| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 
 | //===-- X86InstrShiftRotate.td - Shift and Rotate Instrs ---*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the shift and rotate instructions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Shift/Rotate instructions
//===----------------------------------------------------------------------===//
multiclass ShiftRotate<string m, Format RegMRM, Format MemMRM, SDPatternOperator node,
                       SchedReadWrite rCL, SchedReadWrite ri, SchedReadWrite mCL,
                       SchedReadWrite mi, list<Register> uses = []> {
  let Uses = uses in {
    let isConvertibleToThreeAddress = !if(!eq(m, "shl"), 1, 0) in {
      let Predicates = [NoNDD] in {
        def 8ri  : BinOpRI8U_R<m, RegMRM, Xi8, node>, Sched<[ri]>, DefEFLAGS;
        def 16ri : BinOpRI8U_R<m, RegMRM, Xi16, node>, Sched<[ri]>, DefEFLAGS, OpSize16;
        def 32ri : BinOpRI8U_R<m, RegMRM, Xi32, node>, Sched<[ri]>, DefEFLAGS, OpSize32;
        def 64ri : BinOpRI8U_R<m, RegMRM, Xi64, node>, Sched<[ri]>, DefEFLAGS;
      }
      let Predicates = [HasNDD, In64BitMode] in {
        def 8ri_ND  : BinOpRI8U_R<m, RegMRM, Xi8, node, 1>, Sched<[ri]>, DefEFLAGS;
        def 16ri_ND : BinOpRI8U_R<m, RegMRM, Xi16, node, 1>, Sched<[ri]>, DefEFLAGS, PD;
        def 32ri_ND : BinOpRI8U_R<m, RegMRM, Xi32, node, 1>, Sched<[ri]>, DefEFLAGS;
        def 64ri_ND : BinOpRI8U_R<m, RegMRM, Xi64, node, 1>, Sched<[ri]>, DefEFLAGS;
      }
      let Predicates = [In64BitMode] in {
        def 8ri_EVEX  : BinOpRI8U_R<m, RegMRM, Xi8>, Sched<[ri]>, DefEFLAGS, PL;
        def 16ri_EVEX : BinOpRI8U_R<m, RegMRM, Xi16>, Sched<[ri]>, DefEFLAGS, PL, PD;
        def 32ri_EVEX : BinOpRI8U_R<m, RegMRM, Xi32>, Sched<[ri]>, DefEFLAGS, PL;
        def 64ri_EVEX : BinOpRI8U_R<m, RegMRM, Xi64>, Sched<[ri]>, DefEFLAGS, PL;
      }
    }
    def 8mi  : BinOpMI8U_M<m, MemMRM, Xi8, node>, Sched<[mi, WriteRMW]>, DefEFLAGS;
    def 16mi : BinOpMI8U_M<m, MemMRM, Xi16, node>, Sched<[mi, WriteRMW]>, DefEFLAGS, OpSize16;
    def 32mi : BinOpMI8U_M<m, MemMRM, Xi32, node>, Sched<[mi, WriteRMW]>, DefEFLAGS, OpSize32;
    def 64mi : BinOpMI8U_M<m, MemMRM, Xi64, node>, Sched<[mi, WriteRMW]>, DefEFLAGS, Requires<[In64BitMode]>;
    let Predicates = [HasNDD, In64BitMode] in {
      def 8mi_ND  : BinOpMI8U_R<m, MemMRM, Xi8, node>, Sched<[mi, ri]>, DefEFLAGS;
      def 16mi_ND : BinOpMI8U_R<m, MemMRM, Xi16, node>, Sched<[mi, ri]>, DefEFLAGS, PD;
      def 32mi_ND : BinOpMI8U_R<m, MemMRM, Xi32, node>, Sched<[mi, ri]>, DefEFLAGS;
      def 64mi_ND : BinOpMI8U_R<m, MemMRM, Xi64, node>, Sched<[mi, ri]>, DefEFLAGS;
    }
    let Predicates = [In64BitMode] in {
      def 8mi_EVEX  : BinOpMI8U_M<m, MemMRM, Xi8>, Sched<[mi, WriteRMW]>, DefEFLAGS, PL;
      def 16mi_EVEX : BinOpMI8U_M<m, MemMRM, Xi16>, Sched<[mi, WriteRMW]>, DefEFLAGS, PL, PD;
      def 32mi_EVEX : BinOpMI8U_M<m, MemMRM, Xi32>, Sched<[mi, WriteRMW]>, DefEFLAGS, PL;
      def 64mi_EVEX : BinOpMI8U_M<m, MemMRM, Xi64>, Sched<[mi, WriteRMW]>, DefEFLAGS, PL;
    }
    let SchedRW = [ri] in {
      def 8r1  : UnaryOpR_RF<0xD1, RegMRM, m, Xi8>;
      def 16r1 : UnaryOpR_RF<0xD1, RegMRM, m, Xi16>, OpSize16;
      def 32r1 : UnaryOpR_RF<0xD1, RegMRM, m, Xi32>, OpSize32;
      def 64r1 : UnaryOpR_RF<0xD1, RegMRM, m, Xi64>;
      // FIXME: Assembler can't tell whether it's 8r1_ND or 8rCL when the source register is cl, e.g.
      //
      //  shlb %cl, %al
      //
      // GNU binutils distinguish them by adding an explicit $1 to asm string of 8r1_ND. But we haven't support
      // constant immediate in asm string for X86 in TD. So we add DisassembleOnly for 8r1_ND for the time being.
      let Predicates = [In64BitMode] in {
        def 8r1_ND  : UnaryOpR_RF<0xD1, RegMRM, m, Xi8, null_frag, 1>, DisassembleOnly;
        def 16r1_ND : UnaryOpR_RF<0xD1, RegMRM, m, Xi16, null_frag, 1>, PD;
        def 32r1_ND : UnaryOpR_RF<0xD1, RegMRM, m, Xi32, null_frag, 1>;
        def 64r1_ND : UnaryOpR_RF<0xD1, RegMRM, m, Xi64, null_frag, 1>;
        def 8r1_EVEX  : UnaryOpR_RF<0xD1, RegMRM, m, Xi8>, PL;
        def 16r1_EVEX : UnaryOpR_RF<0xD1, RegMRM, m, Xi16>, PL, PD;
        def 32r1_EVEX : UnaryOpR_RF<0xD1, RegMRM, m, Xi32>, PL;
        def 64r1_EVEX : UnaryOpR_RF<0xD1, RegMRM, m, Xi64>, PL;
      }
    }
    let SchedRW = [mi, WriteRMW] in {
      def 8m1  : UnaryOpM_MF<0xD1, MemMRM, m, Xi8>;
      def 16m1 : UnaryOpM_MF<0xD1, MemMRM, m, Xi16>, OpSize16;
      def 32m1 : UnaryOpM_MF<0xD1, MemMRM, m, Xi32>, OpSize32;
      def 64m1 : UnaryOpM_MF<0xD1, MemMRM, m, Xi64>, Requires<[In64BitMode]>;
      let Predicates = [In64BitMode] in {
        def 8m1_EVEX  : UnaryOpM_MF<0xD1, MemMRM, m, Xi8>, PL;
        def 16m1_EVEX : UnaryOpM_MF<0xD1, MemMRM, m, Xi16>, PL, PD;
        def 32m1_EVEX : UnaryOpM_MF<0xD1, MemMRM, m, Xi32>, PL;
        def 64m1_EVEX : UnaryOpM_MF<0xD1, MemMRM, m, Xi64>, PL;
      }
    }
    let SchedRW = [mi, ri], Predicates = [In64BitMode] in {
      def 8m1_ND  : UnaryOpM_RF<0xD1, MemMRM, m, Xi8>;
      def 16m1_ND : UnaryOpM_RF<0xD1, MemMRM, m, Xi16>, PD;
      def 32m1_ND : UnaryOpM_RF<0xD1, MemMRM, m, Xi32>;
      def 64m1_ND : UnaryOpM_RF<0xD1, MemMRM, m, Xi64>;
    }
  }
  let Uses = !listconcat([CL], uses), Defs = [EFLAGS] in {
    let Predicates = [NoNDD] in {
      def 8rCL  : BinOpRC_R<m, RegMRM, Xi8, node>, Sched<[rCL]>;
      def 16rCL : BinOpRC_R<m, RegMRM, Xi16, node>, Sched<[rCL]>, OpSize16;
      def 32rCL : BinOpRC_R<m, RegMRM, Xi32, node>, Sched<[rCL]>, OpSize32;
      def 64rCL : BinOpRC_R<m, RegMRM, Xi64, node>, Sched<[rCL]>;
    }
    let Predicates = [HasNDD, In64BitMode] in {
      def 8rCL_ND  : BinOpRC_R<m, RegMRM, Xi8, node, 1>, Sched<[rCL]>;
      def 16rCL_ND : BinOpRC_R<m, RegMRM, Xi16, node, 1>, Sched<[rCL]>, PD;
      def 32rCL_ND : BinOpRC_R<m, RegMRM, Xi32, node, 1>, Sched<[rCL]>;
      def 64rCL_ND : BinOpRC_R<m, RegMRM, Xi64, node, 1>, Sched<[rCL]>;
    }
    let Predicates = [In64BitMode] in {
      def 8rCL_EVEX  : BinOpRC_R<m, RegMRM, Xi8>, Sched<[rCL]>, PL;
      def 16rCL_EVEX : BinOpRC_R<m, RegMRM, Xi16>, Sched<[rCL]>, PL, PD;
      def 32rCL_EVEX : BinOpRC_R<m, RegMRM, Xi32>, Sched<[rCL]>, PL;
      def 64rCL_EVEX : BinOpRC_R<m, RegMRM, Xi64>, Sched<[rCL]>, PL;
    }
    def 8mCL  : BinOpMC_M<m, MemMRM, Xi8, node>, Sched<[mCL, WriteRMW]>;
    def 16mCL : BinOpMC_M<m, MemMRM, Xi16, node>, Sched<[mCL, WriteRMW]>, OpSize16;
    def 32mCL : BinOpMC_M<m, MemMRM, Xi32, node>, Sched<[mCL, WriteRMW]>, OpSize32;
    def 64mCL : BinOpMC_M<m, MemMRM, Xi64, node>, Sched<[mCL, WriteRMW]>, Requires<[In64BitMode]>;
    let Predicates = [HasNDD, In64BitMode] in {
      def 8mCL_ND  : BinOpMC_R<m, MemMRM, Xi8, node>, Sched<[mCL, rCL]>;
      def 16mCL_ND : BinOpMC_R<m, MemMRM, Xi16, node>, Sched<[mCL, rCL]>, PD;
      def 32mCL_ND : BinOpMC_R<m, MemMRM, Xi32, node>, Sched<[mCL, rCL]>;
      def 64mCL_ND : BinOpMC_R<m, MemMRM, Xi64, node>, Sched<[mCL, rCL]>;
    }
    let Predicates = [In64BitMode] in {
      def 8mCL_EVEX  : BinOpMC_M<m, MemMRM, Xi8>, Sched<[mCL, WriteRMW]>, PL;
      def 16mCL_EVEX : BinOpMC_M<m, MemMRM, Xi16>, Sched<[mCL, WriteRMW]>, PL, PD;
      def 32mCL_EVEX : BinOpMC_M<m, MemMRM, Xi32>, Sched<[mCL, WriteRMW]>, PL;
      def 64mCL_EVEX : BinOpMC_M<m, MemMRM, Xi64>, Sched<[mCL, WriteRMW]>, PL;
    }
  }
}
multiclass ShiftRotate_NF<string m, Format RegMRM, Format MemMRM, SchedReadWrite rCL,
                          SchedReadWrite ri, SchedReadWrite mCL, SchedReadWrite mi> {
  let Predicates = [In64BitMode] in {
    let isConvertibleToThreeAddress = !if(!eq(m, "shl"), 1, 0) in {
      def 8ri_NF  : BinOpRI8U_R<m, RegMRM, Xi8>, Sched<[ri]>, NF;
      def 16ri_NF : BinOpRI8U_R<m, RegMRM, Xi16>, Sched<[ri]>, NF, PD;
      def 32ri_NF : BinOpRI8U_R<m, RegMRM, Xi32>, Sched<[ri]>, NF;
      def 64ri_NF : BinOpRI8U_R<m, RegMRM, Xi64>, Sched<[ri]>, NF;
      def 8ri_NF_ND  : BinOpRI8U_R<m, RegMRM, Xi8, null_frag, 1>, Sched<[ri]>, EVEX_NF;
      def 16ri_NF_ND : BinOpRI8U_R<m, RegMRM, Xi16, null_frag, 1>, Sched<[ri]>, EVEX_NF, PD;
      def 32ri_NF_ND : BinOpRI8U_R<m, RegMRM, Xi32, null_frag, 1>, Sched<[ri]>, EVEX_NF;
      def 64ri_NF_ND : BinOpRI8U_R<m, RegMRM, Xi64, null_frag, 1>, Sched<[ri]>, EVEX_NF;
    }
    def 8mi_NF  : BinOpMI8U_M<m, MemMRM, Xi8>, Sched<[mi, WriteRMW]>, NF;
    def 16mi_NF : BinOpMI8U_M<m, MemMRM, Xi16>, Sched<[mi, WriteRMW]>, NF, PD;
    def 32mi_NF : BinOpMI8U_M<m, MemMRM, Xi32>, Sched<[mi, WriteRMW]>, NF;
    def 64mi_NF : BinOpMI8U_M<m, MemMRM, Xi64>, Sched<[mi, WriteRMW]>, NF;
    def 8mi_NF_ND  : BinOpMI8U_R<m, MemMRM, Xi8>, Sched<[mi, ri]>, EVEX_NF;
    def 16mi_NF_ND : BinOpMI8U_R<m, MemMRM, Xi16>, Sched<[mi, ri]>, EVEX_NF, PD;
    def 32mi_NF_ND : BinOpMI8U_R<m, MemMRM, Xi32>, Sched<[mi, ri]>, EVEX_NF;
    def 64mi_NF_ND : BinOpMI8U_R<m, MemMRM, Xi64>, Sched<[mi, ri]>, EVEX_NF;
    let SchedRW = [ri] in {
      // FIXME: Assembler can't tell whether it's 8r1_NF_ND or 8rCL_NF when the source register is cl, e.g.
      //
      //  {nf} shlb %cl, %al
      //
      // GNU binutils distinguish them by adding an explicit $1 to asm string of 8r1_NF_ND. But we haven't support
      // constant immediate in asm string for X86 in TD. So we add DisassembleOnly for 8r1_NF_ND for the time being.
      def 8r1_NF  : UnaryOpR_R<0xD1, RegMRM, m, Xi8>, NF;
      def 16r1_NF : UnaryOpR_R<0xD1, RegMRM, m, Xi16>, NF, PD;
      def 32r1_NF : UnaryOpR_R<0xD1, RegMRM, m, Xi32>, NF;
      def 64r1_NF : UnaryOpR_R<0xD1, RegMRM, m, Xi64>, NF;
      def 8r1_NF_ND  : UnaryOpR_R<0xD1, RegMRM, m, Xi8, null_frag, 1>, EVEX_NF, DisassembleOnly;
      def 16r1_NF_ND : UnaryOpR_R<0xD1, RegMRM, m, Xi16, null_frag, 1>, EVEX_NF, PD;
      def 32r1_NF_ND : UnaryOpR_R<0xD1, RegMRM, m, Xi32, null_frag, 1>, EVEX_NF;
      def 64r1_NF_ND : UnaryOpR_R<0xD1, RegMRM, m, Xi64, null_frag, 1>, EVEX_NF;
    }
    let SchedRW = [mi, WriteRMW] in {
      def 8m1_NF  : UnaryOpM_M<0xD1, MemMRM, m, Xi8>, NF;
      def 16m1_NF : UnaryOpM_M<0xD1, MemMRM, m, Xi16>, NF, PD;
      def 32m1_NF : UnaryOpM_M<0xD1, MemMRM, m, Xi32>, NF;
      def 64m1_NF : UnaryOpM_M<0xD1, MemMRM, m, Xi64>, NF;
    }
    let SchedRW = [mi, ri] in {
      def 8m1_NF_ND  : UnaryOpM_R<0xD1, MemMRM, m, Xi8>, EVEX_NF;
      def 16m1_NF_ND : UnaryOpM_R<0xD1, MemMRM, m, Xi16>, EVEX_NF, PD;
      def 32m1_NF_ND : UnaryOpM_R<0xD1, MemMRM, m, Xi32>, EVEX_NF;
      def 64m1_NF_ND : UnaryOpM_R<0xD1, MemMRM, m, Xi64>, EVEX_NF;
    }
    let Uses = [CL] in {
      def 8rCL_NF  : BinOpRC_R<m, RegMRM, Xi8>, Sched<[rCL]>, NF;
      def 16rCL_NF : BinOpRC_R<m, RegMRM, Xi16>, Sched<[rCL]>, NF, PD;
      def 32rCL_NF : BinOpRC_R<m, RegMRM, Xi32>, Sched<[rCL]>, NF;
      def 64rCL_NF : BinOpRC_R<m, RegMRM, Xi64>, Sched<[rCL]>, NF;
      def 8rCL_NF_ND  : BinOpRC_R<m, RegMRM, Xi8, null_frag, 1>, Sched<[rCL]>, EVEX_NF;
      def 16rCL_NF_ND : BinOpRC_R<m, RegMRM, Xi16, null_frag, 1>, Sched<[rCL]>, EVEX_NF, PD;
      def 32rCL_NF_ND : BinOpRC_R<m, RegMRM, Xi32, null_frag, 1>, Sched<[rCL]>, EVEX_NF;
      def 64rCL_NF_ND : BinOpRC_R<m, RegMRM, Xi64, null_frag, 1>, Sched<[rCL]>, EVEX_NF;
      def 8mCL_NF  : BinOpMC_M<m, MemMRM, Xi8>, Sched<[mCL, WriteRMW]>, NF;
      def 16mCL_NF : BinOpMC_M<m, MemMRM, Xi16>, Sched<[mCL, WriteRMW]>, NF, PD;
      def 32mCL_NF : BinOpMC_M<m, MemMRM, Xi32>, Sched<[mCL, WriteRMW]>, NF;
      def 64mCL_NF : BinOpMC_M<m, MemMRM, Xi64>, Sched<[mCL, WriteRMW]>, NF;
      def 8mCL_NF_ND  : BinOpMC_R<m, MemMRM, Xi8>, Sched<[mCL, rCL]>, EVEX_NF;
      def 16mCL_NF_ND : BinOpMC_R<m, MemMRM, Xi16>, Sched<[mCL, rCL]>, EVEX_NF, PD;
      def 32mCL_NF_ND : BinOpMC_R<m, MemMRM, Xi32>, Sched<[mCL, rCL]>, EVEX_NF;
      def 64mCL_NF_ND : BinOpMC_R<m, MemMRM, Xi64>, Sched<[mCL, rCL]>, EVEX_NF;
    }
  }
}
defm SHL: ShiftRotate<"shl", MRM4r, MRM4m, shl, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm SHR: ShiftRotate<"shr", MRM5r, MRM5m, srl, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm SAR: ShiftRotate<"sar", MRM7r, MRM7m, sra, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm ROL: ShiftRotate<"rol", MRM0r, MRM0m, rotl, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd>;
defm ROR: ShiftRotate<"ror", MRM1r, MRM1m, rotr, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd>;
defm RCL: ShiftRotate<"rcl", MRM2r, MRM2m, null_frag, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd, [EFLAGS]>;
defm RCR: ShiftRotate<"rcr", MRM3r, MRM3m, null_frag, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd, [EFLAGS]>;
defm SHL: ShiftRotate_NF<"shl", MRM4r, MRM4m, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm SHR: ShiftRotate_NF<"shr", MRM5r, MRM5m, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm SAR: ShiftRotate_NF<"sar", MRM7r, MRM7m, WriteShiftCL, WriteShift, WriteShiftCLLd, WriteShiftLd>;
defm ROL: ShiftRotate_NF<"rol", MRM0r, MRM0m, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd>;
defm ROR: ShiftRotate_NF<"ror", MRM1r, MRM1m, WriteRotateCL, WriteRotate, WriteRotateCLLd, WriteRotateLd>;
// Use the opposite rotate if allows us to use the rotate by 1 instruction.
let Predicates = [NoNDD] in {
  def : Pat<(rotl GR8:$src1,  (i8 7)),  (ROR8r1  GR8:$src1)>;
  def : Pat<(rotl GR16:$src1, (i8 15)), (ROR16r1 GR16:$src1)>;
  def : Pat<(rotl GR32:$src1, (i8 31)), (ROR32r1 GR32:$src1)>;
  def : Pat<(rotl GR64:$src1, (i8 63)), (ROR64r1 GR64:$src1)>;
  def : Pat<(rotr GR8:$src1,  (i8 7)),  (ROL8r1  GR8:$src1)>;
  def : Pat<(rotr GR16:$src1, (i8 15)), (ROL16r1 GR16:$src1)>;
  def : Pat<(rotr GR32:$src1, (i8 31)), (ROL32r1 GR32:$src1)>;
  def : Pat<(rotr GR64:$src1, (i8 63)), (ROL64r1 GR64:$src1)>;
}
let Predicates = [HasNDD] in {
  def : Pat<(rotl GR8:$src1,  (i8 7)),  (ROR8r1_ND  GR8:$src1)>;
  def : Pat<(rotl GR16:$src1, (i8 15)), (ROR16r1_ND GR16:$src1)>;
  def : Pat<(rotl GR32:$src1, (i8 31)), (ROR32r1_ND GR32:$src1)>;
  def : Pat<(rotl GR64:$src1, (i8 63)), (ROR64r1_ND GR64:$src1)>;
  def : Pat<(rotr GR8:$src1,  (i8 7)),  (ROL8r1_ND  GR8:$src1)>;
  def : Pat<(rotr GR16:$src1, (i8 15)), (ROL16r1_ND GR16:$src1)>;
  def : Pat<(rotr GR32:$src1, (i8 31)), (ROL32r1_ND GR32:$src1)>;
  def : Pat<(rotr GR64:$src1, (i8 63)), (ROL64r1_ND GR64:$src1)>;
}
def : Pat<(store (rotl (loadi8 addr:$dst), (i8 7)), addr:$dst),
          (ROR8m1 addr:$dst)>;
def : Pat<(store (rotl (loadi16 addr:$dst), (i8 15)), addr:$dst),
          (ROR16m1 addr:$dst)>;
def : Pat<(store (rotl (loadi32 addr:$dst), (i8 31)), addr:$dst),
          (ROR32m1 addr:$dst)>;
def : Pat<(store (rotl (loadi64 addr:$dst), (i8 63)), addr:$dst),
          (ROR64m1 addr:$dst)>, Requires<[In64BitMode]>;
def : Pat<(store (rotr (loadi8 addr:$dst), (i8 7)), addr:$dst),
          (ROL8m1 addr:$dst)>;
def : Pat<(store (rotr (loadi16 addr:$dst), (i8 15)), addr:$dst),
          (ROL16m1 addr:$dst)>;
def : Pat<(store (rotr (loadi32 addr:$dst), (i8 31)), addr:$dst),
          (ROL32m1 addr:$dst)>;
def : Pat<(store (rotr (loadi64 addr:$dst), (i8 63)), addr:$dst),
          (ROL64m1 addr:$dst)>, Requires<[In64BitMode]>;
let Predicates = [HasNDD] in {
def : Pat<(rotl (loadi8 addr:$src), (i8 7)),
          (ROR8m1_ND addr:$src)>;
def : Pat<(rotl (loadi16 addr:$src), (i8 15)),
          (ROR16m1_ND addr:$src)>;
def : Pat<(rotl (loadi32 addr:$src), (i8 31)),
          (ROR32m1_ND addr:$src)>;
def : Pat<(rotl (loadi64 addr:$src), (i8 63)),
          (ROR64m1_ND addr:$src)>;
def : Pat<(rotr (loadi8 addr:$src), (i8 7)),
          (ROL8m1_ND addr:$src)>;
def : Pat<(rotr (loadi16 addr:$src), (i8 15)),
          (ROL16m1_ND addr:$src)>;
def : Pat<(rotr (loadi32 addr:$src), (i8 31)),
          (ROL32m1_ND addr:$src)>;
def : Pat<(rotr (loadi64 addr:$src), (i8 63)),
          (ROL64m1_ND addr:$src)>;
}
// Patterns for rotate with relocImm for the immediate field.
let Predicates = [NoNDD] in {
  def : Pat<(rotl GR8:$src1, (i8 relocImm:$src2)),
            (ROL8ri GR8:$src1, relocImm:$src2)>;
  def : Pat<(rotl GR16:$src1, (i8 relocImm:$src2)),
            (ROL16ri GR16:$src1, relocImm:$src2)>;
  def : Pat<(rotl GR32:$src1, (i8 relocImm:$src2)),
            (ROL32ri GR32:$src1, relocImm:$src2)>;
  def : Pat<(rotl GR64:$src1, (i8 relocImm:$src2)),
            (ROL64ri GR64:$src1, relocImm:$src2)>;
  def : Pat<(rotr GR8:$src1, (i8 relocImm:$src2)),
            (ROR8ri GR8:$src1, relocImm:$src2)>;
  def : Pat<(rotr GR16:$src1, (i8 relocImm:$src2)),
            (ROR16ri GR16:$src1, relocImm:$src2)>;
  def : Pat<(rotr GR32:$src1, (i8 relocImm:$src2)),
            (ROR32ri GR32:$src1, relocImm:$src2)>;
  def : Pat<(rotr GR64:$src1, (i8 relocImm:$src2)),
            (ROR64ri GR64:$src1, relocImm:$src2)>;
}
let Predicates = [HasNDD] in {
  def : Pat<(rotl GR8:$src1, (i8 relocImm:$src2)),
            (ROL8ri_ND GR8:$src1, relocImm:$src2)>;
  def : Pat<(rotl GR16:$src1, (i8 relocImm:$src2)),
            (ROL16ri_ND GR16:$src1, relocImm:$src2)>;
  def : Pat<(rotl GR32:$src1, (i8 relocImm:$src2)),
            (ROL32ri_ND GR32:$src1, relocImm:$src2)>;
  def : Pat<(rotl GR64:$src1, (i8 relocImm:$src2)),
            (ROL64ri_ND GR64:$src1, relocImm:$src2)>;
  def : Pat<(rotr GR8:$src1, (i8 relocImm:$src2)),
            (ROR8ri_ND GR8:$src1, relocImm:$src2)>;
  def : Pat<(rotr GR16:$src1, (i8 relocImm:$src2)),
            (ROR16ri_ND GR16:$src1, relocImm:$src2)>;
  def : Pat<(rotr GR32:$src1, (i8 relocImm:$src2)),
            (ROR32ri_ND GR32:$src1, relocImm:$src2)>;
  def : Pat<(rotr GR64:$src1, (i8 relocImm:$src2)),
            (ROR64ri_ND GR64:$src1, relocImm:$src2)>;
}
//===----------------------------------------------------------------------===//
// Double precision shift instructions (generalizations of rotate)
//===----------------------------------------------------------------------===//
class ShlrdOpRRI8U_R<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag, bit ndd = 0>
  : ITy<o, MRMDestReg, t, (outs t.RegClass:$dst),
        (ins t.RegClass:$src1, t.RegClass:$src2, u8imm:$src3), m, !if(!eq(ndd, 0), triop_args, triop_ndd_args),
        []>, NDD<ndd> {
  let isCommutable = 1;
  let ImmT = Imm8;
  let SchedRW = [WriteSHDrri];
  let Pattern = !if(!eq(m, "shld"),
                    [(set t.RegClass:$dst, (node t.RegClass:$src1, t.RegClass:$src2, (i8 imm:$src3)))],
                    [(set t.RegClass:$dst, (node t.RegClass:$src2, t.RegClass:$src1, (i8 imm:$src3)))]);
}
class ShlrdOpRRC_R<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag, bit ndd = 0>
  : BinOpRR<o, m, !if(!eq(ndd, 0), triop_cl_args, triop_cl_ndd_args), t, (outs t.RegClass:$dst), []>, NDD<ndd> {
  let Uses = [CL];
  let SchedRW = [WriteSHDrrcl];
  let Pattern = !if(!eq(m, "shld"),
                    [(set t.RegClass:$dst, (node t.RegClass:$src1, t.RegClass:$src2, CL))],
                    [(set t.RegClass:$dst, (node t.RegClass:$src2, t.RegClass:$src1, CL))]);
}
class ShlrdOpMRI8U_M<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag>
  : ITy<o, MRMDestMem, t, (outs), (ins t.MemOperand:$src1, t.RegClass:$src2, u8imm:$src3),
        m, triop_args, []>, TB {
  let ImmT = Imm8;
  let SchedRW = [WriteSHDmri];
  let mayLoad = 1;
  let mayStore = 1;
  let Pattern = !if(!eq(m, "shld"),
                    [(store (node (t.LoadNode addr:$src1), t.RegClass:$src2, (i8 imm:$src3)), addr:$src1)],
                    [(store (node t.RegClass:$src2, (t.LoadNode addr:$src1), (i8 imm:$src3)), addr:$src1)]);
}
class ShlrdOpMRC_M<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag>
  : BinOpMR<o, m, triop_cl_args, t, (outs), []>, TB {
  let Uses = [CL];
  let SchedRW = [WriteSHDmrcl];
  let mayStore = 1;
  let Pattern = !if(!eq(m, "shld"),
                    [(store (node (t.LoadNode addr:$src1), t.RegClass:$src2, CL), addr:$src1)],
                    [(store (node t.RegClass:$src2, (t.LoadNode addr:$src1), CL), addr:$src1)]);
}
class ShlrdOpMRI8U_R<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag>
  : ITy<o, MRMDestMem, t, (outs t.RegClass:$dst), (ins t.MemOperand:$src1, t.RegClass:$src2, u8imm:$src3),
        m, triop_ndd_args, []>, NDD<1> {
  let ImmT = Imm8;
  let SchedRW = [WriteSHDmri];
  let mayLoad = 1;
  let Pattern = !if(!eq(m, "shld"),
                    [(set t.RegClass:$dst, (node (t.LoadNode addr:$src1), t.RegClass:$src2, (i8 imm:$src3)))],
                    [(set t.RegClass:$dst, (node t.RegClass:$src2, (t.LoadNode addr:$src1), (i8 imm:$src3)))]);
}
class ShlrdOpMRC_R<bits<8> o, string m, X86TypeInfo t, SDPatternOperator node = null_frag>
  : BinOpMR<o, m, triop_cl_ndd_args, t, (outs t.RegClass:$dst), []>, NDD<1> {
  let Uses = [CL];
  let SchedRW = [WriteSHDmrcl];
  let Pattern = !if(!eq(m, "shld"),
                    [(set t.RegClass:$dst, (node (t.LoadNode addr:$src1), t.RegClass:$src2, CL))],
                    [(set t.RegClass:$dst, (node t.RegClass:$src2, (t.LoadNode addr:$src1), CL))]);
}
multiclass Shlrd<bits<8> o1, bits<8> o2, bits<8> o3, string m, SDPatternOperator node, SDPatternOperator t_node> {
  let Predicates = [NoNDD] in {
    def 16rri8 : ShlrdOpRRI8U_R<o1, m, Xi16, t_node>, TB, DefEFLAGS, OpSize16;
    def 32rri8 : ShlrdOpRRI8U_R<o1, m, Xi32, node>, TB, DefEFLAGS, OpSize32;
    def 64rri8 : ShlrdOpRRI8U_R<o1, m, Xi64, node>, TB, DefEFLAGS;
    def 16rrCL : ShlrdOpRRC_R<o2, m, Xi16, t_node>, TB, DefEFLAGS, OpSize16;
    def 32rrCL : ShlrdOpRRC_R<o2, m, Xi32, node>, TB, DefEFLAGS, OpSize32;
    def 64rrCL : ShlrdOpRRC_R<o2, m, Xi64, node>, TB, DefEFLAGS;
  }
  let Predicates = [HasNDD, In64BitMode] in {
    def 16rri8_ND : ShlrdOpRRI8U_R<o3, m, Xi16, t_node, 1>, DefEFLAGS, PD;
    def 32rri8_ND : ShlrdOpRRI8U_R<o3, m, Xi32, node, 1>, DefEFLAGS;
    def 64rri8_ND : ShlrdOpRRI8U_R<o3, m, Xi64, node, 1>, DefEFLAGS;
    def 16rrCL_ND : ShlrdOpRRC_R<o2, m, Xi16, t_node, 1>, DefEFLAGS, PD;
    def 32rrCL_ND : ShlrdOpRRC_R<o2, m, Xi32, node, 1>, DefEFLAGS;
    def 64rrCL_ND : ShlrdOpRRC_R<o2, m, Xi64, node, 1>, DefEFLAGS;
  }
  let Predicates = [In64BitMode] in {
    def 16rri8_NF : ShlrdOpRRI8U_R<o3, m, Xi16>, NF, PD;
    def 32rri8_NF : ShlrdOpRRI8U_R<o3, m, Xi32>, NF;
    def 64rri8_NF : ShlrdOpRRI8U_R<o3, m, Xi64>, NF;
    def 16rrCL_NF : ShlrdOpRRC_R<o2, m, Xi16>, NF, PD;
    def 32rrCL_NF : ShlrdOpRRC_R<o2, m, Xi32>, NF;
    def 64rrCL_NF : ShlrdOpRRC_R<o2, m, Xi64>, NF;
    def 16rri8_NF_ND : ShlrdOpRRI8U_R<o3, m, Xi16, null_frag, 1>, EVEX_NF, PD;
    def 32rri8_NF_ND : ShlrdOpRRI8U_R<o3, m, Xi32, null_frag, 1>, EVEX_NF;
    def 64rri8_NF_ND : ShlrdOpRRI8U_R<o3, m, Xi64, null_frag, 1>, EVEX_NF;
    def 16rrCL_NF_ND : ShlrdOpRRC_R<o2, m, Xi16, null_frag, 1>, EVEX_NF, PD;
    def 32rrCL_NF_ND : ShlrdOpRRC_R<o2, m, Xi32, null_frag, 1>, EVEX_NF;
    def 64rrCL_NF_ND : ShlrdOpRRC_R<o2, m, Xi64, null_frag, 1>, EVEX_NF;
    def 16rri8_EVEX : ShlrdOpRRI8U_R<o3, m, Xi16>, DefEFLAGS, PL, PD;
    def 32rri8_EVEX : ShlrdOpRRI8U_R<o3, m, Xi32>, DefEFLAGS, PL;
    def 64rri8_EVEX : ShlrdOpRRI8U_R<o3, m, Xi64>, DefEFLAGS, PL;
    def 16rrCL_EVEX : ShlrdOpRRC_R<o2, m, Xi16>, DefEFLAGS, PL, PD;
    def 32rrCL_EVEX : ShlrdOpRRC_R<o2, m, Xi32>, DefEFLAGS, PL;
    def 64rrCL_EVEX : ShlrdOpRRC_R<o2, m, Xi64>, DefEFLAGS, PL;
  }
  def 16mri8 : ShlrdOpMRI8U_M<o1, m, Xi16, t_node>, DefEFLAGS, OpSize16;
  def 32mri8 : ShlrdOpMRI8U_M<o1, m, Xi32, node>, DefEFLAGS, OpSize32;
  def 64mri8 : ShlrdOpMRI8U_M<o1, m, Xi64, node>, DefEFLAGS;
  def 16mrCL : ShlrdOpMRC_M<o2, m, Xi16, t_node>, DefEFLAGS, OpSize16;
  def 32mrCL : ShlrdOpMRC_M<o2, m, Xi32, node>, DefEFLAGS, OpSize32;
  def 64mrCL : ShlrdOpMRC_M<o2, m, Xi64, node>, DefEFLAGS;
  let Predicates = [HasNDD, In64BitMode] in {
    def 16mri8_ND : ShlrdOpMRI8U_R<o3, m, Xi16, t_node>, DefEFLAGS, PD;
    def 32mri8_ND : ShlrdOpMRI8U_R<o3, m, Xi32, node>, DefEFLAGS;
    def 64mri8_ND : ShlrdOpMRI8U_R<o3, m, Xi64, node>, DefEFLAGS;
    def 16mrCL_ND : ShlrdOpMRC_R<o2, m, Xi16, t_node>, DefEFLAGS, PD;
    def 32mrCL_ND : ShlrdOpMRC_R<o2, m, Xi32, node>, DefEFLAGS;
    def 64mrCL_ND : ShlrdOpMRC_R<o2, m, Xi64, node>, DefEFLAGS;
  }
  let Predicates = [In64BitMode] in {
    def 16mri8_NF : ShlrdOpMRI8U_M<o3, m, Xi16>, NF, PD;
    def 32mri8_NF : ShlrdOpMRI8U_M<o3, m, Xi32>, NF;
    def 64mri8_NF : ShlrdOpMRI8U_M<o3, m, Xi64>, NF;
    def 16mrCL_NF : ShlrdOpMRC_M<o2, m, Xi16>, NF, PD;
    def 32mrCL_NF : ShlrdOpMRC_M<o2, m, Xi32>, NF;
    def 64mrCL_NF : ShlrdOpMRC_M<o2, m, Xi64>, NF;
    def 16mri8_NF_ND : ShlrdOpMRI8U_R<o3, m, Xi16>, EVEX_NF, PD;
    def 32mri8_NF_ND : ShlrdOpMRI8U_R<o3, m, Xi32>, EVEX_NF;
    def 64mri8_NF_ND : ShlrdOpMRI8U_R<o3, m, Xi64>, EVEX_NF;
    def 16mrCL_NF_ND : ShlrdOpMRC_R<o2, m, Xi16>, EVEX_NF, PD;
    def 32mrCL_NF_ND : ShlrdOpMRC_R<o2, m, Xi32>, EVEX_NF;
    def 64mrCL_NF_ND : ShlrdOpMRC_R<o2, m, Xi64>, EVEX_NF;
    def 16mri8_EVEX : ShlrdOpMRI8U_M<o3, m, Xi16>, DefEFLAGS, PL, PD;
    def 32mri8_EVEX : ShlrdOpMRI8U_M<o3, m, Xi32>, DefEFLAGS, PL;
    def 64mri8_EVEX : ShlrdOpMRI8U_M<o3, m, Xi64>, DefEFLAGS, PL;
    def 16mrCL_EVEX : ShlrdOpMRC_M<o2, m, Xi16>, DefEFLAGS, PL, PD;
    def 32mrCL_EVEX : ShlrdOpMRC_M<o2, m, Xi32>, DefEFLAGS, PL;
    def 64mrCL_EVEX : ShlrdOpMRC_M<o2, m, Xi64>, DefEFLAGS, PL;
  }
}
defm SHLD : Shlrd<0xA4, 0xA5, 0x24, "shld", fshl, X86fshl>;
defm SHRD : Shlrd<0xAC, 0xAD, 0x2C, "shrd", fshr, X86fshr>;
// Sandy Bridge and newer Intel processors support faster rotates using
// SHLD to avoid a partial flag update on the normal rotate instructions.
// Use a pseudo so that TwoInstructionPass and register allocation will see
// this as unary instruction.
let Predicates = [HasFastSHLDRotate], AddedComplexity = 5,
    Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteSHDrri],
    Constraints = "$src1 = $dst" in {
  def SHLDROT32ri  : I<0, Pseudo, (outs GR32:$dst),
                       (ins GR32:$src1, u8imm:$shamt), "",
                     [(set GR32:$dst, (rotl GR32:$src1, (i8 imm:$shamt)))]>;
  def SHLDROT64ri  : I<0, Pseudo, (outs GR64:$dst),
                       (ins GR64:$src1, u8imm:$shamt), "",
                     [(set GR64:$dst, (rotl GR64:$src1, (i8 imm:$shamt)))]>;
  def SHRDROT32ri  : I<0, Pseudo, (outs GR32:$dst),
                       (ins GR32:$src1, u8imm:$shamt), "",
                     [(set GR32:$dst, (rotr GR32:$src1, (i8 imm:$shamt)))]>;
  def SHRDROT64ri  : I<0, Pseudo, (outs GR64:$dst),
                       (ins GR64:$src1, u8imm:$shamt), "",
                     [(set GR64:$dst, (rotr GR64:$src1, (i8 imm:$shamt)))]>;
}
//===----------------------------------------------------------------------===//
// BMI Shift/Rotate instructions
//===----------------------------------------------------------------------===//
def ROT32L2R_imm8  : SDNodeXForm<imm, [{
  // Convert a ROTL shamt to a ROTR shamt on 32-bit integer.
  return getI8Imm(32 - N->getZExtValue(), SDLoc(N));
}]>;
def ROT64L2R_imm8  : SDNodeXForm<imm, [{
  // Convert a ROTL shamt to a ROTR shamt on 64-bit integer.
  return getI8Imm(64 - N->getZExtValue(), SDLoc(N));
}]>;
// NOTE: We use WriteShift for these rotates as they avoid the stalls
// of many of the older x86 rotate instructions.
class RorXri<X86TypeInfo t>
  : ITy<0xF0, MRMSrcReg, t, (outs t.RegClass:$dst), (ins t.RegClass:$src1, u8imm:$src2),
        "rorx", binop_ndd_args, []>, TA, XD, Sched<[WriteShift]> {
  let ImmT = Imm8;
}
class RorXmi<X86TypeInfo t>
  : ITy<0xF0, MRMSrcMem, t, (outs t.RegClass:$dst), (ins t.MemOperand:$src1, u8imm:$src2),
        "rorx", binop_ndd_args, []>, TA, XD, Sched<[WriteShiftLd]> {
  let ImmT = Imm8;
  let mayLoad = 1;
}
multiclass RorX<X86TypeInfo t> {
  let Predicates = [HasBMI2, NoEGPR] in {
    def ri : RorXri<t>, VEX;
    def mi : RorXmi<t>, VEX;
  }
  let Predicates = [HasBMI2, HasEGPR, In64BitMode] in {
    def ri_EVEX : RorXri<t>, EVEX;
    def mi_EVEX : RorXmi<t>, EVEX;
  }
}
defm RORX32: RorX<Xi32>;
defm RORX64: RorX<Xi64>;
class ShiftXrr<string m, X86TypeInfo t>
  : ITy<0xF7, MRMSrcReg4VOp3, t, (outs t.RegClass:$dst), (ins t.RegClass:$src1, t.RegClass:$src2),
        m, binop_ndd_args, []>, T8, Sched<[WriteShift]>;
class ShiftXrm<string m, X86TypeInfo t>
  : ITy<0xF7, MRMSrcMem4VOp3, t, (outs t.RegClass:$dst), (ins t.MemOperand:$src1, t.RegClass:$src2),
        m, binop_ndd_args, []>, T8,
    Sched<[WriteShift.Folded,
           // x86memop:$src1
           ReadDefault, ReadDefault, ReadDefault, ReadDefault,
           ReadDefault,
           // RC:$src2
           WriteShift.ReadAfterFold]> {
  let mayLoad = 1;
}
multiclass ShiftX<string m, X86TypeInfo t> {
  let Predicates = [HasBMI2, NoEGPR] in {
    def rr : ShiftXrr<m, t>, VEX;
    def rm : ShiftXrm<m, t>, VEX;
  }
  let Predicates = [HasBMI2, HasEGPR, In64BitMode] in {
    def rr_EVEX : ShiftXrr<m, t>, EVEX;
    def rm_EVEX : ShiftXrm<m, t>, EVEX;
  }
}
defm SARX32: ShiftX<"sarx", Xi32>, XS;
defm SARX64: ShiftX<"sarx", Xi64>, XS;
defm SHRX32: ShiftX<"shrx", Xi32>, XD;
defm SHRX64: ShiftX<"shrx", Xi64>, XD;
defm SHLX32: ShiftX<"shlx", Xi32>, PD;
defm SHLX64: ShiftX<"shlx", Xi64>, PD;
multiclass RORX_Pats<string suffix> {
  // Prefer RORX which is non-destructive and doesn't update EFLAGS.
  let AddedComplexity = 10 in {
    def : Pat<(rotr GR32:$src, (i8 imm:$shamt)),
              (!cast<Instruction>(RORX32ri#suffix) GR32:$src, imm:$shamt)>;
    def : Pat<(rotr GR64:$src, (i8 imm:$shamt)),
              (!cast<Instruction>(RORX64ri#suffix) GR64:$src, imm:$shamt)>;
    def : Pat<(rotl GR32:$src, (i8 imm:$shamt)),
              (!cast<Instruction>(RORX32ri#suffix) GR32:$src, (ROT32L2R_imm8 imm:$shamt))>;
    def : Pat<(rotl GR64:$src, (i8 imm:$shamt)),
              (!cast<Instruction>(RORX64ri#suffix) GR64:$src, (ROT64L2R_imm8 imm:$shamt))>;
  }
  def : Pat<(rotr (loadi32 addr:$src), (i8 imm:$shamt)),
            (!cast<Instruction>(RORX32mi#suffix) addr:$src, imm:$shamt)>;
  def : Pat<(rotr (loadi64 addr:$src), (i8 imm:$shamt)),
            (!cast<Instruction>(RORX64mi#suffix) addr:$src, imm:$shamt)>;
  def : Pat<(rotl (loadi32 addr:$src), (i8 imm:$shamt)),
            (!cast<Instruction>(RORX32mi#suffix) addr:$src, (ROT32L2R_imm8 imm:$shamt))>;
  def : Pat<(rotl (loadi64 addr:$src), (i8 imm:$shamt)),
            (!cast<Instruction>(RORX64mi#suffix) addr:$src, (ROT64L2R_imm8 imm:$shamt))>;
}
multiclass ShiftX_Pats<SDNode op, string suffix = ""> {
  // Prefer SARX/SHRX/SHLX over SAR/SHR/SHL with variable shift BUT not
  // immediate shift, i.e. the following code is considered better
  //
  //  mov %edi, %esi
  //  shl $imm, %esi
  //  ... %edi, ...
  //
  // than
  //
  //  movb $imm, %sil
  //  shlx %sil, %edi, %esi
  //  ... %edi, ...
  //
  let AddedComplexity = 1 in {
   def : Pat<(op GR32:$src1, GR8:$src2),
              (!cast<Instruction>(NAME#"32rr"#suffix) GR32:$src1,
               (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
   def : Pat<(op GR64:$src1, GR8:$src2),
              (!cast<Instruction>(NAME#"64rr"#suffix) GR64:$src1,
               (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
   def : Pat<(op GR32:$src1, (shiftMask32 GR8:$src2)),
              (!cast<Instruction>(NAME#"32rr"#suffix) GR32:$src1,
               (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
   def : Pat<(op GR64:$src1, (shiftMask64 GR8:$src2)),
              (!cast<Instruction>(NAME#"64rr"#suffix) GR64:$src1,
               (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  }
  // We prefer to use
  //  mov (%ecx), %esi
  //  shl $imm, $esi
  //
  // over
  //
  //  movb $imm, %al
  //  shlx %al, (%ecx), %esi
  //
  // This priority is enforced by IsProfitableToFoldLoad.
  def : Pat<(op (loadi32 addr:$src1), GR8:$src2),
             (!cast<Instruction>(NAME#"32rm"#suffix) addr:$src1,
              (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(op (loadi64 addr:$src1), GR8:$src2),
             (!cast<Instruction>(NAME#"64rm"#suffix) addr:$src1,
              (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(op (loadi32 addr:$src1), (shiftMask32 GR8:$src2)),
             (!cast<Instruction>(NAME#"32rm"#suffix) addr:$src1,
              (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
  def : Pat<(op (loadi64 addr:$src1), (shiftMask64 GR8:$src2)),
             (!cast<Instruction>(NAME#"64rm"#suffix) addr:$src1,
              (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR8:$src2, sub_8bit))>;
}
let Predicates = [HasBMI2, NoEGPR] in {
  defm : RORX_Pats<"">;
  defm SARX : ShiftX_Pats<sra>;
  defm SHRX : ShiftX_Pats<srl>;
  defm SHLX : ShiftX_Pats<shl>;
}
let Predicates = [HasBMI2, HasEGPR] in {
  defm : RORX_Pats<"_EVEX">;
  defm SARX : ShiftX_Pats<sra, "_EVEX">;
  defm SHRX : ShiftX_Pats<srl, "_EVEX">;
  defm SHLX : ShiftX_Pats<shl, "_EVEX">;
}
 |