| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 
 | //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
#define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/TargetLowering.h"
namespace llvm {
  class X86Subtarget;
  class X86TargetMachine;
  namespace X86ISD {
    // X86 Specific DAG Nodes
  enum NodeType : unsigned {
    // Start the numbering where the builtin ops leave off.
    FIRST_NUMBER = ISD::BUILTIN_OP_END,
    /// Bit scan forward.
    BSF,
    /// Bit scan reverse.
    BSR,
    /// X86 funnel/double shift i16 instructions. These correspond to
    /// X86::SHLDW and X86::SHRDW instructions which have different amt
    /// modulo rules to generic funnel shifts.
    /// NOTE: The operand order matches ISD::FSHL/FSHR not SHLD/SHRD.
    FSHL,
    FSHR,
    /// Bitwise logical AND of floating point values. This corresponds
    /// to X86::ANDPS or X86::ANDPD.
    FAND,
    /// Bitwise logical OR of floating point values. This corresponds
    /// to X86::ORPS or X86::ORPD.
    FOR,
    /// Bitwise logical XOR of floating point values. This corresponds
    /// to X86::XORPS or X86::XORPD.
    FXOR,
    ///  Bitwise logical ANDNOT of floating point values. This
    /// corresponds to X86::ANDNPS or X86::ANDNPD.
    FANDN,
    /// These operations represent an abstract X86 call
    /// instruction, which includes a bunch of information.  In particular the
    /// operands of these node are:
    ///
    ///     #0 - The incoming token chain
    ///     #1 - The callee
    ///     #2 - The number of arg bytes the caller pushes on the stack.
    ///     #3 - The number of arg bytes the callee pops off the stack.
    ///     #4 - The value to pass in AL/AX/EAX (optional)
    ///     #5 - The value to pass in DL/DX/EDX (optional)
    ///
    /// The result values of these nodes are:
    ///
    ///     #0 - The outgoing token chain
    ///     #1 - The first register result value (optional)
    ///     #2 - The second register result value (optional)
    ///
    CALL,
    /// Same as call except it adds the NoTrack prefix.
    NT_CALL,
    // Pseudo for a OBJC call that gets emitted together with a special
    // marker instruction.
    CALL_RVMARKER,
    /// X86 compare and logical compare instructions.
    CMP,
    FCMP,
    COMI,
    UCOMI,
    /// X86 bit-test instructions.
    BT,
    /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
    /// operand, usually produced by a CMP instruction.
    SETCC,
    /// X86 Select
    SELECTS,
    // Same as SETCC except it's materialized with a sbb and the value is all
    // one's or all zero's.
    SETCC_CARRY, // R = carry_bit ? ~0 : 0
    /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
    /// Operands are two FP values to compare; result is a mask of
    /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
    FSETCC,
    /// X86 FP SETCC, similar to above, but with output as an i1 mask and
    /// and a version with SAE.
    FSETCCM,
    FSETCCM_SAE,
    /// X86 conditional moves. Operand 0 and operand 1 are the two values
    /// to select from. Operand 2 is the condition code, and operand 3 is the
    /// flag operand produced by a CMP or TEST instruction.
    CMOV,
    /// X86 conditional branches. Operand 0 is the chain operand, operand 1
    /// is the block to branch if condition is true, operand 2 is the
    /// condition code, and operand 3 is the flag operand produced by a CMP
    /// or TEST instruction.
    BRCOND,
    /// BRIND node with NoTrack prefix. Operand 0 is the chain operand and
    /// operand 1 is the target address.
    NT_BRIND,
    /// Return with a glue operand. Operand 0 is the chain operand, operand
    /// 1 is the number of bytes of stack to pop.
    RET_GLUE,
    /// Return from interrupt. Operand 0 is the number of bytes to pop.
    IRET,
    /// Repeat fill, corresponds to X86::REP_STOSx.
    REP_STOS,
    /// Repeat move, corresponds to X86::REP_MOVSx.
    REP_MOVS,
    /// On Darwin, this node represents the result of the popl
    /// at function entry, used for PIC code.
    GlobalBaseReg,
    /// A wrapper node for TargetConstantPool, TargetJumpTable,
    /// TargetExternalSymbol, TargetGlobalAddress, TargetGlobalTLSAddress,
    /// MCSymbol and TargetBlockAddress.
    Wrapper,
    /// Special wrapper used under X86-64 PIC mode for RIP
    /// relative displacements.
    WrapperRIP,
    /// Copies a 64-bit value from an MMX vector to the low word
    /// of an XMM vector, with the high word zero filled.
    MOVQ2DQ,
    /// Copies a 64-bit value from the low word of an XMM vector
    /// to an MMX vector.
    MOVDQ2Q,
    /// Copies a 32-bit value from the low word of a MMX
    /// vector to a GPR.
    MMX_MOVD2W,
    /// Copies a GPR into the low 32-bit word of a MMX vector
    /// and zero out the high word.
    MMX_MOVW2D,
    /// Extract an 8-bit value from a vector and zero extend it to
    /// i32, corresponds to X86::PEXTRB.
    PEXTRB,
    /// Extract a 16-bit value from a vector and zero extend it to
    /// i32, corresponds to X86::PEXTRW.
    PEXTRW,
    /// Insert any element of a 4 x float vector into any element
    /// of a destination 4 x floatvector.
    INSERTPS,
    /// Insert the lower 8-bits of a 32-bit value to a vector,
    /// corresponds to X86::PINSRB.
    PINSRB,
    /// Insert the lower 16-bits of a 32-bit value to a vector,
    /// corresponds to X86::PINSRW.
    PINSRW,
    /// Shuffle 16 8-bit values within a vector.
    PSHUFB,
    /// Compute Sum of Absolute Differences.
    PSADBW,
    /// Compute Double Block Packed Sum-Absolute-Differences
    DBPSADBW,
    /// Bitwise Logical AND NOT of Packed FP values.
    ANDNP,
    /// Blend where the selector is an immediate.
    BLENDI,
    /// Dynamic (non-constant condition) vector blend where only the sign bits
    /// of the condition elements are used. This is used to enforce that the
    /// condition mask is not valid for generic VSELECT optimizations. This
    /// is also used to implement the intrinsics.
    /// Operands are in VSELECT order: MASK, TRUE, FALSE
    BLENDV,
    /// Combined add and sub on an FP vector.
    ADDSUB,
    //  FP vector ops with rounding mode.
    FADD_RND,
    FADDS,
    FADDS_RND,
    FSUB_RND,
    FSUBS,
    FSUBS_RND,
    FMUL_RND,
    FMULS,
    FMULS_RND,
    FDIV_RND,
    FDIVS,
    FDIVS_RND,
    FMAX_SAE,
    FMAXS_SAE,
    FMIN_SAE,
    FMINS_SAE,
    FSQRT_RND,
    FSQRTS,
    FSQRTS_RND,
    // FP vector get exponent.
    FGETEXP,
    FGETEXP_SAE,
    FGETEXPS,
    FGETEXPS_SAE,
    // Extract Normalized Mantissas.
    VGETMANT,
    VGETMANT_SAE,
    VGETMANTS,
    VGETMANTS_SAE,
    // FP Scale.
    SCALEF,
    SCALEF_RND,
    SCALEFS,
    SCALEFS_RND,
    /// Integer horizontal add/sub.
    HADD,
    HSUB,
    /// Floating point horizontal add/sub.
    FHADD,
    FHSUB,
    // Detect Conflicts Within a Vector
    CONFLICT,
    /// Floating point max and min.
    FMAX,
    FMIN,
    /// Commutative FMIN and FMAX.
    FMAXC,
    FMINC,
    /// Scalar intrinsic floating point max and min.
    FMAXS,
    FMINS,
    /// Floating point reciprocal-sqrt and reciprocal approximation.
    /// Note that these typically require refinement
    /// in order to obtain suitable precision.
    FRSQRT,
    FRCP,
    // AVX-512 reciprocal approximations with a little more precision.
    RSQRT14,
    RSQRT14S,
    RCP14,
    RCP14S,
    // Thread Local Storage.
    TLSADDR,
    // Thread Local Storage. A call to get the start address
    // of the TLS block for the current module.
    TLSBASEADDR,
    // Thread Local Storage.  When calling to an OS provided
    // thunk at the address from an earlier relocation.
    TLSCALL,
    // Thread Local Storage. A descriptor containing pointer to
    // code and to argument to get the TLS offset for the symbol.
    TLSDESC,
    // Exception Handling helpers.
    EH_RETURN,
    // SjLj exception handling setjmp.
    EH_SJLJ_SETJMP,
    // SjLj exception handling longjmp.
    EH_SJLJ_LONGJMP,
    // SjLj exception handling dispatch.
    EH_SJLJ_SETUP_DISPATCH,
    /// Tail call return. See X86TargetLowering::LowerCall for
    /// the list of operands.
    TC_RETURN,
    // Vector move to low scalar and zero higher vector elements.
    VZEXT_MOVL,
    // Vector integer truncate.
    VTRUNC,
    // Vector integer truncate with unsigned/signed saturation.
    VTRUNCUS,
    VTRUNCS,
    // Masked version of the above. Used when less than a 128-bit result is
    // produced since the mask only applies to the lower elements and can't
    // be represented by a select.
    // SRC, PASSTHRU, MASK
    VMTRUNC,
    VMTRUNCUS,
    VMTRUNCS,
    // Vector FP extend.
    VFPEXT,
    VFPEXT_SAE,
    VFPEXTS,
    VFPEXTS_SAE,
    // Vector FP round.
    VFPROUND,
    VFPROUND_RND,
    VFPROUNDS,
    VFPROUNDS_RND,
    // Masked version of above. Used for v2f64->v4f32.
    // SRC, PASSTHRU, MASK
    VMFPROUND,
    // 128-bit vector logical left / right shift
    VSHLDQ,
    VSRLDQ,
    // Vector shift elements
    VSHL,
    VSRL,
    VSRA,
    // Vector variable shift
    VSHLV,
    VSRLV,
    VSRAV,
    // Vector shift elements by immediate
    VSHLI,
    VSRLI,
    VSRAI,
    // Shifts of mask registers.
    KSHIFTL,
    KSHIFTR,
    // Bit rotate by immediate
    VROTLI,
    VROTRI,
    // Vector packed double/float comparison.
    CMPP,
    // Vector integer comparisons.
    PCMPEQ,
    PCMPGT,
    // v8i16 Horizontal minimum and position.
    PHMINPOS,
    MULTISHIFT,
    /// Vector comparison generating mask bits for fp and
    /// integer signed and unsigned data types.
    CMPM,
    // Vector mask comparison generating mask bits for FP values.
    CMPMM,
    // Vector mask comparison with SAE for FP values.
    CMPMM_SAE,
    // Arithmetic operations with FLAGS results.
    ADD,
    SUB,
    ADC,
    SBB,
    SMUL,
    UMUL,
    OR,
    XOR,
    AND,
    // Bit field extract.
    BEXTR,
    BEXTRI,
    // Zero High Bits Starting with Specified Bit Position.
    BZHI,
    // Parallel extract and deposit.
    PDEP,
    PEXT,
    // X86-specific multiply by immediate.
    MUL_IMM,
    // Vector sign bit extraction.
    MOVMSK,
    // Vector bitwise comparisons.
    PTEST,
    // Vector packed fp sign bitwise comparisons.
    TESTP,
    // OR/AND test for masks.
    KORTEST,
    KTEST,
    // ADD for masks.
    KADD,
    // Several flavors of instructions with vector shuffle behaviors.
    // Saturated signed/unnsigned packing.
    PACKSS,
    PACKUS,
    // Intra-lane alignr.
    PALIGNR,
    // AVX512 inter-lane alignr.
    VALIGN,
    PSHUFD,
    PSHUFHW,
    PSHUFLW,
    SHUFP,
    // VBMI2 Concat & Shift.
    VSHLD,
    VSHRD,
    VSHLDV,
    VSHRDV,
    // Shuffle Packed Values at 128-bit granularity.
    SHUF128,
    MOVDDUP,
    MOVSHDUP,
    MOVSLDUP,
    MOVLHPS,
    MOVHLPS,
    MOVSD,
    MOVSS,
    MOVSH,
    UNPCKL,
    UNPCKH,
    VPERMILPV,
    VPERMILPI,
    VPERMI,
    VPERM2X128,
    // Variable Permute (VPERM).
    // Res = VPERMV MaskV, V0
    VPERMV,
    // 3-op Variable Permute (VPERMT2).
    // Res = VPERMV3 V0, MaskV, V1
    VPERMV3,
    // Bitwise ternary logic.
    VPTERNLOG,
    // Fix Up Special Packed Float32/64 values.
    VFIXUPIMM,
    VFIXUPIMM_SAE,
    VFIXUPIMMS,
    VFIXUPIMMS_SAE,
    // Range Restriction Calculation For Packed Pairs of Float32/64 values.
    VRANGE,
    VRANGE_SAE,
    VRANGES,
    VRANGES_SAE,
    // Reduce - Perform Reduction Transformation on scalar\packed FP.
    VREDUCE,
    VREDUCE_SAE,
    VREDUCES,
    VREDUCES_SAE,
    // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
    // Also used by the legacy (V)ROUND intrinsics where we mask out the
    // scaling part of the immediate.
    VRNDSCALE,
    VRNDSCALE_SAE,
    VRNDSCALES,
    VRNDSCALES_SAE,
    // Tests Types Of a FP Values for packed types.
    VFPCLASS,
    // Tests Types Of a FP Values for scalar types.
    VFPCLASSS,
    // Broadcast (splat) scalar or element 0 of a vector. If the operand is
    // a vector, this node may change the vector length as part of the splat.
    VBROADCAST,
    // Broadcast mask to vector.
    VBROADCASTM,
    /// SSE4A Extraction and Insertion.
    EXTRQI,
    INSERTQI,
    // XOP arithmetic/logical shifts.
    VPSHA,
    VPSHL,
    // XOP signed/unsigned integer comparisons.
    VPCOM,
    VPCOMU,
    // XOP packed permute bytes.
    VPPERM,
    // XOP two source permutation.
    VPERMIL2,
    // Vector multiply packed unsigned doubleword integers.
    PMULUDQ,
    // Vector multiply packed signed doubleword integers.
    PMULDQ,
    // Vector Multiply Packed UnsignedIntegers with Round and Scale.
    MULHRS,
    // Multiply and Add Packed Integers.
    VPMADDUBSW,
    VPMADDWD,
    // AVX512IFMA multiply and add.
    // NOTE: These are different than the instruction and perform
    // op0 x op1 + op2.
    VPMADD52L,
    VPMADD52H,
    // VNNI
    VPDPBUSD,
    VPDPBUSDS,
    VPDPWSSD,
    VPDPWSSDS,
    // FMA nodes.
    // We use the target independent ISD::FMA for the non-inverted case.
    FNMADD,
    FMSUB,
    FNMSUB,
    FMADDSUB,
    FMSUBADD,
    // FMA with rounding mode.
    FMADD_RND,
    FNMADD_RND,
    FMSUB_RND,
    FNMSUB_RND,
    FMADDSUB_RND,
    FMSUBADD_RND,
    // AVX512-FP16 complex addition and multiplication.
    VFMADDC,
    VFMADDC_RND,
    VFCMADDC,
    VFCMADDC_RND,
    VFMULC,
    VFMULC_RND,
    VFCMULC,
    VFCMULC_RND,
    VFMADDCSH,
    VFMADDCSH_RND,
    VFCMADDCSH,
    VFCMADDCSH_RND,
    VFMULCSH,
    VFMULCSH_RND,
    VFCMULCSH,
    VFCMULCSH_RND,
    VPDPBSUD,
    VPDPBSUDS,
    VPDPBUUD,
    VPDPBUUDS,
    VPDPBSSD,
    VPDPBSSDS,
    // Compress and expand.
    COMPRESS,
    EXPAND,
    // Bits shuffle
    VPSHUFBITQMB,
    // Convert Unsigned/Integer to Floating-Point Value with rounding mode.
    SINT_TO_FP_RND,
    UINT_TO_FP_RND,
    SCALAR_SINT_TO_FP,
    SCALAR_UINT_TO_FP,
    SCALAR_SINT_TO_FP_RND,
    SCALAR_UINT_TO_FP_RND,
    // Vector float/double to signed/unsigned integer.
    CVTP2SI,
    CVTP2UI,
    CVTP2SI_RND,
    CVTP2UI_RND,
    // Scalar float/double to signed/unsigned integer.
    CVTS2SI,
    CVTS2UI,
    CVTS2SI_RND,
    CVTS2UI_RND,
    // Vector float/double to signed/unsigned integer with truncation.
    CVTTP2SI,
    CVTTP2UI,
    CVTTP2SI_SAE,
    CVTTP2UI_SAE,
    // Scalar float/double to signed/unsigned integer with truncation.
    CVTTS2SI,
    CVTTS2UI,
    CVTTS2SI_SAE,
    CVTTS2UI_SAE,
    // Vector signed/unsigned integer to float/double.
    CVTSI2P,
    CVTUI2P,
    // Masked versions of above. Used for v2f64->v4f32.
    // SRC, PASSTHRU, MASK
    MCVTP2SI,
    MCVTP2UI,
    MCVTTP2SI,
    MCVTTP2UI,
    MCVTSI2P,
    MCVTUI2P,
    // Vector float to bfloat16.
    // Convert TWO packed single data to one packed BF16 data
    CVTNE2PS2BF16,
    // Convert packed single data to packed BF16 data
    CVTNEPS2BF16,
    // Masked version of above.
    // SRC, PASSTHRU, MASK
    MCVTNEPS2BF16,
    // Dot product of BF16 pairs to accumulated into
    // packed single precision.
    DPBF16PS,
    // A stack checking function call. On Windows it's _chkstk call.
    DYN_ALLOCA,
    // For allocating variable amounts of stack space when using
    // segmented stacks. Check if the current stacklet has enough space, and
    // falls back to heap allocation if not.
    SEG_ALLOCA,
    // For allocating stack space when using stack clash protector.
    // Allocation is performed by block, and each block is probed.
    PROBED_ALLOCA,
    // Memory barriers.
    MFENCE,
    // Get a random integer and indicate whether it is valid in CF.
    RDRAND,
    // Get a NIST SP800-90B & C compliant random integer and
    // indicate whether it is valid in CF.
    RDSEED,
    // Protection keys
    // RDPKRU - Operand 0 is chain. Operand 1 is value for ECX.
    // WRPKRU - Operand 0 is chain. Operand 1 is value for EDX. Operand 2 is
    // value for ECX.
    RDPKRU,
    WRPKRU,
    // SSE42 string comparisons.
    // These nodes produce 3 results, index, mask, and flags. X86ISelDAGToDAG
    // will emit one or two instructions based on which results are used. If
    // flags and index/mask this allows us to use a single instruction since
    // we won't have to pick and opcode for flags. Instead we can rely on the
    // DAG to CSE everything and decide at isel.
    PCMPISTR,
    PCMPESTR,
    // Test if in transactional execution.
    XTEST,
    // Conversions between float and half-float.
    CVTPS2PH,
    CVTPS2PH_SAE,
    CVTPH2PS,
    CVTPH2PS_SAE,
    // Masked version of above.
    // SRC, RND, PASSTHRU, MASK
    MCVTPS2PH,
    MCVTPS2PH_SAE,
    // Galois Field Arithmetic Instructions
    GF2P8AFFINEINVQB,
    GF2P8AFFINEQB,
    GF2P8MULB,
    // LWP insert record.
    LWPINS,
    // User level wait
    UMWAIT,
    TPAUSE,
    // Enqueue Stores Instructions
    ENQCMD,
    ENQCMDS,
    // For avx512-vp2intersect
    VP2INTERSECT,
    // User level interrupts - testui
    TESTUI,
    // Perform an FP80 add after changing precision control in FPCW.
    FP80_ADD,
    // Conditional compare instructions
    CCMP,
    CTEST,
    /// X86 strict FP compare instructions.
    STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
    STRICT_FCMPS,
    // Vector packed double/float comparison.
    STRICT_CMPP,
    /// Vector comparison generating mask bits for fp and
    /// integer signed and unsigned data types.
    STRICT_CMPM,
    // Vector float/double to signed/unsigned integer with truncation.
    STRICT_CVTTP2SI,
    STRICT_CVTTP2UI,
    // Vector FP extend.
    STRICT_VFPEXT,
    // Vector FP round.
    STRICT_VFPROUND,
    // RndScale - Round FP Values To Include A Given Number Of Fraction Bits.
    // Also used by the legacy (V)ROUND intrinsics where we mask out the
    // scaling part of the immediate.
    STRICT_VRNDSCALE,
    // Vector signed/unsigned integer to float/double.
    STRICT_CVTSI2P,
    STRICT_CVTUI2P,
    // Strict FMA nodes.
    STRICT_FNMADD,
    STRICT_FMSUB,
    STRICT_FNMSUB,
    // Conversions between float and half-float.
    STRICT_CVTPS2PH,
    STRICT_CVTPH2PS,
    // Perform an FP80 add after changing precision control in FPCW.
    STRICT_FP80_ADD,
    // WARNING: Only add nodes here if they are strict FP nodes. Non-memory and
    // non-strict FP nodes should be above FIRST_TARGET_STRICTFP_OPCODE.
    // Compare and swap.
    LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
    LCMPXCHG8_DAG,
    LCMPXCHG16_DAG,
    LCMPXCHG16_SAVE_RBX_DAG,
    /// LOCK-prefixed arithmetic read-modify-write instructions.
    /// EFLAGS, OUTCHAIN = LADD(INCHAIN, PTR, RHS)
    LADD,
    LSUB,
    LOR,
    LXOR,
    LAND,
    LBTS,
    LBTC,
    LBTR,
    LBTS_RM,
    LBTC_RM,
    LBTR_RM,
    /// RAO arithmetic instructions.
    /// OUTCHAIN = AADD(INCHAIN, PTR, RHS)
    AADD,
    AOR,
    AXOR,
    AAND,
    // Load, scalar_to_vector, and zero extend.
    VZEXT_LOAD,
    // extract_vector_elt, store.
    VEXTRACT_STORE,
    // scalar broadcast from memory.
    VBROADCAST_LOAD,
    // subvector broadcast from memory.
    SUBV_BROADCAST_LOAD,
    // Store FP control word into i16 memory.
    FNSTCW16m,
    // Load FP control word from i16 memory.
    FLDCW16m,
    // Store x87 FPU environment into memory.
    FNSTENVm,
    // Load x87 FPU environment from memory.
    FLDENVm,
    /// This instruction implements FP_TO_SINT with the
    /// integer destination in memory and a FP reg source.  This corresponds
    /// to the X86::FIST*m instructions and the rounding mode change stuff. It
    /// has two inputs (token chain and address) and two outputs (int value
    /// and token chain). Memory VT specifies the type to store to.
    FP_TO_INT_IN_MEM,
    /// This instruction implements SINT_TO_FP with the
    /// integer source in memory and FP reg result.  This corresponds to the
    /// X86::FILD*m instructions. It has two inputs (token chain and address)
    /// and two outputs (FP value and token chain). The integer source type is
    /// specified by the memory VT.
    FILD,
    /// This instruction implements a fp->int store from FP stack
    /// slots. This corresponds to the fist instruction. It takes a
    /// chain operand, value to store, address, and glue. The memory VT
    /// specifies the type to store as.
    FIST,
    /// This instruction implements an extending load to FP stack slots.
    /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
    /// operand, and ptr to load from. The memory VT specifies the type to
    /// load from.
    FLD,
    /// This instruction implements a truncating store from FP stack
    /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
    /// chain operand, value to store, address, and glue. The memory VT
    /// specifies the type to store as.
    FST,
    /// These instructions grab the address of the next argument
    /// from a va_list. (reads and modifies the va_list in memory)
    VAARG_64,
    VAARG_X32,
    // Vector truncating store with unsigned/signed saturation
    VTRUNCSTOREUS,
    VTRUNCSTORES,
    // Vector truncating masked store with unsigned/signed saturation
    VMTRUNCSTOREUS,
    VMTRUNCSTORES,
    // X86 specific gather and scatter
    MGATHER,
    MSCATTER,
    // Key locker nodes that produce flags.
    AESENC128KL,
    AESDEC128KL,
    AESENC256KL,
    AESDEC256KL,
    AESENCWIDE128KL,
    AESDECWIDE128KL,
    AESENCWIDE256KL,
    AESDECWIDE256KL,
    /// Compare and Add if Condition is Met. Compare value in operand 2 with
    /// value in memory of operand 1. If condition of operand 4 is met, add
    /// value operand 3 to m32 and write new value in operand 1. Operand 2 is
    /// always updated with the original value from operand 1.
    CMPCCXADD,
    // Save xmm argument registers to the stack, according to %al. An operator
    // is needed so that this can be expanded with control flow.
    VASTART_SAVE_XMM_REGS,
    // Conditional load/store instructions
    CLOAD,
    CSTORE,
    // WARNING: Do not add anything in the end unless you want the node to
    // have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
    // opcodes will be thought as target memory ops!
  };
  } // end namespace X86ISD
  namespace X86 {
    /// Current rounding mode is represented in bits 11:10 of FPSR. These
    /// values are same as corresponding constants for rounding mode used
    /// in glibc.
    enum RoundingMode {
      rmToNearest   = 0,        // FE_TONEAREST
      rmDownward    = 1 << 10,  // FE_DOWNWARD
      rmUpward      = 2 << 10,  // FE_UPWARD
      rmTowardZero  = 3 << 10,  // FE_TOWARDZERO
      rmMask        = 3 << 10   // Bit mask selecting rounding mode
    };
  }
  /// Define some predicates that are used for node matching.
  namespace X86 {
    /// Returns true if Elt is a constant zero or floating point constant +0.0.
    bool isZeroNode(SDValue Elt);
    /// Returns true of the given offset can be
    /// fit into displacement field of the instruction.
    bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
                                      bool hasSymbolicDisplacement);
    /// Determines whether the callee is required to pop its
    /// own arguments. Callee pop is necessary to support tail calls.
    bool isCalleePop(CallingConv::ID CallingConv,
                     bool is64Bit, bool IsVarArg, bool GuaranteeTCO);
    /// If Op is a constant whose elements are all the same constant or
    /// undefined, return true and return the constant value in \p SplatVal.
    /// If we have undef bits that don't cover an entire element, we treat these
    /// as zero if AllowPartialUndefs is set, else we fail and return false.
    bool isConstantSplat(SDValue Op, APInt &SplatVal,
                         bool AllowPartialUndefs = true);
    /// Check if Op is a load operation that could be folded into some other x86
    /// instruction as a memory operand. Example: vpaddd (%rdi), %xmm0, %xmm0.
    bool mayFoldLoad(SDValue Op, const X86Subtarget &Subtarget,
                     bool AssumeSingleUse = false);
    /// Check if Op is a load operation that could be folded into a vector splat
    /// instruction as a memory operand. Example: vbroadcastss 16(%rdi), %xmm2.
    bool mayFoldLoadIntoBroadcastFromMem(SDValue Op, MVT EltVT,
                                         const X86Subtarget &Subtarget,
                                         bool AssumeSingleUse = false);
    /// Check if Op is a value that could be used to fold a store into some
    /// other x86 instruction as a memory operand. Ex: pextrb $0, %xmm0, (%rdi).
    bool mayFoldIntoStore(SDValue Op);
    /// Check if Op is an operation that could be folded into a zero extend x86
    /// instruction.
    bool mayFoldIntoZeroExtend(SDValue Op);
    /// True if the target supports the extended frame for async Swift
    /// functions.
    bool isExtendedSwiftAsyncFrameSupported(const X86Subtarget &Subtarget,
                                            const MachineFunction &MF);
  } // end namespace X86
  //===--------------------------------------------------------------------===//
  //  X86 Implementation of the TargetLowering interface
  class X86TargetLowering final : public TargetLowering {
  public:
    explicit X86TargetLowering(const X86TargetMachine &TM,
                               const X86Subtarget &STI);
    unsigned getJumpTableEncoding() const override;
    bool useSoftFloat() const override;
    void markLibCallAttributes(MachineFunction *MF, unsigned CC,
                               ArgListTy &Args) const override;
    MVT getScalarShiftAmountTy(const DataLayout &, EVT VT) const override {
      return MVT::i8;
    }
    const MCExpr *
    LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
                              const MachineBasicBlock *MBB, unsigned uid,
                              MCContext &Ctx) const override;
    /// Returns relocation base for the given PIC jumptable.
    SDValue getPICJumpTableRelocBase(SDValue Table,
                                     SelectionDAG &DAG) const override;
    const MCExpr *
    getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
                                 unsigned JTI, MCContext &Ctx) const override;
    /// Return the desired alignment for ByVal aggregate
    /// function arguments in the caller parameter area. For X86, aggregates
    /// that contains are placed at 16-byte boundaries while the rest are at
    /// 4-byte boundaries.
    uint64_t getByValTypeAlignment(Type *Ty,
                                   const DataLayout &DL) const override;
    EVT getOptimalMemOpType(const MemOp &Op,
                            const AttributeList &FuncAttributes) const override;
    /// Returns true if it's safe to use load / store of the
    /// specified type to expand memcpy / memset inline. This is mostly true
    /// for all types except for some special cases. For example, on X86
    /// targets without SSE2 f64 load / store are done with fldl / fstpl which
    /// also does type conversion. Note the specified type doesn't have to be
    /// legal as the hook is used before type legalization.
    bool isSafeMemOpType(MVT VT) const override;
    bool isMemoryAccessFast(EVT VT, Align Alignment) const;
    /// Returns true if the target allows unaligned memory accesses of the
    /// specified type. Returns whether it is "fast" in the last argument.
    bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, Align Alignment,
                                        MachineMemOperand::Flags Flags,
                                        unsigned *Fast) const override;
    /// This function returns true if the memory access is aligned or if the
    /// target allows this specific unaligned memory access. If the access is
    /// allowed, the optional final parameter returns a relative speed of the
    /// access (as defined by the target).
    bool allowsMemoryAccess(
        LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
        Align Alignment,
        MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
        unsigned *Fast = nullptr) const override;
    bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
                            const MachineMemOperand &MMO,
                            unsigned *Fast) const {
      return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(),
                                MMO.getAlign(), MMO.getFlags(), Fast);
    }
    /// Provide custom lowering hooks for some operations.
    ///
    SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
    /// Replace the results of node with an illegal result
    /// type with new values built out of custom code.
    ///
    void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
                            SelectionDAG &DAG) const override;
    SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
    bool preferABDSToABSWithNSW(EVT VT) const override;
    bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT,
                                   EVT ExtVT) const override;
    bool isXAndYEqZeroPreferableToXAndYEqY(ISD::CondCode Cond,
                                           EVT VT) const override;
    /// Return true if the target has native support for
    /// the specified value type and it is 'desirable' to use the type for the
    /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
    /// instruction encodings are longer and some i16 instructions are slow.
    bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
    /// Return true if the target has native support for the
    /// specified value type and it is 'desirable' to use the type. e.g. On x86
    /// i16 is legal, but undesirable since i16 instruction encodings are longer
    /// and some i16 instructions are slow.
    bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
    /// Return prefered fold type, Abs if this is a vector, AddAnd if its an
    /// integer, None otherwise.
    TargetLowering::AndOrSETCCFoldKind
    isDesirableToCombineLogicOpOfSETCC(const SDNode *LogicOp,
                                       const SDNode *SETCC0,
                                       const SDNode *SETCC1) const override;
    /// Return the newly negated expression if the cost is not expensive and
    /// set the cost in \p Cost to indicate that if it is cheaper or neutral to
    /// do the negation.
    SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG,
                                 bool LegalOperations, bool ForCodeSize,
                                 NegatibleCost &Cost,
                                 unsigned Depth) const override;
    MachineBasicBlock *
    EmitInstrWithCustomInserter(MachineInstr &MI,
                                MachineBasicBlock *MBB) const override;
    /// This method returns the name of a target specific DAG node.
    const char *getTargetNodeName(unsigned Opcode) const override;
    /// Do not merge vector stores after legalization because that may conflict
    /// with x86-specific store splitting optimizations.
    bool mergeStoresAfterLegalization(EVT MemVT) const override {
      return !MemVT.isVector();
    }
    bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
                          const MachineFunction &MF) const override;
    bool isCheapToSpeculateCttz(Type *Ty) const override;
    bool isCheapToSpeculateCtlz(Type *Ty) const override;
    bool isCtlzFast() const override;
    bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const override {
      // If the pair to store is a mixture of float and int values, we will
      // save two bitwise instructions and one float-to-int instruction and
      // increase one store instruction. There is potentially a more
      // significant benefit because it avoids the float->int domain switch
      // for input value. So It is more likely a win.
      if ((LTy.isFloatingPoint() && HTy.isInteger()) ||
          (LTy.isInteger() && HTy.isFloatingPoint()))
        return true;
      // If the pair only contains int values, we will save two bitwise
      // instructions and increase one store instruction (costing one more
      // store buffer). Since the benefit is more blurred so we leave
      // such pair out until we get testcase to prove it is a win.
      return false;
    }
    bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
    bool hasAndNotCompare(SDValue Y) const override;
    bool hasAndNot(SDValue Y) const override;
    bool hasBitTest(SDValue X, SDValue Y) const override;
    bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
        SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
        unsigned OldShiftOpcode, unsigned NewShiftOpcode,
        SelectionDAG &DAG) const override;
    unsigned preferedOpcodeForCmpEqPiecesOfOperand(
        EVT VT, unsigned ShiftOpc, bool MayTransformRotate,
        const APInt &ShiftOrRotateAmt,
        const std::optional<APInt> &AndMask) const override;
    bool preferScalarizeSplat(SDNode *N) const override;
    CondMergingParams
    getJumpConditionMergingParams(Instruction::BinaryOps Opc, const Value *Lhs,
                                  const Value *Rhs) const override;
    bool shouldFoldConstantShiftPairToMask(const SDNode *N,
                                           CombineLevel Level) const override;
    bool shouldFoldMaskToVariableShiftPair(SDValue Y) const override;
    bool
    shouldTransformSignedTruncationCheck(EVT XVT,
                                         unsigned KeptBits) const override {
      // For vectors, we don't have a preference..
      if (XVT.isVector())
        return false;
      auto VTIsOk = [](EVT VT) -> bool {
        return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
               VT == MVT::i64;
      };
      // We are ok with KeptBitsVT being byte/word/dword, what MOVS supports.
      // XVT will be larger than KeptBitsVT.
      MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
      return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
    }
    ShiftLegalizationStrategy
    preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N,
                                       unsigned ExpansionFactor) const override;
    bool shouldSplatInsEltVarIndex(EVT VT) const override;
    bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const override {
      // Converting to sat variants holds little benefit on X86 as we will just
      // need to saturate the value back using fp arithmatic.
      return Op != ISD::FP_TO_UINT_SAT && isOperationLegalOrCustom(Op, VT);
    }
    bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
      return VT.isScalarInteger();
    }
    /// Vector-sized comparisons are fast using PCMPEQ + PMOVMSK or PTEST.
    MVT hasFastEqualityCompare(unsigned NumBits) const override;
    /// Return the value type to use for ISD::SETCC.
    EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
                           EVT VT) const override;
    bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
                                      const APInt &DemandedElts,
                                      TargetLoweringOpt &TLO) const override;
    /// Determine which of the bits specified in Mask are known to be either
    /// zero or one and return them in the KnownZero/KnownOne bitsets.
    void computeKnownBitsForTargetNode(const SDValue Op,
                                       KnownBits &Known,
                                       const APInt &DemandedElts,
                                       const SelectionDAG &DAG,
                                       unsigned Depth = 0) const override;
    /// Determine the number of bits in the operation that are sign bits.
    unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
                                             const APInt &DemandedElts,
                                             const SelectionDAG &DAG,
                                             unsigned Depth) const override;
    bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op,
                                                 const APInt &DemandedElts,
                                                 APInt &KnownUndef,
                                                 APInt &KnownZero,
                                                 TargetLoweringOpt &TLO,
                                                 unsigned Depth) const override;
    bool SimplifyDemandedVectorEltsForTargetShuffle(SDValue Op,
                                                    const APInt &DemandedElts,
                                                    unsigned MaskIndex,
                                                    TargetLoweringOpt &TLO,
                                                    unsigned Depth) const;
    bool SimplifyDemandedBitsForTargetNode(SDValue Op,
                                           const APInt &DemandedBits,
                                           const APInt &DemandedElts,
                                           KnownBits &Known,
                                           TargetLoweringOpt &TLO,
                                           unsigned Depth) const override;
    SDValue SimplifyMultipleUseDemandedBitsForTargetNode(
        SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
        SelectionDAG &DAG, unsigned Depth) const override;
    bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(
        SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
        bool PoisonOnly, unsigned Depth) const override;
    bool canCreateUndefOrPoisonForTargetNode(
        SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
        bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const override;
    bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts,
                                   APInt &UndefElts, const SelectionDAG &DAG,
                                   unsigned Depth) const override;
    bool isTargetCanonicalConstantNode(SDValue Op) const override {
      // Peek through bitcasts/extracts/inserts to see if we have a broadcast
      // vector from memory.
      while (Op.getOpcode() == ISD::BITCAST ||
             Op.getOpcode() == ISD::EXTRACT_SUBVECTOR ||
             (Op.getOpcode() == ISD::INSERT_SUBVECTOR &&
              Op.getOperand(0).isUndef()))
        Op = Op.getOperand(Op.getOpcode() == ISD::INSERT_SUBVECTOR ? 1 : 0);
      return Op.getOpcode() == X86ISD::VBROADCAST_LOAD ||
             TargetLowering::isTargetCanonicalConstantNode(Op);
    }
    const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const override;
    SDValue unwrapAddress(SDValue N) const override;
    SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
    bool ExpandInlineAsm(CallInst *CI) const override;
    ConstraintType getConstraintType(StringRef Constraint) const override;
    /// Examine constraint string and operand type and determine a weight value.
    /// The operand object must already have been set up with the operand type.
    ConstraintWeight
      getSingleConstraintMatchWeight(AsmOperandInfo &Info,
                                     const char *Constraint) const override;
    const char *LowerXConstraint(EVT ConstraintVT) const override;
    /// Lower the specified operand into the Ops vector. If it is invalid, don't
    /// add anything to Ops. If hasMemory is true it means one of the asm
    /// constraint of the inline asm instruction being processed is 'm'.
    void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint,
                                      std::vector<SDValue> &Ops,
                                      SelectionDAG &DAG) const override;
    InlineAsm::ConstraintCode
    getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
      if (ConstraintCode == "v")
        return InlineAsm::ConstraintCode::v;
      return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    }
    /// Handle Lowering flag assembly outputs.
    SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Flag,
                                        const SDLoc &DL,
                                        const AsmOperandInfo &Constraint,
                                        SelectionDAG &DAG) const override;
    /// Given a physical register constraint
    /// (e.g. {edx}), return the register number and the register class for the
    /// register.  This should only be used for C_Register constraints.  On
    /// error, this returns a register number of 0.
    std::pair<unsigned, const TargetRegisterClass *>
    getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                 StringRef Constraint, MVT VT) const override;
    /// Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
                               Type *Ty, unsigned AS,
                               Instruction *I = nullptr) const override;
    bool addressingModeSupportsTLS(const GlobalValue &GV) const override;
    /// Return true if the specified immediate is legal
    /// icmp immediate, that is the target has icmp instructions which can
    /// compare a register against the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalICmpImmediate(int64_t Imm) const override;
    /// Return true if the specified immediate is legal
    /// add immediate, that is the target has add instructions which can
    /// add a register and the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalAddImmediate(int64_t Imm) const override;
    bool isLegalStoreImmediate(int64_t Imm) const override;
    /// This is used to enable splatted operand transforms for vector shifts
    /// and vector funnel shifts.
    bool isVectorShiftByScalarCheap(Type *Ty) const override;
    /// Add x86-specific opcodes to the default list.
    bool isBinOp(unsigned Opcode) const override;
    /// Returns true if the opcode is a commutative binary operation.
    bool isCommutativeBinOp(unsigned Opcode) const override;
    /// Return true if it's free to truncate a value of
    /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
    /// register EAX to i16 by referencing its sub-register AX.
    bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    bool isTruncateFree(EVT VT1, EVT VT2) const override;
    bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
    /// Return true if any actual instruction that defines a
    /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
    /// register. This does not necessarily include registers defined in
    /// unknown ways, such as incoming arguments, or copies from unknown
    /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
    /// does not necessarily apply to truncate instructions. e.g. on x86-64,
    /// all instructions that define 32-bit values implicit zero-extend the
    /// result out to 64 bits.
    bool isZExtFree(Type *Ty1, Type *Ty2) const override;
    bool isZExtFree(EVT VT1, EVT VT2) const override;
    bool isZExtFree(SDValue Val, EVT VT2) const override;
    bool shouldSinkOperands(Instruction *I,
                            SmallVectorImpl<Use *> &Ops) const override;
    bool shouldConvertPhiType(Type *From, Type *To) const override;
    /// Return true if folding a vector load into ExtVal (a sign, zero, or any
    /// extend node) is profitable.
    bool isVectorLoadExtDesirable(SDValue) const override;
    /// Return true if an FMA operation is faster than a pair of fmul and fadd
    /// instructions. fmuladd intrinsics will be expanded to FMAs when this
    /// method returns true, otherwise fmuladd is expanded to fmul + fadd.
    bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
                                    EVT VT) const override;
    /// Return true if it's profitable to narrow operations of type SrcVT to
    /// DestVT. e.g. on x86, it's profitable to narrow from i32 to i8 but not
    /// from i32 to i16.
    bool isNarrowingProfitable(EVT SrcVT, EVT DestVT) const override;
    bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode,
                                              EVT VT) const override;
    /// Given an intrinsic, checks if on the target the intrinsic will need to map
    /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
    /// true and stores the intrinsic information into the IntrinsicInfo that was
    /// passed to the function.
    bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
                            MachineFunction &MF,
                            unsigned Intrinsic) const override;
    /// Returns true if the target can instruction select the
    /// specified FP immediate natively. If false, the legalizer will
    /// materialize the FP immediate as a load from a constant pool.
    bool isFPImmLegal(const APFloat &Imm, EVT VT,
                      bool ForCodeSize) const override;
    /// Targets can use this to indicate that they only support *some*
    /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
    /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to
    /// be legal.
    bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
    /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
    /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
    /// constant pool entry.
    bool isVectorClearMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
    /// Returns true if lowering to a jump table is allowed.
    bool areJTsAllowed(const Function *Fn) const override;
    MVT getPreferredSwitchConditionType(LLVMContext &Context,
                                        EVT ConditionVT) const override;
    /// If true, then instruction selection should
    /// seek to shrink the FP constant of the specified type to a smaller type
    /// in order to save space and / or reduce runtime.
    bool ShouldShrinkFPConstant(EVT VT) const override;
    /// Return true if we believe it is correct and profitable to reduce the
    /// load node to a smaller type.
    bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
                               EVT NewVT) const override;
    /// Return true if the specified scalar FP type is computed in an SSE
    /// register, not on the X87 floating point stack.
    bool isScalarFPTypeInSSEReg(EVT VT) const;
    /// Returns true if it is beneficial to convert a load of a constant
    /// to just the constant itself.
    bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                           Type *Ty) const override;
    bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const override;
    bool convertSelectOfConstantsToMath(EVT VT) const override;
    bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
                                SDValue C) const override;
    /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
    /// with this index.
    bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
                                 unsigned Index) const override;
    /// Scalar ops always have equal or better analysis/performance/power than
    /// the vector equivalent, so this always makes sense if the scalar op is
    /// supported.
    bool shouldScalarizeBinop(SDValue) const override;
    /// Extract of a scalar FP value from index 0 of a vector is free.
    bool isExtractVecEltCheap(EVT VT, unsigned Index) const override {
      EVT EltVT = VT.getScalarType();
      return (EltVT == MVT::f32 || EltVT == MVT::f64) && Index == 0;
    }
    /// Overflow nodes should get combined/lowered to optimal instructions
    /// (they should allow eliminating explicit compares by getting flags from
    /// math ops).
    bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
                              bool MathUsed) const override;
    bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, unsigned NumElem,
                                      unsigned AddrSpace) const override {
      // If we can replace more than 2 scalar stores, there will be a reduction
      // in instructions even after we add a vector constant load.
      return IsZero || NumElem > 2;
    }
    bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
                                 const SelectionDAG &DAG,
                                 const MachineMemOperand &MMO) const override;
    Register getRegisterByName(const char* RegName, LLT VT,
                               const MachineFunction &MF) const override;
    /// If a physical register, this returns the register that receives the
    /// exception address on entry to an EH pad.
    Register
    getExceptionPointerRegister(const Constant *PersonalityFn) const override;
    /// If a physical register, this returns the register that receives the
    /// exception typeid on entry to a landing pad.
    Register
    getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
    bool needsFixedCatchObjects() const override;
    /// This method returns a target specific FastISel object,
    /// or null if the target does not support "fast" ISel.
    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                             const TargetLibraryInfo *libInfo) const override;
    /// If the target has a standard location for the stack protector cookie,
    /// returns the address of that location. Otherwise, returns nullptr.
    Value *getIRStackGuard(IRBuilderBase &IRB) const override;
    bool useLoadStackGuardNode() const override;
    bool useStackGuardXorFP() const override;
    void insertSSPDeclarations(Module &M) const override;
    Value *getSDagStackGuard(const Module &M) const override;
    Function *getSSPStackGuardCheck(const Module &M) const override;
    SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val,
                                const SDLoc &DL) const override;
    /// Return true if the target stores SafeStack pointer at a fixed offset in
    /// some non-standard address space, and populates the address space and
    /// offset as appropriate.
    Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const override;
    std::pair<SDValue, SDValue> BuildFILD(EVT DstVT, EVT SrcVT, const SDLoc &DL,
                                          SDValue Chain, SDValue Pointer,
                                          MachinePointerInfo PtrInfo,
                                          Align Alignment,
                                          SelectionDAG &DAG) const;
    /// Customize the preferred legalization strategy for certain types.
    LegalizeTypeAction getPreferredVectorAction(MVT VT) const override;
    bool softPromoteHalfType() const override { return true; }
    MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC,
                                      EVT VT) const override;
    unsigned getNumRegistersForCallingConv(LLVMContext &Context,
                                           CallingConv::ID CC,
                                           EVT VT) const override;
    unsigned getVectorTypeBreakdownForCallingConv(
        LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
        unsigned &NumIntermediates, MVT &RegisterVT) const override;
    bool isIntDivCheap(EVT VT, AttributeList Attr) const override;
    bool supportSwiftError() const override;
    bool supportKCFIBundles() const override { return true; }
    MachineInstr *EmitKCFICheck(MachineBasicBlock &MBB,
                                MachineBasicBlock::instr_iterator &MBBI,
                                const TargetInstrInfo *TII) const override;
    bool hasStackProbeSymbol(const MachineFunction &MF) const override;
    bool hasInlineStackProbe(const MachineFunction &MF) const override;
    StringRef getStackProbeSymbolName(const MachineFunction &MF) const override;
    unsigned getStackProbeSize(const MachineFunction &MF) const;
    bool hasVectorBlend() const override { return true; }
    unsigned getMaxSupportedInterleaveFactor() const override { return 4; }
    bool isInlineAsmTargetBranch(const SmallVectorImpl<StringRef> &AsmStrs,
                                 unsigned OpNo) const override;
    SDValue visitMaskedLoad(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain,
                            MachineMemOperand *MMO, SDValue &NewLoad,
                            SDValue Ptr, SDValue PassThru,
                            SDValue Mask) const override;
    SDValue visitMaskedStore(SelectionDAG &DAG, const SDLoc &DL, SDValue Chain,
                             MachineMemOperand *MMO, SDValue Ptr, SDValue Val,
                             SDValue Mask) const override;
    /// Lower interleaved load(s) into target specific
    /// instructions/intrinsics.
    bool lowerInterleavedLoad(LoadInst *LI,
                              ArrayRef<ShuffleVectorInst *> Shuffles,
                              ArrayRef<unsigned> Indices,
                              unsigned Factor) const override;
    /// Lower interleaved store(s) into target specific
    /// instructions/intrinsics.
    bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
                               unsigned Factor) const override;
    SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr,
                                   int JTI, SelectionDAG &DAG) const override;
    Align getPrefLoopAlignment(MachineLoop *ML) const override;
    EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const override {
      if (VT == MVT::f80)
        return EVT::getIntegerVT(Context, 96);
      return TargetLoweringBase::getTypeToTransformTo(Context, VT);
    }
  protected:
    std::pair<const TargetRegisterClass *, uint8_t>
    findRepresentativeClass(const TargetRegisterInfo *TRI,
                            MVT VT) const override;
  private:
    /// Keep a reference to the X86Subtarget around so that we can
    /// make the right decision when generating code for different targets.
    const X86Subtarget &Subtarget;
    /// A list of legal FP immediates.
    std::vector<APFloat> LegalFPImmediates;
    /// Indicate that this x86 target can instruction
    /// select the specified FP immediate natively.
    void addLegalFPImmediate(const APFloat& Imm) {
      LegalFPImmediates.push_back(Imm);
    }
    SDValue LowerCallResult(SDValue Chain, SDValue InGlue,
                            CallingConv::ID CallConv, bool isVarArg,
                            const SmallVectorImpl<ISD::InputArg> &Ins,
                            const SDLoc &dl, SelectionDAG &DAG,
                            SmallVectorImpl<SDValue> &InVals,
                            uint32_t *RegMask) const;
    SDValue LowerMemArgument(SDValue Chain, CallingConv::ID CallConv,
                             const SmallVectorImpl<ISD::InputArg> &ArgInfo,
                             const SDLoc &dl, SelectionDAG &DAG,
                             const CCValAssign &VA, MachineFrameInfo &MFI,
                             unsigned i) const;
    SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
                             const SDLoc &dl, SelectionDAG &DAG,
                             const CCValAssign &VA,
                             ISD::ArgFlagsTy Flags, bool isByval) const;
    // Call lowering helpers.
    /// Check whether the call is eligible for tail call optimization. Targets
    /// that want to do tail call optimization should implement this function.
    bool IsEligibleForTailCallOptimization(
        TargetLowering::CallLoweringInfo &CLI, CCState &CCInfo,
        SmallVectorImpl<CCValAssign> &ArgLocs, bool IsCalleePopSRet) const;
    SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
                                    SDValue Chain, bool IsTailCall,
                                    bool Is64Bit, int FPDiff,
                                    const SDLoc &dl) const;
    unsigned GetAlignedArgumentStackSize(unsigned StackSize,
                                         SelectionDAG &DAG) const;
    unsigned getAddressSpace() const;
    SDValue FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned,
                            SDValue &Chain) const;
    SDValue LRINT_LLRINTHelper(SDNode *N, SelectionDAG &DAG) const;
    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    unsigned getGlobalWrapperKind(const GlobalValue *GV,
                                  const unsigned char OpFlags) const;
    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
    /// Creates target global address or external symbol nodes for calls or
    /// other uses.
    SDValue LowerGlobalOrExternal(SDValue Op, SelectionDAG &DAG,
                                  bool ForCall) const;
    SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerLRINT_LLRINT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGET_FPENV_MEM(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSET_FPENV_MEM(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerRESET_FPENV(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerWin64_FP_TO_INT128(SDValue Op, SelectionDAG &DAG,
                                    SDValue &Chain) const;
    SDValue LowerWin64_INT128_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGC_TRANSITION(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    SDValue lowerFaddFsub(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFP_TO_BF16(SDValue Op, SelectionDAG &DAG) const;
    SDValue
    LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                         const SmallVectorImpl<ISD::InputArg> &Ins,
                         const SDLoc &dl, SelectionDAG &DAG,
                         SmallVectorImpl<SDValue> &InVals) const override;
    SDValue LowerCall(CallLoweringInfo &CLI,
                      SmallVectorImpl<SDValue> &InVals) const override;
    SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        const SmallVectorImpl<SDValue> &OutVals,
                        const SDLoc &dl, SelectionDAG &DAG) const override;
    bool supportSplitCSR(MachineFunction *MF) const override {
      return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
          MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
    }
    void initializeSplitCSR(MachineBasicBlock *Entry) const override;
    void insertCopiesSplitCSR(
      MachineBasicBlock *Entry,
      const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
    bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
    bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
    EVT getTypeForExtReturn(LLVMContext &Context, EVT VT,
                            ISD::NodeType ExtendKind) const override;
    bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
                        bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        LLVMContext &Context) const override;
    const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
    ArrayRef<MCPhysReg> getRoundingControlRegisters() const override;
    TargetLoweringBase::AtomicExpansionKind
    shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
    TargetLoweringBase::AtomicExpansionKind
    shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
    TargetLoweringBase::AtomicExpansionKind
    shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
    TargetLoweringBase::AtomicExpansionKind
    shouldExpandLogicAtomicRMWInIR(AtomicRMWInst *AI) const;
    void emitBitTestAtomicRMWIntrinsic(AtomicRMWInst *AI) const override;
    void emitCmpArithAtomicRMWIntrinsic(AtomicRMWInst *AI) const override;
    LoadInst *
    lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const override;
    bool needsCmpXchgNb(Type *MemType) const;
    void SetupEntryBlockForSjLj(MachineInstr &MI, MachineBasicBlock *MBB,
                                MachineBasicBlock *DispatchBB, int FI) const;
    // Utility function to emit the low-level va_arg code for X86-64.
    MachineBasicBlock *
    EmitVAARGWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const;
    /// Utility function to emit the xmm reg save portion of va_start.
    MachineBasicBlock *EmitLoweredCascadedSelect(MachineInstr &MI1,
                                                 MachineInstr &MI2,
                                                 MachineBasicBlock *BB) const;
    MachineBasicBlock *EmitLoweredSelect(MachineInstr &I,
                                         MachineBasicBlock *BB) const;
    MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
                                           MachineBasicBlock *BB) const;
    MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr &MI,
                                            MachineBasicBlock *BB) const;
    MachineBasicBlock *EmitLoweredProbedAlloca(MachineInstr &MI,
                                               MachineBasicBlock *BB) const;
    MachineBasicBlock *EmitLoweredTLSAddr(MachineInstr &MI,
                                          MachineBasicBlock *BB) const;
    MachineBasicBlock *EmitLoweredTLSCall(MachineInstr &MI,
                                          MachineBasicBlock *BB) const;
    MachineBasicBlock *EmitLoweredIndirectThunk(MachineInstr &MI,
                                                MachineBasicBlock *BB) const;
    MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
                                        MachineBasicBlock *MBB) const;
    void emitSetJmpShadowStackFix(MachineInstr &MI,
                                  MachineBasicBlock *MBB) const;
    MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
                                         MachineBasicBlock *MBB) const;
    MachineBasicBlock *emitLongJmpShadowStackFix(MachineInstr &MI,
                                                 MachineBasicBlock *MBB) const;
    MachineBasicBlock *EmitSjLjDispatchBlock(MachineInstr &MI,
                                             MachineBasicBlock *MBB) const;
    MachineBasicBlock *emitPatchableEventCall(MachineInstr &MI,
                                              MachineBasicBlock *MBB) const;
    /// Emit flags for the given setcc condition and operands. Also returns the
    /// corresponding X86 condition code constant in X86CC.
    SDValue emitFlagsForSetcc(SDValue Op0, SDValue Op1, ISD::CondCode CC,
                              const SDLoc &dl, SelectionDAG &DAG,
                              SDValue &X86CC) const;
    bool optimizeFMulOrFDivAsShiftAddBitcast(SDNode *N, SDValue FPConst,
                                             SDValue IntPow2) const override;
    /// Check if replacement of SQRT with RSQRT should be disabled.
    bool isFsqrtCheap(SDValue Op, SelectionDAG &DAG) const override;
    /// Use rsqrt* to speed up sqrt calculations.
    SDValue getSqrtEstimate(SDValue Op, SelectionDAG &DAG, int Enabled,
                            int &RefinementSteps, bool &UseOneConstNR,
                            bool Reciprocal) const override;
    /// Use rcp* to speed up fdiv calculations.
    SDValue getRecipEstimate(SDValue Op, SelectionDAG &DAG, int Enabled,
                             int &RefinementSteps) const override;
    /// Reassociate floating point divisions into multiply by reciprocal.
    unsigned combineRepeatedFPDivisors() const override;
    SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
                          SmallVectorImpl<SDNode *> &Created) const override;
    SDValue getMOVL(SelectionDAG &DAG, const SDLoc &dl, MVT VT, SDValue V1,
                    SDValue V2) const;
  };
  namespace X86 {
    FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                             const TargetLibraryInfo *libInfo);
  } // end namespace X86
  // X86 specific Gather/Scatter nodes.
  // The class has the same order of operands as MaskedGatherScatterSDNode for
  // convenience.
  class X86MaskedGatherScatterSDNode : public MemIntrinsicSDNode {
  public:
    // This is a intended as a utility and should never be directly created.
    X86MaskedGatherScatterSDNode() = delete;
    ~X86MaskedGatherScatterSDNode() = delete;
    const SDValue &getBasePtr() const { return getOperand(3); }
    const SDValue &getIndex()   const { return getOperand(4); }
    const SDValue &getMask()    const { return getOperand(2); }
    const SDValue &getScale()   const { return getOperand(5); }
    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MGATHER ||
             N->getOpcode() == X86ISD::MSCATTER;
    }
  };
  class X86MaskedGatherSDNode : public X86MaskedGatherScatterSDNode {
  public:
    const SDValue &getPassThru() const { return getOperand(1); }
    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MGATHER;
    }
  };
  class X86MaskedScatterSDNode : public X86MaskedGatherScatterSDNode {
  public:
    const SDValue &getValue() const { return getOperand(1); }
    static bool classof(const SDNode *N) {
      return N->getOpcode() == X86ISD::MSCATTER;
    }
  };
  /// Generate unpacklo/unpackhi shuffle mask.
  void createUnpackShuffleMask(EVT VT, SmallVectorImpl<int> &Mask, bool Lo,
                               bool Unary);
  /// Similar to unpacklo/unpackhi, but without the 128-bit lane limitation
  /// imposed by AVX and specific to the unary pattern. Example:
  /// v8iX Lo --> <0, 0, 1, 1, 2, 2, 3, 3>
  /// v8iX Hi --> <4, 4, 5, 5, 6, 6, 7, 7>
  void createSplat2ShuffleMask(MVT VT, SmallVectorImpl<int> &Mask, bool Lo);
} // end namespace llvm
#endif // LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
 |