| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 
 | //===-- RISCVInstrInfoD.td - RISC-V 'D' instructions -------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions from the standard 'D',
// Double-Precision Floating-Point instruction set extension.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDT_RISCVBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
                                                 SDTCisVT<1, i32>,
                                                 SDTCisSameAs<1, 2>]>;
def SDT_RISCVSplitF64     : SDTypeProfile<2, 1, [SDTCisVT<0, i32>,
                                                 SDTCisVT<1, i32>,
                                                 SDTCisVT<2, f64>]>;
def RISCVBuildPairF64 : SDNode<"RISCVISD::BuildPairF64", SDT_RISCVBuildPairF64>;
def RISCVSplitF64     : SDNode<"RISCVISD::SplitF64", SDT_RISCVSplitF64>;
def AddrRegImmINX : ComplexPattern<iPTR, 2, "SelectAddrRegImmINX">;
//===----------------------------------------------------------------------===//
// Operand and SDNode transformation definitions.
//===----------------------------------------------------------------------===//
// Zdinx
def GPRPairAsFPR : AsmOperandClass {
  let Name = "GPRPairAsFPR";
  let ParserMethod = "parseGPRAsFPR";
  let PredicateMethod = "isGPRAsFPR";
  let RenderMethod = "addRegOperands";
}
def GPRF64AsFPR : AsmOperandClass {
  let Name = "GPRF64AsFPR";
  let PredicateMethod = "isGPRAsFPR";
  let ParserMethod = "parseGPRAsFPR";
  let RenderMethod = "addRegOperands";
}
def FPR64INX : RegisterOperand<GPR> {
  let ParserMatchClass = GPRF64AsFPR;
  let DecoderMethod = "DecodeGPRRegisterClass";
}
def FPR64IN32X : RegisterOperand<GPRPair> {
  let ParserMatchClass = GPRPairAsFPR;
}
def DExt       : ExtInfo<"", "", [HasStdExtD], f64, FPR64, FPR32, FPR64, ?>;
def ZdinxExt   : ExtInfo<"_INX", "RVZfinx", [HasStdExtZdinx, IsRV64],
                         f64, FPR64INX, FPR32INX, FPR64INX, ?>;
def Zdinx32Ext : ExtInfo<"_IN32X", "RV32Zdinx", [HasStdExtZdinx, IsRV32],
                         f64, FPR64IN32X, FPR32INX, FPR64IN32X, ?>;
defvar DExts     = [DExt, ZdinxExt, Zdinx32Ext];
defvar DExtsRV64 = [DExt, ZdinxExt];
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtD] in {
def FLD : FPLoad_r<0b011, "fld", FPR64, WriteFLD64>;
// Operands for stores are in the order srcreg, base, offset rather than
// reflecting the order these fields are specified in the instruction
// encoding.
def FSD : FPStore_r<0b011, "fsd", FPR64, WriteFST64>;
} // Predicates = [HasStdExtD]
foreach Ext = DExts in {
  let SchedRW = [WriteFMA64, ReadFMA64, ReadFMA64, ReadFMA64Addend] in {
    defm FMADD_D  : FPFMA_rrr_frm_m<OPC_MADD,  0b01, "fmadd.d",  Ext>;
    defm FMSUB_D  : FPFMA_rrr_frm_m<OPC_MSUB,  0b01, "fmsub.d",  Ext>;
    defm FNMSUB_D : FPFMA_rrr_frm_m<OPC_NMSUB, 0b01, "fnmsub.d", Ext>;
    defm FNMADD_D : FPFMA_rrr_frm_m<OPC_NMADD, 0b01, "fnmadd.d", Ext>;
  }
  let SchedRW = [WriteFAdd64, ReadFAdd64, ReadFAdd64] in {
    defm FADD_D : FPALU_rr_frm_m<0b0000001, "fadd.d", Ext, Commutable=1>;
    defm FSUB_D : FPALU_rr_frm_m<0b0000101, "fsub.d", Ext>;
  }
  let SchedRW = [WriteFMul64, ReadFMul64, ReadFMul64] in
  defm FMUL_D : FPALU_rr_frm_m<0b0001001, "fmul.d", Ext, Commutable=1>;
  let SchedRW = [WriteFDiv64, ReadFDiv64, ReadFDiv64] in
  defm FDIV_D : FPALU_rr_frm_m<0b0001101, "fdiv.d", Ext>;
  defm FSQRT_D : FPUnaryOp_r_frm_m<0b0101101, 0b00000, Ext, Ext.PrimaryTy,
                                   Ext.PrimaryTy, "fsqrt.d">,
                 Sched<[WriteFSqrt64, ReadFSqrt64]>;
  let SchedRW = [WriteFSGNJ64, ReadFSGNJ64, ReadFSGNJ64],
      mayRaiseFPException = 0 in {
    defm FSGNJ_D  : FPALU_rr_m<0b0010001, 0b000, "fsgnj.d",  Ext>;
    defm FSGNJN_D : FPALU_rr_m<0b0010001, 0b001, "fsgnjn.d", Ext>;
    defm FSGNJX_D : FPALU_rr_m<0b0010001, 0b010, "fsgnjx.d", Ext>;
  }
  let SchedRW = [WriteFMinMax64, ReadFMinMax64, ReadFMinMax64] in {
    defm FMIN_D   : FPALU_rr_m<0b0010101, 0b000, "fmin.d", Ext, Commutable=1>;
    defm FMAX_D   : FPALU_rr_m<0b0010101, 0b001, "fmax.d", Ext, Commutable=1>;
  }
  defm FCVT_S_D : FPUnaryOp_r_frm_m<0b0100000, 0b00001, Ext, Ext.F32Ty,
                                    Ext.PrimaryTy, "fcvt.s.d">,
                  Sched<[WriteFCvtF64ToF32, ReadFCvtF64ToF32]>;
  defm FCVT_D_S : FPUnaryOp_r_frmlegacy_m<0b0100001, 0b00000, Ext, Ext.PrimaryTy,
                                          Ext.F32Ty, "fcvt.d.s">,
                  Sched<[WriteFCvtF32ToF64, ReadFCvtF32ToF64]>;
  let SchedRW = [WriteFCmp64, ReadFCmp64, ReadFCmp64] in {
    defm FEQ_D : FPCmp_rr_m<0b1010001, 0b010, "feq.d", Ext, Commutable=1>;
    defm FLT_D : FPCmp_rr_m<0b1010001, 0b001, "flt.d", Ext>;
    defm FLE_D : FPCmp_rr_m<0b1010001, 0b000, "fle.d", Ext>;
  }
  let mayRaiseFPException = 0 in
  defm FCLASS_D : FPUnaryOp_r_m<0b1110001, 0b00000, 0b001, Ext, GPR, Ext.PrimaryTy,
                                "fclass.d">,
                  Sched<[WriteFClass64, ReadFClass64]>;
  let IsSignExtendingOpW = 1 in
  defm FCVT_W_D : FPUnaryOp_r_frm_m<0b1100001, 0b00000, Ext, GPR, Ext.PrimaryTy,
                                    "fcvt.w.d">,
                 Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]>;
  let IsSignExtendingOpW = 1 in
  defm FCVT_WU_D : FPUnaryOp_r_frm_m<0b1100001, 0b00001, Ext, GPR, Ext.PrimaryTy,
                                     "fcvt.wu.d">,
                   Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]>;
  defm FCVT_D_W : FPUnaryOp_r_frmlegacy_m<0b1101001, 0b00000, Ext, Ext.PrimaryTy, GPR,
                                          "fcvt.d.w">,
                  Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]>;
  defm FCVT_D_WU : FPUnaryOp_r_frmlegacy_m<0b1101001, 0b00001, Ext, Ext.PrimaryTy, GPR,
                                           "fcvt.d.wu">,
                   Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]>;
} // foreach Ext = DExts
foreach Ext = DExtsRV64 in {
  defm FCVT_L_D : FPUnaryOp_r_frm_m<0b1100001, 0b00010, Ext, GPR, Ext.PrimaryTy,
                                    "fcvt.l.d", [IsRV64]>,
                  Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]>;
  defm FCVT_LU_D : FPUnaryOp_r_frm_m<0b1100001, 0b00011, Ext, GPR, Ext.PrimaryTy,
                                     "fcvt.lu.d", [IsRV64]>,
                   Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]>;
  defm FCVT_D_L : FPUnaryOp_r_frm_m<0b1101001, 0b00010, Ext, Ext.PrimaryTy, GPR,
                                    "fcvt.d.l", [IsRV64]>,
                  Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]>;
  defm FCVT_D_LU : FPUnaryOp_r_frm_m<0b1101001, 0b00011, Ext, Ext.PrimaryTy, GPR,
                                     "fcvt.d.lu", [IsRV64]>,
                   Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]>;
} // foreach Ext = DExts64
let Predicates = [HasStdExtD, IsRV64], mayRaiseFPException = 0 in
def FMV_X_D : FPUnaryOp_r<0b1110001, 0b00000, 0b000, GPR, FPR64, "fmv.x.d">,
              Sched<[WriteFMovF64ToI64, ReadFMovF64ToI64]>;
let Predicates = [HasStdExtD, IsRV64], mayRaiseFPException = 0 in
def FMV_D_X : FPUnaryOp_r<0b1111001, 0b00000, 0b000, FPR64, GPR, "fmv.d.x">,
              Sched<[WriteFMovI64ToF64, ReadFMovI64ToF64]>;
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtD] in {
def : InstAlias<"fld $rd, (${rs1})",  (FLD FPR64:$rd,  GPR:$rs1, 0), 0>;
def : InstAlias<"fsd $rs2, (${rs1})", (FSD FPR64:$rs2, GPR:$rs1, 0), 0>;
def : InstAlias<"fmv.d $rd, $rs",  (FSGNJ_D  FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
// fgt.d/fge.d are recognised by the GNU assembler but the canonical
// flt.d/fle.d forms will always be printed. Therefore, set a zero weight.
def : InstAlias<"fgt.d $rd, $rs, $rt",
                (FLT_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
def : InstAlias<"fge.d $rd, $rs, $rt",
                (FLE_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
def PseudoFLD  : PseudoFloatLoad<"fld", FPR64>;
def PseudoFSD  : PseudoStore<"fsd", FPR64>;
let usesCustomInserter = 1 in {
def PseudoQuietFLE_D : PseudoQuietFCMP<FPR64>;
def PseudoQuietFLT_D : PseudoQuietFCMP<FPR64>;
}
} // Predicates = [HasStdExtD]
let Predicates = [HasStdExtZdinx, IsRV64] in {
def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D_INX FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>;
def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D_INX FPR64INX:$rd, FPR64INX:$rs, FPR64INX:$rs)>;
def : InstAlias<"fgt.d $rd, $rs, $rt",
                (FLT_D_INX GPR:$rd, FPR64INX:$rt, FPR64INX:$rs), 0>;
def : InstAlias<"fge.d $rd, $rs, $rt",
                (FLE_D_INX GPR:$rd, FPR64INX:$rt, FPR64INX:$rs), 0>;
let usesCustomInserter = 1 in {
def PseudoQuietFLE_D_INX : PseudoQuietFCMP<FPR64INX>;
def PseudoQuietFLT_D_INX : PseudoQuietFCMP<FPR64INX>;
}
} // Predicates = [HasStdExtZdinx, IsRV64]
let Predicates = [HasStdExtZdinx, IsRV32] in {
def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D_IN32X FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>;
def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D_IN32X FPR64IN32X:$rd, FPR64IN32X:$rs, FPR64IN32X:$rs)>;
def : InstAlias<"fgt.d $rd, $rs, $rt",
                (FLT_D_IN32X GPR:$rd, FPR64IN32X:$rt, FPR64IN32X:$rs), 0>;
def : InstAlias<"fge.d $rd, $rs, $rt",
                (FLE_D_IN32X GPR:$rd, FPR64IN32X:$rt, FPR64IN32X:$rs), 0>;
let usesCustomInserter = 1 in {
def PseudoQuietFLE_D_IN32X : PseudoQuietFCMP<FPR64IN32X>;
def PseudoQuietFLT_D_IN32X : PseudoQuietFCMP<FPR64IN32X>;
}
} // Predicates = [HasStdExtZdinx, IsRV32]
//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtD] in {
/// Float conversion operations
// f64 -> f32, f32 -> f64
def : Pat<(any_fpround FPR64:$rs1), (FCVT_S_D FPR64:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend FPR32:$rs1), (FCVT_D_S FPR32:$rs1, FRM_RNE)>;
} // Predicates = [HasStdExtD]
let Predicates = [HasStdExtZdinx, IsRV64] in {
/// Float conversion operations
// f64 -> f32, f32 -> f64
def : Pat<(any_fpround FPR64INX:$rs1), (FCVT_S_D_INX FPR64INX:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend FPR32INX:$rs1), (FCVT_D_S_INX FPR32INX:$rs1, FRM_RNE)>;
} // Predicates = [HasStdExtZdinx, IsRV64]
let Predicates = [HasStdExtZdinx, IsRV32] in {
/// Float conversion operations
// f64 -> f32, f32 -> f64
def : Pat<(any_fpround FPR64IN32X:$rs1), (FCVT_S_D_IN32X FPR64IN32X:$rs1, FRM_DYN)>;
def : Pat<(any_fpextend FPR32INX:$rs1), (FCVT_D_S_IN32X FPR32INX:$rs1, FRM_RNE)>;
} // Predicates = [HasStdExtZdinx, IsRV32]
// [u]int<->double conversion patterns must be gated on IsRV32 or IsRV64, so
// are defined later.
/// Float arithmetic operations
foreach Ext = DExts in {
  defm : PatFprFprDynFrm_m<any_fadd, FADD_D, Ext>;
  defm : PatFprFprDynFrm_m<any_fsub, FSUB_D, Ext>;
  defm : PatFprFprDynFrm_m<any_fmul, FMUL_D, Ext>;
  defm : PatFprFprDynFrm_m<any_fdiv, FDIV_D, Ext>;
}
let Predicates = [HasStdExtD] in {
def : Pat<(any_fsqrt FPR64:$rs1), (FSQRT_D FPR64:$rs1, FRM_DYN)>;
def : Pat<(fneg FPR64:$rs1), (FSGNJN_D $rs1, $rs1)>;
def : Pat<(fabs FPR64:$rs1), (FSGNJX_D $rs1, $rs1)>;
def : Pat<(riscv_fclass FPR64:$rs1), (FCLASS_D $rs1)>;
def : PatFprFpr<fcopysign, FSGNJ_D, FPR64, f64>;
def : Pat<(fcopysign FPR64:$rs1, (fneg FPR64:$rs2)), (FSGNJN_D $rs1, $rs2)>;
def : Pat<(fcopysign FPR64:$rs1, FPR32:$rs2), (FSGNJ_D $rs1, (FCVT_D_S $rs2,
                                                              FRM_RNE))>;
def : Pat<(fcopysign FPR32:$rs1, FPR64:$rs2), (FSGNJ_S $rs1, (FCVT_S_D $rs2,
                                                              FRM_DYN))>;
// fmadd: rs1 * rs2 + rs3
def : Pat<(any_fma FPR64:$rs1, FPR64:$rs2, FPR64:$rs3),
          (FMADD_D $rs1, $rs2, $rs3, FRM_DYN)>;
// fmsub: rs1 * rs2 - rs3
def : Pat<(any_fma FPR64:$rs1, FPR64:$rs2, (fneg FPR64:$rs3)),
          (FMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;
// fnmsub: -rs1 * rs2 + rs3
def : Pat<(any_fma (fneg FPR64:$rs1), FPR64:$rs2, FPR64:$rs3),
          (FNMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;
// fnmadd: -rs1 * rs2 - rs3
def : Pat<(any_fma (fneg FPR64:$rs1), FPR64:$rs2, (fneg FPR64:$rs3)),
          (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;
// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
def : Pat<(fneg (any_fma_nsz FPR64:$rs1, FPR64:$rs2, FPR64:$rs3)),
          (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, FRM_DYN)>;
} // Predicates = [HasStdExtD]
let Predicates = [HasStdExtZdinx, IsRV64] in {
def : Pat<(any_fsqrt FPR64INX:$rs1), (FSQRT_D_INX FPR64INX:$rs1, FRM_DYN)>;
def : Pat<(fneg FPR64INX:$rs1), (FSGNJN_D_INX $rs1, $rs1)>;
def : Pat<(fabs FPR64INX:$rs1), (FSGNJX_D_INX $rs1, $rs1)>;
def : Pat<(riscv_fclass FPR64INX:$rs1), (FCLASS_D_INX $rs1)>;
def : PatFprFpr<fcopysign, FSGNJ_D_INX, FPR64INX, f64>;
def : Pat<(fcopysign FPR64INX:$rs1, (fneg FPR64INX:$rs2)),
          (FSGNJN_D_INX $rs1, $rs2)>;
def : Pat<(fcopysign FPR64INX:$rs1, FPR32INX:$rs2),
          (FSGNJ_D_INX $rs1, (FCVT_D_S_INX $rs2, FRM_RNE))>;
def : Pat<(fcopysign FPR32INX:$rs1, FPR64INX:$rs2),
          (FSGNJ_S_INX $rs1, (FCVT_S_D_INX $rs2, FRM_DYN))>;
// fmadd: rs1 * rs2 + rs3
def : Pat<(any_fma FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3),
          (FMADD_D_INX $rs1, $rs2, $rs3, FRM_DYN)>;
// fmsub: rs1 * rs2 - rs3
def : Pat<(any_fma FPR64INX:$rs1, FPR64INX:$rs2, (fneg FPR64INX:$rs3)),
          (FMSUB_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;
// fnmsub: -rs1 * rs2 + rs3
def : Pat<(any_fma (fneg FPR64INX:$rs1), FPR64INX:$rs2, FPR64INX:$rs3),
          (FNMSUB_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;
// fnmadd: -rs1 * rs2 - rs3
def : Pat<(any_fma (fneg FPR64INX:$rs1), FPR64INX:$rs2, (fneg FPR64INX:$rs3)),
          (FNMADD_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;
// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
def : Pat<(fneg (any_fma_nsz FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3)),
          (FNMADD_D_INX FPR64INX:$rs1, FPR64INX:$rs2, FPR64INX:$rs3, FRM_DYN)>;
} // Predicates = [HasStdExtZdinx, IsRV64]
let Predicates = [HasStdExtZdinx, IsRV32] in {
def : Pat<(any_fsqrt FPR64IN32X:$rs1), (FSQRT_D_IN32X FPR64IN32X:$rs1, FRM_DYN)>;
def : Pat<(fneg FPR64IN32X:$rs1), (FSGNJN_D_IN32X $rs1, $rs1)>;
def : Pat<(fabs FPR64IN32X:$rs1), (FSGNJX_D_IN32X $rs1, $rs1)>;
def : Pat<(riscv_fclass FPR64IN32X:$rs1), (FCLASS_D_IN32X $rs1)>;
def : PatFprFpr<fcopysign, FSGNJ_D_IN32X, FPR64IN32X, f64>;
def : Pat<(fcopysign FPR64IN32X:$rs1, (fneg FPR64IN32X:$rs2)),
          (FSGNJN_D_IN32X $rs1, $rs2)>;
def : Pat<(fcopysign FPR64IN32X:$rs1, FPR32INX:$rs2),
          (FSGNJ_D_IN32X $rs1, (FCVT_D_S_INX $rs2, FRM_RNE))>;
def : Pat<(fcopysign FPR32INX:$rs1, FPR64IN32X:$rs2),
          (FSGNJ_S_INX $rs1, (FCVT_S_D_IN32X $rs2, FRM_DYN))>;
// fmadd: rs1 * rs2 + rs3
def : Pat<(any_fma FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3),
          (FMADD_D_IN32X $rs1, $rs2, $rs3, FRM_DYN)>;
// fmsub: rs1 * rs2 - rs3
def : Pat<(any_fma FPR64IN32X:$rs1, FPR64IN32X:$rs2, (fneg FPR64IN32X:$rs3)),
          (FMSUB_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;
// fnmsub: -rs1 * rs2 + rs3
def : Pat<(any_fma (fneg FPR64IN32X:$rs1), FPR64IN32X:$rs2, FPR64IN32X:$rs3),
          (FNMSUB_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;
// fnmadd: -rs1 * rs2 - rs3
def : Pat<(any_fma (fneg FPR64IN32X:$rs1), FPR64IN32X:$rs2, (fneg FPR64IN32X:$rs3)),
          (FNMADD_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;
// fnmadd: -(rs1 * rs2 + rs3) (the nsz flag on the FMA)
def : Pat<(fneg (any_fma_nsz FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3)),
          (FNMADD_D_IN32X FPR64IN32X:$rs1, FPR64IN32X:$rs2, FPR64IN32X:$rs3, FRM_DYN)>;
} // Predicates = [HasStdExtZdinx, IsRV32]
// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
// LLVM's fminnum and fmaxnum.
// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
foreach Ext = DExts in {
  defm : PatFprFpr_m<fminnum, FMIN_D, Ext>;
  defm : PatFprFpr_m<fmaxnum, FMAX_D, Ext>;
  defm : PatFprFpr_m<riscv_fmin, FMIN_D, Ext>;
  defm : PatFprFpr_m<riscv_fmax, FMAX_D, Ext>;
}
/// Setcc
// FIXME: SETEQ/SETLT/SETLE imply nonans, can we pick better instructions for
// strict versions of those.
// Match non-signaling FEQ_D
foreach Ext = DExts in {
  defm : PatSetCC_m<any_fsetcc,    SETEQ,  FEQ_D,            Ext>;
  defm : PatSetCC_m<any_fsetcc,    SETOEQ, FEQ_D,            Ext>;
  defm : PatSetCC_m<strict_fsetcc, SETLT,  PseudoQuietFLT_D, Ext>;
  defm : PatSetCC_m<strict_fsetcc, SETOLT, PseudoQuietFLT_D, Ext>;
  defm : PatSetCC_m<strict_fsetcc, SETLE,  PseudoQuietFLE_D, Ext>;
  defm : PatSetCC_m<strict_fsetcc, SETOLE, PseudoQuietFLE_D, Ext>;
}
let Predicates = [HasStdExtD] in {
// Match signaling FEQ_D
def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs2, SETEQ)),
          (AND (XLenVT (FLE_D $rs1, $rs2)),
               (XLenVT (FLE_D $rs2, $rs1)))>;
def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs2, SETOEQ)),
          (AND (XLenVT (FLE_D $rs1, $rs2)),
               (XLenVT (FLE_D $rs2, $rs1)))>;
// If both operands are the same, use a single FLE.
def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs1, SETEQ)),
          (FLE_D $rs1, $rs1)>;
def : Pat<(XLenVT (strict_fsetccs FPR64:$rs1, FPR64:$rs1, SETOEQ)),
          (FLE_D $rs1, $rs1)>;
def : PatSetCC<FPR64, any_fsetccs, SETLT, FLT_D, f64>;
def : PatSetCC<FPR64, any_fsetccs, SETOLT, FLT_D, f64>;
def : PatSetCC<FPR64, any_fsetccs, SETLE, FLE_D, f64>;
def : PatSetCC<FPR64, any_fsetccs, SETOLE, FLE_D, f64>;
} // Predicates = [HasStdExtD]
let Predicates = [HasStdExtZdinx, IsRV64] in {
// Match signaling FEQ_D
def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs2, SETEQ)),
          (AND (XLenVT (FLE_D_INX $rs1, $rs2)),
               (XLenVT (FLE_D_INX $rs2, $rs1)))>;
def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs2, SETOEQ)),
          (AND (XLenVT (FLE_D_INX $rs1, $rs2)),
               (XLenVT (FLE_D_INX $rs2, $rs1)))>;
// If both operands are the same, use a single FLE.
def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs1, SETEQ)),
          (FLE_D_INX $rs1, $rs1)>;
def : Pat<(XLenVT (strict_fsetccs (f64 FPR64INX:$rs1), FPR64INX:$rs1, SETOEQ)),
          (FLE_D_INX $rs1, $rs1)>;
def : PatSetCC<FPR64INX, any_fsetccs, SETLT,  FLT_D_INX, f64>;
def : PatSetCC<FPR64INX, any_fsetccs, SETOLT, FLT_D_INX, f64>;
def : PatSetCC<FPR64INX, any_fsetccs, SETLE,  FLE_D_INX, f64>;
def : PatSetCC<FPR64INX, any_fsetccs, SETOLE, FLE_D_INX, f64>;
} // Predicates = [HasStdExtZdinx, IsRV64]
let Predicates = [HasStdExtZdinx, IsRV32] in {
// Match signaling FEQ_D
def : Pat<(XLenVT (strict_fsetccs FPR64IN32X:$rs1, FPR64IN32X:$rs2, SETEQ)),
          (AND (XLenVT (FLE_D_IN32X $rs1, $rs2)),
               (XLenVT (FLE_D_IN32X $rs2, $rs1)))>;
def : Pat<(XLenVT (strict_fsetccs FPR64IN32X:$rs1, FPR64IN32X:$rs2, SETOEQ)),
          (AND (XLenVT (FLE_D_IN32X $rs1, $rs2)),
               (XLenVT (FLE_D_IN32X $rs2, $rs1)))>;
// If both operands are the same, use a single FLE.
def : Pat<(XLenVT (strict_fsetccs FPR64IN32X:$rs1, FPR64IN32X:$rs1, SETEQ)),
          (FLE_D_IN32X $rs1, $rs1)>;
def : Pat<(XLenVT (strict_fsetccs FPR64IN32X:$rs1, FPR64IN32X:$rs1, SETOEQ)),
          (FLE_D_IN32X $rs1, $rs1)>;
def : PatSetCC<FPR64IN32X, any_fsetccs, SETLT,  FLT_D_IN32X, f64>;
def : PatSetCC<FPR64IN32X, any_fsetccs, SETOLT, FLT_D_IN32X, f64>;
def : PatSetCC<FPR64IN32X, any_fsetccs, SETLE,  FLE_D_IN32X, f64>;
def : PatSetCC<FPR64IN32X, any_fsetccs, SETOLE, FLE_D_IN32X, f64>;
} // Predicates = [HasStdExtZdinx, IsRV32]
let Predicates = [HasStdExtD] in {
defm Select_FPR64 : SelectCC_GPR_rrirr<FPR64, f64>;
def PseudoFROUND_D : PseudoFROUND<FPR64, f64>;
/// Loads
def : LdPat<load, FLD, f64>;
/// Stores
def : StPat<store, FSD, FPR64, f64>;
/// Pseudo-instructions needed for the soft-float ABI with RV32D
// Moves two GPRs to an FPR.
let usesCustomInserter = 1 in
def BuildPairF64Pseudo
    : Pseudo<(outs FPR64:$dst), (ins GPR:$src1, GPR:$src2),
             [(set FPR64:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>;
// Moves an FPR to two GPRs.
let usesCustomInserter = 1 in
def SplitF64Pseudo
    : Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64:$src),
             [(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64:$src))]>;
} // Predicates = [HasStdExtD]
let Predicates = [HasStdExtZdinx, IsRV64] in {
defm Select_FPR64INX : SelectCC_GPR_rrirr<FPR64INX, f64>;
def PseudoFROUND_D_INX : PseudoFROUND<FPR64INX, f64>;
/// Loads
def : LdPat<load, LD, f64>;
/// Stores
def : StPat<store, SD, GPR, f64>;
} // Predicates = [HasStdExtZdinx, IsRV64]
let Predicates = [HasStdExtZdinx, IsRV32] in {
defm Select_FPR64IN32X : SelectCC_GPR_rrirr<FPR64IN32X, f64>;
def PseudoFROUND_D_IN32X : PseudoFROUND<FPR64IN32X, f64>;
/// Loads
let isCall = 0, mayLoad = 1, mayStore = 0, Size = 8, isCodeGenOnly = 1 in
def PseudoRV32ZdinxLD : Pseudo<(outs GPRPair:$dst), (ins GPR:$rs1, simm12:$imm12), []>;
def : Pat<(f64 (load (AddrRegImmINX (XLenVT GPR:$rs1), simm12:$imm12))),
          (PseudoRV32ZdinxLD GPR:$rs1, simm12:$imm12)>;
/// Stores
let isCall = 0, mayLoad = 0, mayStore = 1, Size = 8, isCodeGenOnly = 1 in
def PseudoRV32ZdinxSD : Pseudo<(outs), (ins GPRPair:$rs2, GPRNoX0:$rs1, simm12:$imm12), []>;
def : Pat<(store (f64 GPRPair:$rs2), (AddrRegImmINX (XLenVT GPR:$rs1), simm12:$imm12)),
          (PseudoRV32ZdinxSD GPRPair:$rs2, GPR:$rs1, simm12:$imm12)>;
} // Predicates = [HasStdExtZdinx, IsRV32]
let Predicates = [HasStdExtD] in {
// double->[u]int. Round-to-zero must be used.
def : Pat<(i32 (any_fp_to_sint FPR64:$rs1)), (FCVT_W_D FPR64:$rs1, FRM_RTZ)>;
def : Pat<(i32 (any_fp_to_uint FPR64:$rs1)), (FCVT_WU_D FPR64:$rs1, FRM_RTZ)>;
// Saturating double->[u]int32.
def : Pat<(i32 (riscv_fcvt_x FPR64:$rs1, timm:$frm)), (FCVT_W_D $rs1, timm:$frm)>;
def : Pat<(i32 (riscv_fcvt_xu FPR64:$rs1, timm:$frm)), (FCVT_WU_D $rs1, timm:$frm)>;
// float->int32 with current rounding mode.
def : Pat<(i32 (any_lrint FPR64:$rs1)), (FCVT_W_D $rs1, FRM_DYN)>;
// float->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (any_lround FPR64:$rs1)), (FCVT_W_D $rs1, FRM_RMM)>;
// [u]int->double.
def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_D_W GPR:$rs1, FRM_RNE)>;
def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_D_WU GPR:$rs1, FRM_RNE)>;
} // Predicates = [HasStdExtD]
let Predicates = [HasStdExtZdinx, IsRV32] in {
// double->[u]int. Round-to-zero must be used.
def : Pat<(i32 (any_fp_to_sint FPR64IN32X:$rs1)), (FCVT_W_D_IN32X FPR64IN32X:$rs1, FRM_RTZ)>;
def : Pat<(i32 (any_fp_to_uint FPR64IN32X:$rs1)), (FCVT_WU_D_IN32X FPR64IN32X:$rs1, FRM_RTZ)>;
// Saturating double->[u]int32.
def : Pat<(i32 (riscv_fcvt_x FPR64IN32X:$rs1, timm:$frm)), (FCVT_W_D_IN32X $rs1, timm:$frm)>;
def : Pat<(i32 (riscv_fcvt_xu FPR64IN32X:$rs1, timm:$frm)), (FCVT_WU_D_IN32X $rs1, timm:$frm)>;
// float->int32 with current rounding mode.
def : Pat<(i32 (any_lrint FPR64IN32X:$rs1)), (FCVT_W_D_IN32X $rs1, FRM_DYN)>;
// float->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (any_lround FPR64IN32X:$rs1)), (FCVT_W_D_IN32X $rs1, FRM_RMM)>;
// [u]int->double.
def : Pat<(any_sint_to_fp (i32 GPR:$rs1)), (FCVT_D_W_IN32X GPR:$rs1, FRM_RNE)>;
def : Pat<(any_uint_to_fp (i32 GPR:$rs1)), (FCVT_D_WU_IN32X GPR:$rs1, FRM_RNE)>;
} // Predicates = [HasStdExtZdinx, IsRV32]
let Predicates = [HasStdExtD, IsRV64] in {
// Moves (no conversion)
def : Pat<(bitconvert (i64 GPR:$rs1)), (FMV_D_X GPR:$rs1)>;
def : Pat<(i64 (bitconvert FPR64:$rs1)), (FMV_X_D FPR64:$rs1)>;
// Use target specific isd nodes to help us remember the result is sign
// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
// duplicated if it has another user that didn't need the sign_extend.
def : Pat<(riscv_any_fcvt_w_rv64 FPR64:$rs1, timm:$frm),  (FCVT_W_D $rs1, timm:$frm)>;
def : Pat<(riscv_any_fcvt_wu_rv64 FPR64:$rs1, timm:$frm), (FCVT_WU_D $rs1, timm:$frm)>;
// [u]int32->fp
def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_D_W $rs1, FRM_RNE)>;
def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_D_WU $rs1, FRM_RNE)>;
// Saturating double->[u]int64.
def : Pat<(i64 (riscv_fcvt_x FPR64:$rs1, timm:$frm)), (FCVT_L_D $rs1, timm:$frm)>;
def : Pat<(i64 (riscv_fcvt_xu FPR64:$rs1, timm:$frm)), (FCVT_LU_D $rs1, timm:$frm)>;
// double->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (any_fp_to_sint FPR64:$rs1)), (FCVT_L_D FPR64:$rs1, FRM_RTZ)>;
def : Pat<(i64 (any_fp_to_uint FPR64:$rs1)), (FCVT_LU_D FPR64:$rs1, FRM_RTZ)>;
// double->int64 with current rounding mode.
def : Pat<(i64 (any_lrint FPR64:$rs1)), (FCVT_L_D $rs1, FRM_DYN)>;
def : Pat<(i64 (any_llrint FPR64:$rs1)), (FCVT_L_D $rs1, FRM_DYN)>;
// double->int64 rounded to nearest with ties rounded away from zero.
def : Pat<(i64 (any_lround FPR64:$rs1)), (FCVT_L_D $rs1, FRM_RMM)>;
def : Pat<(i64 (any_llround FPR64:$rs1)), (FCVT_L_D $rs1, FRM_RMM)>;
// [u]int64->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_D_L GPR:$rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_D_LU GPR:$rs1, FRM_DYN)>;
} // Predicates = [HasStdExtD, IsRV64]
let Predicates = [HasStdExtZdinx, IsRV64] in {
// Moves (no conversion)
def : Pat<(f64 (bitconvert (i64 GPR:$rs1))), (COPY_TO_REGCLASS GPR:$rs1, GPR)>;
def : Pat<(i64 (bitconvert (f64 GPR:$rs1))), (COPY_TO_REGCLASS GPR:$rs1, GPR)>;
// Use target specific isd nodes to help us remember the result is sign
// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
// duplicated if it has another user that didn't need the sign_extend.
def : Pat<(riscv_any_fcvt_w_rv64 FPR64INX:$rs1, timm:$frm),  (FCVT_W_D_INX $rs1, timm:$frm)>;
def : Pat<(riscv_any_fcvt_wu_rv64 FPR64INX:$rs1, timm:$frm), (FCVT_WU_D_INX $rs1, timm:$frm)>;
// [u]int32->fp
def : Pat<(any_sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_D_W_INX $rs1, FRM_RNE)>;
def : Pat<(any_uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_D_WU_INX $rs1, FRM_RNE)>;
// Saturating double->[u]int64.
def : Pat<(i64 (riscv_fcvt_x FPR64INX:$rs1, timm:$frm)), (FCVT_L_D_INX $rs1, timm:$frm)>;
def : Pat<(i64 (riscv_fcvt_xu FPR64INX:$rs1, timm:$frm)), (FCVT_LU_D_INX $rs1, timm:$frm)>;
// double->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (any_fp_to_sint FPR64INX:$rs1)), (FCVT_L_D_INX FPR64INX:$rs1, FRM_RTZ)>;
def : Pat<(i64 (any_fp_to_uint FPR64INX:$rs1)), (FCVT_LU_D_INX FPR64INX:$rs1, FRM_RTZ)>;
// double->int64 with current rounding mode.
def : Pat<(i64 (any_lrint FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_DYN)>;
def : Pat<(i64 (any_llrint FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_DYN)>;
// double->int64 rounded to nearest with ties rounded away from zero.
def : Pat<(i64 (any_lround FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_RMM)>;
def : Pat<(i64 (any_llround FPR64INX:$rs1)), (FCVT_L_D_INX $rs1, FRM_RMM)>;
// [u]int64->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(any_sint_to_fp (i64 GPR:$rs1)), (FCVT_D_L_INX GPR:$rs1, FRM_DYN)>;
def : Pat<(any_uint_to_fp (i64 GPR:$rs1)), (FCVT_D_LU_INX GPR:$rs1, FRM_DYN)>;
} // Predicates = [HasStdExtZdinx, IsRV64]
 |