1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
; REQUIRES: asserts
; RUN: opt -S -passes=dfa-jump-threading -debug-only=dfa-jump-threading -disable-output %s 2>&1 | FileCheck %s
; This test checks that the analysis identifies all threadable paths in a
; simple CFG. A threadable path includes a list of basic blocks, the exit
; state, and the block that determines the next state.
; < path of BBs that form a cycle > [ state, determinator ]
define i32 @test1(i32 %num) {
; CHECK: < for.body for.inc > [ 1, for.inc ]
; CHECK-NEXT: < for.body case1 for.inc > [ 2, for.inc ]
; CHECK-NEXT: < for.body case2 for.inc > [ 1, for.inc ]
; CHECK-NEXT: < for.body case2 si.unfold.false for.inc > [ 2, for.inc ]
entry:
br label %for.body
for.body:
%count = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
%state = phi i32 [ 1, %entry ], [ %state.next, %for.inc ]
switch i32 %state, label %for.inc [
i32 1, label %case1
i32 2, label %case2
]
case1:
br label %for.inc
case2:
%cmp = icmp eq i32 %count, 50
%sel = select i1 %cmp, i32 1, i32 2
br label %for.inc
for.inc:
%state.next = phi i32 [ %sel, %case2 ], [ 1, %for.body ], [ 2, %case1 ]
%inc = add nsw i32 %count, 1
%cmp.exit = icmp slt i32 %inc, %num
br i1 %cmp.exit, label %for.body, label %for.end
for.end:
ret i32 0
}
; This test checks that the analysis finds threadable paths in a more
; complicated CFG. Here the FSM is represented as a nested loop, with
; fallthrough cases.
define i32 @test2(i32 %init) {
; CHECK: < loop.3 case2 > [ 3, loop.3 ]
; CHECK-NEXT: < loop.3 case2 loop.1.backedge loop.1 loop.2 > [ 1, loop.1 ]
; CHECK-NEXT: < loop.3 case2 loop.1.backedge si.unfold.false loop.1 loop.2 > [ 4, loop.1.backedge ]
; CHECK-NEXT: < loop.3 case3 loop.2.backedge loop.2 > [ 0, loop.2.backedge ]
; CHECK-NEXT: < loop.3 case3 case4 loop.2.backedge loop.2 > [ 3, loop.2.backedge ]
; CHECK-NEXT: < loop.3 case3 case4 loop.1.backedge loop.1 loop.2 > [ 1, loop.1 ]
; CHECK-NEXT: < loop.3 case3 case4 loop.1.backedge si.unfold.false loop.1 loop.2 > [ 2, loop.1.backedge ]
; CHECK-NEXT: < loop.3 case4 loop.2.backedge loop.2 > [ 3, loop.2.backedge ]
; CHECK-NEXT: < loop.3 case4 loop.1.backedge loop.1 loop.2 > [ 1, loop.1 ]
; CHECK-NEXT: < loop.3 case4 loop.1.backedge si.unfold.false loop.1 loop.2 > [ 2, loop.1.backedge ]
entry:
%cmp = icmp eq i32 %init, 0
%sel = select i1 %cmp, i32 0, i32 2
br label %loop.1
loop.1:
%state.1 = phi i32 [ %sel, %entry ], [ %state.1.be2, %loop.1.backedge ]
br label %loop.2
loop.2:
%state.2 = phi i32 [ %state.1, %loop.1 ], [ %state.2.be, %loop.2.backedge ]
br label %loop.3
loop.3:
%state = phi i32 [ %state.2, %loop.2 ], [ 3, %case2 ]
switch i32 %state, label %infloop.i [
i32 2, label %case2
i32 3, label %case3
i32 4, label %case4
i32 0, label %case0
i32 1, label %case1
]
case2:
br i1 %cmp, label %loop.3, label %loop.1.backedge
case3:
br i1 %cmp, label %loop.2.backedge, label %case4
case4:
br i1 %cmp, label %loop.2.backedge, label %loop.1.backedge
loop.1.backedge:
%state.1.be = phi i32 [ 2, %case4 ], [ 4, %case2 ]
%state.1.be2 = select i1 %cmp, i32 1, i32 %state.1.be
br label %loop.1
loop.2.backedge:
%state.2.be = phi i32 [ 3, %case4 ], [ 0, %case3 ]
br label %loop.2
case0:
br label %exit
case1:
br label %exit
infloop.i:
br label %infloop.i
exit:
ret i32 0
}
declare void @baz()
; Do not jump-thread those paths where the determinator basic block does not
; precede the basic block that defines the switch condition.
;
; Otherwise, it is possible that the state defined in the determinator block
; defines the state for the next iteration of the loop, rather than for the
; current one.
define i32 @wrong_bb_order() {
; CHECK-LABEL: DFA Jump threading: wrong_bb_order
; CHECK-NOT: < bb43 bb59 bb3 bb31 bb41 > [ 77, bb43 ]
; CHECK-NOT: < bb43 bb49 bb59 bb3 bb31 bb41 > [ 77, bb43 ]
bb:
%i = alloca [420 x i8], align 1
%i2 = getelementptr inbounds [420 x i8], ptr %i, i64 0, i64 390
br label %bb3
bb3: ; preds = %bb59, %bb
%i4 = phi ptr [ %i2, %bb ], [ %i60, %bb59 ]
%i5 = phi i8 [ 77, %bb ], [ %i64, %bb59 ]
%i6 = phi i32 [ 2, %bb ], [ %i63, %bb59 ]
%i7 = phi i32 [ 26, %bb ], [ %i62, %bb59 ]
%i8 = phi i32 [ 25, %bb ], [ %i61, %bb59 ]
%i9 = icmp sgt i32 %i7, 2
%i10 = select i1 %i9, i32 %i7, i32 2
%i11 = add i32 %i8, 2
%i12 = sub i32 %i11, %i10
%i13 = mul nsw i32 %i12, 3
%i14 = add nsw i32 %i13, %i6
%i15 = sext i32 %i14 to i64
%i16 = getelementptr inbounds i8, ptr %i4, i64 %i15
%i17 = load i8, ptr %i16, align 1
%i18 = icmp sgt i8 %i17, 0
br i1 %i18, label %bb21, label %bb31
bb21: ; preds = %bb3
br i1 true, label %bb59, label %bb43
bb59: ; preds = %bb49, %bb43, %bb31, %bb21
%i60 = phi ptr [ %i44, %bb49 ], [ %i44, %bb43 ], [ %i34, %bb31 ], [ %i4, %bb21 ]
%i61 = phi i32 [ %i45, %bb49 ], [ %i45, %bb43 ], [ %i33, %bb31 ], [ %i8, %bb21 ]
%i62 = phi i32 [ %i47, %bb49 ], [ %i47, %bb43 ], [ %i32, %bb31 ], [ %i7, %bb21 ]
%i63 = phi i32 [ %i48, %bb49 ], [ %i48, %bb43 ], [ 2, %bb31 ], [ %i6, %bb21 ]
%i64 = phi i8 [ %i46, %bb49 ], [ %i46, %bb43 ], [ 77, %bb31 ], [ %i5, %bb21 ]
%i65 = icmp sgt i32 %i62, 0
br i1 %i65, label %bb3, label %bb66
bb31: ; preds = %bb3
%i32 = add nsw i32 %i7, -1
%i33 = add nsw i32 %i8, -1
%i34 = getelementptr inbounds i8, ptr %i4, i64 -15
%i35 = icmp eq i8 %i5, 77
br i1 %i35, label %bb59, label %bb41
bb41: ; preds = %bb31
tail call void @baz()
br label %bb43
bb43: ; preds = %bb41, %bb21
%i44 = phi ptr [ %i34, %bb41 ], [ %i4, %bb21 ]
%i45 = phi i32 [ %i33, %bb41 ], [ %i8, %bb21 ]
%i46 = phi i8 [ 77, %bb41 ], [ %i5, %bb21 ]
%i47 = phi i32 [ %i32, %bb41 ], [ %i7, %bb21 ]
%i48 = phi i32 [ 2, %bb41 ], [ %i6, %bb21 ]
tail call void @baz()
switch i8 %i5, label %bb59 [
i8 68, label %bb49
i8 73, label %bb49
]
bb49: ; preds = %bb43, %bb43
tail call void @baz()
br label %bb59
bb66: ; preds = %bb59
ret i32 0
}
; Value %init is not predictable but it's okay since it is the value initial to the switch.
define i32 @initial.value.positive1(i32 %init) {
; CHECK: < loop.3 case2 > [ 3, loop.3 ]
; CHECK-NEXT: < loop.3 case2 loop.1.backedge loop.1 loop.2 > [ 1, loop.1 ]
; CHECK-NEXT: < loop.3 case2 loop.1.backedge si.unfold.false loop.1 loop.2 > [ 4, loop.1.backedge ]
; CHECK-NEXT: < loop.3 case3 loop.2.backedge loop.2 > [ 0, loop.2.backedge ]
; CHECK-NEXT: < loop.3 case3 case4 loop.2.backedge loop.2 > [ 3, loop.2.backedge ]
; CHECK-NEXT: < loop.3 case3 case4 loop.1.backedge loop.1 loop.2 > [ 1, loop.1 ]
; CHECK-NEXT: < loop.3 case3 case4 loop.1.backedge si.unfold.false loop.1 loop.2 > [ 2, loop.1.backedge ]
; CHECK-NEXT: < loop.3 case4 loop.2.backedge loop.2 > [ 3, loop.2.backedge ]
; CHECK-NEXT: < loop.3 case4 loop.1.backedge loop.1 loop.2 > [ 1, loop.1 ]
; CHECK-NEXT: < loop.3 case4 loop.1.backedge si.unfold.false loop.1 loop.2 > [ 2, loop.1.backedge ]
entry:
%cmp = icmp eq i32 %init, 0
br label %loop.1
loop.1:
%state.1 = phi i32 [ %init, %entry ], [ %state.1.be2, %loop.1.backedge ]
br label %loop.2
loop.2:
%state.2 = phi i32 [ %state.1, %loop.1 ], [ %state.2.be, %loop.2.backedge ]
br label %loop.3
loop.3:
%state = phi i32 [ %state.2, %loop.2 ], [ 3, %case2 ]
switch i32 %state, label %infloop.i [
i32 2, label %case2
i32 3, label %case3
i32 4, label %case4
i32 0, label %case0
i32 1, label %case1
]
case2:
br i1 %cmp, label %loop.3, label %loop.1.backedge
case3:
br i1 %cmp, label %loop.2.backedge, label %case4
case4:
br i1 %cmp, label %loop.2.backedge, label %loop.1.backedge
loop.1.backedge:
%state.1.be = phi i32 [ 2, %case4 ], [ 4, %case2 ]
%state.1.be2 = select i1 %cmp, i32 1, i32 %state.1.be
br label %loop.1
loop.2.backedge:
%state.2.be = phi i32 [ 3, %case4 ], [ 0, %case3 ]
br label %loop.2
case0:
br label %exit
case1:
br label %exit
infloop.i:
br label %infloop.i
exit:
ret i32 0
}
|