == NOp1.getReg())
      secondRegMatch = true;
    for (MachineInstr *PI : CurrentPacketMIs) {
      // NVJ can not be part of the dual jump - Arch Spec: section 7.8.
      if (PI->isCall()) {
        Dependence = true;
        break;
      }
      // Validate:
      // 1. Packet does not have a store in it.
      // 2. If the first operand of the nvj is newified, and the second
      //    operand is also a reg, it (second reg) is not defined in
      //    the same packet.
      // 3. If the second operand of the nvj is newified, (which means
      //    first operand is also a reg), first reg is not defined in
      //    the same packet.
      if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() ||
          HII->isLoopN(*PI)) {
        Dependence = true;
        break;
      }
      // Check #2/#3.
      const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1;
      if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) {
        Dependence = true;
        break;
      }
    }
    GlueToNewValueJump = true;
    if (Dependence)
      return false;
  }
  // There no dependency between a prolog instruction and its successor.
  if (!SUJ->isSucc(SUI))
    return true;
  for (unsigned i = 0; i < SUJ->Succs.size(); ++i) {
    if (FoundSequentialDependence)
      break;
    if (SUJ->Succs[i].getSUnit() != SUI)
      continue;
    SDep::Kind DepType = SUJ->Succs[i].getKind();
    // For direct calls:
    // Ignore register dependences for call instructions for packetization
    // purposes except for those due to r31 and predicate registers.
    //
    // For indirect calls:
    // Same as direct calls + check for true dependences to the register
    // used in the indirect call.
    //
    // We completely ignore Order dependences for call instructions.
    //
    // For returns:
    // Ignore register dependences for return instructions like jumpr,
    // dealloc return unless we have dependencies on the explicit uses
    // of the registers used by jumpr (like r31) or dealloc return
    // (like r29 or r30).
    unsigned DepReg = 0;
    const TargetRegisterClass *RC = nullptr;
    if (DepType == SDep::Data) {
      DepReg = SUJ->Succs[i].getReg();
      RC = HRI->getMinimalPhysRegClass(DepReg);
    }
    if (I.isCall() || HII->isJumpR(I) || I.isReturn() || HII->isTailCall(I)) {
      if (!isRegDependence(DepType))
        continue;
      if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg()))
        continue;
    }
    if (DepType == SDep::Data) {
      if (canPromoteToDotCur(J, SUJ, DepReg, II, RC))
        if (promoteToDotCur(J, DepType, II, RC))
          continue;
    }
    // Data dpendence ok if we have load.cur.
    if (DepType == SDep::Data && HII->isDotCurInst(J)) {
      if (HII->isHVXVec(I))
        continue;
    }
    // For instructions that can be promoted to dot-new, try to promote.
    if (DepType == SDep::Data) {
      if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) {
        if (promoteToDotNew(I, DepType, II, RC)) {
          PromotedToDotNew = true;
          if (cannotCoexist(I, J))
            FoundSequentialDependence = true;
          continue;
        }
      }
      if (HII->isNewValueJump(I))
        continue;
    }
    // For predicated instructions, if the predicates are complements then
    // there can be no dependence.
    if (HII->isPredicated(I) && HII->isPredicated(J) &&
        arePredicatesComplements(I, J)) {
      // Not always safe to do this translation.
      // DAG Builder attempts to reduce dependence edges using transitive
      // nature of dependencies. Here is an example:
      //
      // r0 = tfr_pt ... (1)
      // r0 = tfr_pf ... (2)
      // r0 = tfr_pt ... (3)
      //
      // There will be an output dependence between (1)->(2) and (2)->(3).
      // However, there is no dependence edge between (1)->(3). This results
      // in all 3 instructions going in the same packet. We ignore dependce
      // only once to avoid this situation.
      auto Itr = find(IgnoreDepMIs, &J);
      if (Itr != IgnoreDepMIs.end()) {
        Dependence = true;
        return false;
      }
      IgnoreDepMIs.push_back(&I);
      continue;
    }
    // Ignore Order dependences between unconditional direct branches
    // and non-control-flow instructions.
    if (isDirectJump(I) && !J.isBranch() && !J.isCall() &&
        DepType == SDep::Order)
      continue;
    // Ignore all dependences for jumps except for true and output
    // dependences.
    if (I.isConditionalBranch() && DepType != SDep::Data &&
        DepType != SDep::Output)
      continue;
    if (DepType == SDep::Output) {
      FoundSequentialDependence = true;
      break;
    }
    // For Order dependences:
    // 1. Volatile loads/stores can be packetized together, unless other
    //    rules prevent is.
    // 2. Store followed by a load is not allowed.
    // 3. Store followed by a store is valid.
    // 4. Load followed by any memory operation is allowed.
    if (DepType == SDep::Order) {
      if (!PacketizeVolatiles) {
        bool OrdRefs = I.hasOrderedMemoryRef() || J.hasOrderedMemoryRef();
        if (OrdRefs) {
          FoundSequentialDependence = true;
          break;
        }
      }
      // J is first, I is second.
      bool LoadJ = J.mayLoad(), StoreJ = J.mayStore();
      bool LoadI = I.mayLoad(), StoreI = I.mayStore();
      bool NVStoreJ = HII->isNewValueStore(J);
      bool NVStoreI = HII->isNewValueStore(I);
      bool IsVecJ = HII->isHVXVec(J);
      bool IsVecI = HII->isHVXVec(I);
      // Don't reorder the loads if there is an order dependence. This would
      // occur if the first instruction must go in slot0.
      if (LoadJ && LoadI && HII->isPureSlot0(J)) {
        FoundSequentialDependence = true;
        break;
      }
      if (Slot1Store && MF.getSubtarget<HexagonSubtarget>().hasV65Ops() &&
          ((LoadJ && StoreI && !NVStoreI) ||
           (StoreJ && LoadI && !NVStoreJ)) &&
          (J.getOpcode() != Hexagon::S2_allocframe &&
           I.getOpcode() != Hexagon::S2_allocframe) &&
          (J.getOpcode() != Hexagon::L2_deallocframe &&
           I.getOpcode() != Hexagon::L2_deallocframe) &&
          (!HII->isMemOp(J) && !HII->isMemOp(I)) && (!IsVecJ && !IsVecI))
        setmemShufDisabled(true);
      else
        if (StoreJ && LoadI && alias(J, I)) {
          FoundSequentialDependence = true;
          break;
        }
      if (!StoreJ)
        if (!LoadJ || (!LoadI && !StoreI)) {
          // If J is neither load nor store, assume a dependency.
          // If J is a load, but I is neither, also assume a dependency.
          FoundSequentialDependence = true;
          break;
        }
      // Store followed by store: not OK on V2.
      // Store followed by load: not OK on all.
      // Load followed by store: OK on all.
      // Load followed by load: OK on all.
      continue;
    }
    // Special case for ALLOCFRAME: even though there is dependency
    // between ALLOCFRAME and subsequent store, allow it to be packetized
    // in a same packet. This implies that the store is using the caller's
    // SP. Hence, offset needs to be updated accordingly.
    if (DepType == SDep::Data && J.getOpcode() == Hexagon::S2_allocframe) {
      unsigned Opc = I.getOpcode();
      switch (Opc) {
        case Hexagon::S2_storerd_io:
        case Hexagon::S2_storeri_io:
        case Hexagon::S2_storerh_io:
        case Hexagon::S2_storerb_io:
          if (I.getOperand(0).getReg() == HRI->getStackRegister()) {
            // Since this store is to be glued with allocframe in the same
            // packet, it will use SP of the previous stack frame, i.e.
            // caller's SP. Therefore, we need to recalculate offset
            // according to this change.
            GlueAllocframeStore = useCallersSP(I);
            if (GlueAllocframeStore)
              continue;
          }
          break;
        default:
          break;
      }
    }
    // There are certain anti-dependencies that cannot be ignored.
    // Specifically:
    //   J2_call ... implicit-def %r0   ; SUJ
    //   R0 = ...                   ; SUI
    // Those cannot be packetized together, since the call will observe
    // the effect of the assignment to R0.
    if ((DepType == SDep::Anti || DepType == SDep::Output) && J.isCall()) {
      // Check if I defines any volatile register. We should also check
      // registers that the call may read, but these happen to be a
      // subset of the volatile register set.
      for (const MachineOperand &Op : I.operands()) {
        if (Op.isReg() && Op.isDef()) {
          Register R = Op.getReg();
          if (!J.readsRegister(R, HRI) && !J.modifiesRegister(R, HRI))
            continue;
        } else if (!Op.isRegMask()) {
          // If I has a regmask assume dependency.
          continue;
        }
        FoundSequentialDependence = true;
        break;
      }
    }
    // Skip over remaining anti-dependences. Two instructions that are
    // anti-dependent can share a packet, since in most such cases all
    // operands are read before any modifications take place.
    // The exceptions are branch and call instructions, since they are
    // executed after all other instructions have completed (at least
    // conceptually).
    if (DepType != SDep::Anti) {
      FoundSequentialDependence = true;
      break;
    }
  }
  if (FoundSequentialDependence) {
    Dependence = true;
    return false;
  }
  return true;
}
bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {
  assert(SUI->getInstr() && SUJ->getInstr());
  MachineInstr &I = *SUI->getInstr();
  MachineInstr &J = *SUJ->getInstr();
  bool Coexist = !cannotCoexist(I, J);
  if (Coexist && !Dependence)
    return true;
  // Check if the instruction was promoted to a dot-new. If so, demote it
  // back into a dot-old.
  if (PromotedToDotNew)
    demoteToDotOld(I);
  cleanUpDotCur();
  // Check if the instruction (must be a store) was glued with an allocframe
  // instruction. If so, restore its offset to its original value, i.e. use
  // current SP instead of caller's SP.
  if (GlueAllocframeStore) {
    useCalleesSP(I);
    GlueAllocframeStore = false;
  }
  if (ChangedOffset != INT64_MAX)
    undoChangedOffset(I);
  if (GlueToNewValueJump) {
    // Putting I and J together would prevent the new-value jump from being
    // packetized with the producer. In that case I and J must be separated.
    GlueToNewValueJump = false;
    return false;
  }
  if (!Coexist)
    return false;
  if (ChangedOffset == INT64_MAX && updateOffset(SUI, SUJ)) {
    FoundSequentialDependence = false;
    Dependence = false;
    return true;
  }
  return false;
}
bool HexagonPacketizerList::foundLSInPacket() {
  bool FoundLoad = false;
  bool FoundStore = false;
  for (auto *MJ : CurrentPacketMIs) {
    unsigned Opc = MJ->getOpcode();
    if (Opc == Hexagon::S2_allocframe || Opc == Hexagon::L2_deallocframe)
      continue;
    if (HII->isMemOp(*MJ))
      continue;
    if (MJ->mayLoad())
      FoundLoad = true;
    if (MJ->mayStore() && !HII->isNewValueStore(*MJ))
      FoundStore = true;
  }
  return FoundLoad && FoundStore;
}
MachineBasicBlock::iterator
HexagonPacketizerList::addToPacket(MachineInstr &MI) {
  MachineBasicBlock::iterator MII = MI.getIterator();
  MachineBasicBlock *MBB = MI.getParent();
  if (CurrentPacketMIs.empty()) {
    PacketStalls = false;
    PacketStallCycles = 0;
  }
  PacketStalls |= producesStall(MI);
  PacketStallCycles = std::max(PacketStallCycles, calcStall(MI));
  if (MI.isImplicitDef()) {
    // Add to the packet to allow subsequent instructions to be checked
    // properly.
    CurrentPacketMIs.push_back(&MI);
    return MII;
  }
  assert(ResourceTracker->canReserveResources(MI));
  bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI);
  bool Good = true;
  if (GlueToNewValueJump) {
    MachineInstr &NvjMI = *++MII;
    // We need to put both instructions in the same packet: MI and NvjMI.
    // Either of them can require a constant extender. Try to add both to
    // the current packet, and if that fails, end the packet and start a
    // new one.
    ResourceTracker->reserveResources(MI);
    if (ExtMI)
      Good = tryAllocateResourcesForConstExt(true);
    bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI);
    if (Good) {
      if (ResourceTracker->canReserveResources(NvjMI))
        ResourceTracker->reserveResources(NvjMI);
      else
        Good = false;
    }
    if (Good && ExtNvjMI)
      Good = tryAllocateResourcesForConstExt(true);
    if (!Good) {
      endPacket(MBB, MI);
      assert(ResourceTracker->canReserveResources(MI));
      ResourceTracker->reserveResources(MI);
      if (ExtMI) {
        assert(canReserveResourcesForConstExt());
        tryAllocateResourcesForConstExt(true);
      }
      assert(ResourceTracker->canReserveResources(NvjMI));
      ResourceTracker->reserveResources(NvjMI);
      if (ExtNvjMI) {
        assert(canReserveResourcesForConstExt());
        reserveResourcesForConstExt();
      }
    }
    CurrentPacketMIs.push_back(&MI);
    CurrentPacketMIs.push_back(&NvjMI);
    return MII;
  }
  ResourceTracker->reserveResources(MI);
  if (ExtMI && !tryAllocateResourcesForConstExt(true)) {
    endPacket(MBB, MI);
    if (PromotedToDotNew)
      demoteToDotOld(MI);
    if (GlueAllocframeStore) {
      useCalleesSP(MI);
      GlueAllocframeStore = false;
    }
    ResourceTracker->reserveResources(MI);
    reserveResourcesForConstExt();
  }
  CurrentPacketMIs.push_back(&MI);
  return MII;
}
void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB,
                                      MachineBasicBlock::iterator EndMI) {
  // Replace VLIWPacketizerList::endPacket(MBB, EndMI).
  LLVM_DEBUG({
    if (!CurrentPacketMIs.empty()) {
      dbgs() << "Finalizing packet:\n";
      unsigned Idx = 0;
      for (MachineInstr *MI : CurrentPacketMIs) {
        unsigned R = ResourceTracker->getUsedResources(Idx++);
        dbgs() << " * [res:0x" << utohexstr(R) << "] " << *MI;
      }
    }
  });
  bool memShufDisabled = getmemShufDisabled();
  if (memShufDisabled && !foundLSInPacket()) {
    setmemShufDisabled(false);
    LLVM_DEBUG(dbgs() << "  Not added to NoShufPacket\n");
  }
  memShufDisabled = getmemShufDisabled();
  OldPacketMIs.clear();
  for (MachineInstr *MI : CurrentPacketMIs) {
    MachineBasicBlock::instr_iterator NextMI = std::next(MI->getIterator());
    for (auto &I : make_range(HII->expandVGatherPseudo(*MI), NextMI))
      OldPacketMIs.push_back(&I);
  }
  CurrentPacketMIs.clear();
  if (OldPacketMIs.size() > 1) {
    MachineBasicBlock::instr_iterator FirstMI(OldPacketMIs.front());
    MachineBasicBlock::instr_iterator LastMI(EndMI.getInstrIterator());
    finalizeBundle(*MBB, FirstMI, LastMI);
    auto BundleMII = std::prev(FirstMI);
    if (memShufDisabled)
      HII->setBundleNoShuf(BundleMII);
    setmemShufDisabled(false);
  }
  PacketHasDuplex = false;
  PacketHasSLOT0OnlyInsn = false;
  ResourceTracker->clearResources();
  LLVM_DEBUG(dbgs() << "End packet\n");
}
bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr &MI) {
  if (Minimal)
    return false;
  if (producesStall(MI))
    return false;
  // If TinyCore with Duplexes is enabled, check if this MI can form a Duplex
  // with any other instruction in the existing packet.
  auto &HST = MI.getParent()->getParent()->getSubtarget<HexagonSubtarget>();
  // Constraint 1: Only one duplex allowed per packet.
  // Constraint 2: Consider duplex checks only if there is atleast one
  // instruction in a packet.
  // Constraint 3: If one of the existing instructions in the packet has a
  // SLOT0 only instruction that can not be duplexed, do not attempt to form
  // duplexes. (TODO: This will invalidate the L4_return* instructions to form a
  // duplex)
  if (HST.isTinyCoreWithDuplex() && CurrentPacketMIs.size() > 0 &&
      !PacketHasDuplex) {
    // Check for SLOT0 only non-duplexable instruction in packet.
    for (auto &MJ : CurrentPacketMIs)
      PacketHasSLOT0OnlyInsn |= HII->isPureSlot0(*MJ);
    // Get the Big Core Opcode (dup_*).
    int Opcode = HII->getDuplexOpcode(MI, false);
    if (Opcode >= 0) {
      // We now have an instruction that can be duplexed.
      for (auto &MJ : CurrentPacketMIs) {
        if (HII->isDuplexPair(MI, *MJ) && !PacketHasSLOT0OnlyInsn) {
          PacketHasDuplex = true;
          return true;
        }
      }
      // If it can not be duplexed, check if there is a valid transition in DFA
      // with the original opcode.
      MachineInstr &MIRef = const_cast<MachineInstr &>(MI);
      MIRef.setDesc(HII->get(Opcode));
      return ResourceTracker->canReserveResources(MIRef);
    }
  }
  return true;
}
// V60 forward scheduling.
unsigned int HexagonPacketizerList::calcStall(const MachineInstr &I) {
  // Check whether the previous packet is in a different loop. If this is the
  // case, there is little point in trying to avoid a stall because that would
  // favor the rare case (loop entry) over the common case (loop iteration).
  //
  // TODO: We should really be able to check all the incoming edges if this is
  // the first packet in a basic block, so we can avoid stalls from the loop
  // backedge.
  if (!OldPacketMIs.empty()) {
    auto *OldBB = OldPacketMIs.front()->getParent();
    auto *ThisBB = I.getParent();
    if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB))
      return 0;
  }
  SUnit *SUI = MIToSUnit[const_cast<MachineInstr *>(&I)];
  if (!SUI)
    return 0;
  // If the latency is 0 and there is a data dependence between this
  // instruction and any instruction in the current packet, we disregard any
  // potential stalls due to the instructions in the previous packet. Most of
  // the instruction pairs that can go together in the same packet have 0
  // latency between them. The exceptions are
  // 1. NewValueJumps as they're generated much later and the latencies can't
  // be changed at that point.
  // 2. .cur instructions, if its consumer has a 0 latency successor (such as
  // .new). In this case, the latency between .cur and the consumer stays
  // non-zero even though we can have  both .cur and .new in the same packet.
  // Changing the latency to 0 is not an option as it causes software pipeliner
  // to not pipeline in some cases.
  // For Example:
  // {
  //   I1:  v6.cur = vmem(r0++#1)
  //   I2:  v7 = valign(v6,v4,r2)
  //   I3:  vmem(r5++#1) = v7.new
  // }
  // Here I2 and I3 has 0 cycle latency, but I1 and I2 has 2.
  for (auto *J : CurrentPacketMIs) {
    SUnit *SUJ = MIToSUnit[J];
    for (auto &Pred : SUI->Preds)
      if (Pred.getSUnit() == SUJ)
        if ((Pred.getLatency() == 0 && Pred.isAssignedRegDep()) ||
            HII->isNewValueJump(I) || HII->isToBeScheduledASAP(*J, I))
          return 0;
  }
  // Check if the latency is greater than one between this instruction and any
  // instruction in the previous packet.
  for (auto *J : OldPacketMIs) {
    SUnit *SUJ = MIToSUnit[J];
    for (auto &Pred : SUI->Preds)
      if (Pred.getSUnit() == SUJ && Pred.getLatency() > 1)
        return Pred.getLatency();
  }
  return 0;
}
bool HexagonPacketizerList::producesStall(const MachineInstr &I) {
  unsigned int Latency = calcStall(I);
  if (Latency == 0)
    return false;
  // Ignore stall unless it stalls more than previous instruction in packet
  if (PacketStalls)
    return Latency > PacketStallCycles;
  return true;
}
//===----------------------------------------------------------------------===//
//                         Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createHexagonPacketizer(bool Minimal) {
  return new HexagonPacketizer(Minimal);
}
 |