1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -S -passes=guard-widening,dce < %s | FileCheck %s
declare void @llvm.experimental.guard(i1,...)
declare i1 @dummy()
; This tests shows the incorrect behavior of guard widening in terms of
; interaction with poison values.
; Let x incoming parameter is used for rane checks.
; Test generates 5 checks. One of them (c2) is used to get the corretness
; of nuw/nsw flags for x3 and x5. Others are used in guards and represent
; the checks x + 10 u< L, x + 15 u< L, x + 20 u< L and x + 3 u< L.
; The first two checks are in the first basic block and guard widening
; considers them as profitable to combine.
; When c4 and c3 are considered, number of check becomes more than two
; and combineRangeCheck consider them as profitable even if they are in
; different basic blocks.
; Accoding to algorithm of combineRangeCheck it detects that c3 and c4
; are enough to cover c1 and c5, so it ends up with guard of c3 && c4
; while both of them are poison at entry. This is a bug.
define void @combine_range_checks(i32 %x) {
; CHECK-LABEL: @combine_range_checks(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[X_GW_FR:%.*]] = freeze i32 [[X:%.*]]
; CHECK-NEXT: [[X2:%.*]] = add i32 [[X_GW_FR]], 0
; CHECK-NEXT: [[C2:%.*]] = icmp ult i32 [[X2]], 200
; CHECK-NEXT: [[X3:%.*]] = add i32 [[X_GW_FR]], 3
; CHECK-NEXT: [[C3:%.*]] = icmp ult i32 [[X3]], 100
; CHECK-NEXT: [[X4:%.*]] = add i32 [[X_GW_FR]], 20
; CHECK-NEXT: [[C4:%.*]] = icmp ult i32 [[X4]], 100
; CHECK-NEXT: [[WIDE_CHK2:%.*]] = and i1 [[C4]], [[C3]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK2]]) [ "deopt"(i64 1) ]
; CHECK-NEXT: br i1 [[C2]], label [[OK:%.*]], label [[OUT:%.*]]
; CHECK: ok:
; CHECK-NEXT: br label [[OUT]]
; CHECK: out:
; CHECK-NEXT: ret void
;
entry:
%x1 = add i32 %x, 10
%c1 = icmp ult i32 %x1, 100
%x2 = add i32 %x, 0
%c2 = icmp ult i32 %x2, 200
%x3 = add nuw nsw i32 %x, 3
%c3 = icmp ult i32 %x3, 100
%x4 = add nuw nsw i32 %x, 20
%c4 = icmp ult i32 %x4, 100
%x5 = add i32 %x, 15
%c5 = icmp ult i32 %x5, 100
call void(i1, ...) @llvm.experimental.guard(i1 %c1) [ "deopt"(i64 1) ]
call void(i1, ...) @llvm.experimental.guard(i1 %c5) [ "deopt"(i64 5) ]
br i1 %c2, label %ok, label %out
ok:
call void(i1, ...) @llvm.experimental.guard(i1 %c4) [ "deopt"(i64 4) ]
call void(i1, ...) @llvm.experimental.guard(i1 %c3) [ "deopt"(i64 3) ]
br label %out
out:
ret void
}
; This is similar to @combine_range_checks but shows that simple freeze
; over c3 and c4 will not help due to with X = SMAX_INT, guard with c1 will
; go to deoptimization. But after guard widening freeze of c3 and c4 may return
; true due to c3 and c4 are poisons and we pass guard executing side effect store
; which never been executed in original program.
define void @combine_range_checks_with_side_effect(i32 %x, ptr %p) {
; CHECK-LABEL: @combine_range_checks_with_side_effect(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[X_GW_FR:%.*]] = freeze i32 [[X:%.*]]
; CHECK-NEXT: [[X2:%.*]] = add i32 [[X_GW_FR]], 0
; CHECK-NEXT: [[C2:%.*]] = icmp ult i32 [[X2]], 200
; CHECK-NEXT: [[X3:%.*]] = add i32 [[X_GW_FR]], 3
; CHECK-NEXT: [[C3:%.*]] = icmp ult i32 [[X3]], 100
; CHECK-NEXT: [[X4:%.*]] = add i32 [[X_GW_FR]], 20
; CHECK-NEXT: [[C4:%.*]] = icmp ult i32 [[X4]], 100
; CHECK-NEXT: [[WIDE_CHK2:%.*]] = and i1 [[C4]], [[C3]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK2]]) [ "deopt"(i64 1) ]
; CHECK-NEXT: store i32 0, ptr [[P:%.*]], align 4
; CHECK-NEXT: br i1 [[C2]], label [[OK:%.*]], label [[OUT:%.*]]
; CHECK: ok:
; CHECK-NEXT: br label [[OUT]]
; CHECK: out:
; CHECK-NEXT: ret void
;
entry:
%x1 = add i32 %x, 10
%c1 = icmp ult i32 %x1, 100
%x2 = add i32 %x, 0
%c2 = icmp ult i32 %x2, 200
%x3 = add nuw nsw i32 %x, 3
%c3 = icmp ult i32 %x3, 100
%x4 = add nuw nsw i32 %x, 20
%c4 = icmp ult i32 %x4, 100
%x5 = add i32 %x, 15
%c5 = icmp ult i32 %x5, 100
call void(i1, ...) @llvm.experimental.guard(i1 %c1) [ "deopt"(i64 1) ]
call void(i1, ...) @llvm.experimental.guard(i1 %c5) [ "deopt"(i64 5) ]
store i32 0, ptr %p
br i1 %c2, label %ok, label %out
ok:
call void(i1, ...) @llvm.experimental.guard(i1 %c4) [ "deopt"(i64 4) ]
call void(i1, ...) @llvm.experimental.guard(i1 %c3) [ "deopt"(i64 3) ]
br label %out
out:
ret void
}
; The test shows the bug in guard widening. Critical pieces.
; There is a %cond_1 check which provides the correctness of nuw nsw in %b.shift.
; %b.shift and %cond_2 are poisons and after guard widening it leads to UB
; for both arithmetic and logcal and.
define void @simple_case(i32 %a, i32 %b, i1 %cnd) {
; CHECK-LABEL: @simple_case(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[B_GW_FR:%.*]] = freeze i32 [[B:%.*]]
; CHECK-NEXT: [[COND_0:%.*]] = icmp ult i32 [[A:%.*]], 10
; CHECK-NEXT: [[B_SHIFT:%.*]] = add i32 [[B_GW_FR]], 5
; CHECK-NEXT: [[COND_2:%.*]] = icmp ult i32 [[B_SHIFT]], 10
; CHECK-NEXT: [[WIDE_CHK:%.*]] = and i1 [[COND_0]], [[COND_2]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[COND_1:%.*]] = icmp ult i32 [[B_GW_FR]], 10
; CHECK-NEXT: br i1 [[COND_1]], label [[OK:%.*]], label [[LEAVE_LOOPEXIT:%.*]]
; CHECK: ok:
; CHECK-NEXT: br i1 [[CND:%.*]], label [[LOOP]], label [[LEAVE_LOOPEXIT]]
; CHECK: leave.loopexit:
; CHECK-NEXT: br label [[LEAVE:%.*]]
; CHECK: leave:
; CHECK-NEXT: ret void
;
entry:
%cond_0 = icmp ult i32 %a, 10
%b.shift = add nuw nsw i32 %b, 5
%cond_2 = icmp ult i32 %b.shift, 10
call void (i1, ...) @llvm.experimental.guard(i1 %cond_0) [ "deopt"() ]
br label %loop
loop:
%cond_1 = icmp ult i32 %b, 10
br i1 %cond_1, label %ok, label %leave.loopexit
ok:
call void (i1, ...) @llvm.experimental.guard(i1 %cond_2) [ "deopt"() ]
br i1 %cnd, label %loop, label %leave.loopexit
leave.loopexit:
br label %leave
leave:
ret void
}
declare ptr @fake_personality_function()
define void @case_with_invoke(i1 %c, i1 %gc) personality ptr @fake_personality_function {
; CHECK-LABEL: @case_with_invoke(
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 [[C:%.*]], label [[NORMAL:%.*]], label [[INVOK:%.*]]
; CHECK: invok:
; CHECK-NEXT: [[INVOKE_RESULT:%.*]] = invoke i1 @dummy()
; CHECK-NEXT: to label [[NORMAL]] unwind label [[EXCEPTION:%.*]]
; CHECK: normal:
; CHECK-NEXT: [[PHI_C:%.*]] = phi i1 [ true, [[ENTRY:%.*]] ], [ [[INVOKE_RESULT]], [[INVOK]] ]
; CHECK-NEXT: [[PHI_C_GW_FR:%.*]] = freeze i1 [[PHI_C]]
; CHECK-NEXT: [[WIDE_CHK:%.*]] = and i1 [[GC:%.*]], [[PHI_C_GW_FR]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT: ret void
; CHECK: exception:
; CHECK-NEXT: [[LANDING_PAD:%.*]] = landingpad { ptr, i32 }
; CHECK-NEXT: cleanup
; CHECK-NEXT: ret void
;
entry:
br i1 %c, label %normal, label %invok
invok:
%invoke.result = invoke i1 @dummy() to label %normal unwind label %exception
normal:
%phi.c = phi i1 [true, %entry], [%invoke.result, %invok]
call void (i1, ...) @llvm.experimental.guard(i1 %gc) [ "deopt"() ]
call void (i1, ...) @llvm.experimental.guard(i1 %phi.c) [ "deopt"() ]
ret void
exception:
%landing_pad = landingpad { ptr, i32 } cleanup
ret void
}
define void @case_with_invoke_in_latch(i1 %c, i1 %gc) personality ptr @fake_personality_function {
; CHECK-LABEL: @case_with_invoke_in_latch(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[HEADER:%.*]]
; CHECK: header:
; CHECK-NEXT: [[PHI_C:%.*]] = phi i1 [ false, [[ENTRY:%.*]] ], [ [[INVOKE_RESULT:%.*]], [[HEADER]] ]
; CHECK-NEXT: [[PHI_C_GW_FR:%.*]] = freeze i1 [[PHI_C]]
; CHECK-NEXT: [[WIDE_CHK:%.*]] = and i1 [[GC:%.*]], [[PHI_C_GW_FR]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT: [[INVOKE_RESULT]] = invoke i1 @dummy()
; CHECK-NEXT: to label [[HEADER]] unwind label [[EXCEPTION:%.*]]
; CHECK: exception:
; CHECK-NEXT: [[LANDING_PAD:%.*]] = landingpad { ptr, i32 }
; CHECK-NEXT: cleanup
; CHECK-NEXT: ret void
;
entry:
br label %header
header:
%phi.c = phi i1 [false, %entry], [%invoke.result, %header]
call void (i1, ...) @llvm.experimental.guard(i1 %gc) [ "deopt"() ]
call void (i1, ...) @llvm.experimental.guard(i1 %phi.c) [ "deopt"() ]
%invoke.result = invoke i1 @dummy() to label %header unwind label %exception
exception:
%landing_pad = landingpad { ptr, i32 } cleanup
ret void
}
declare void @dummy_vec(<4 x i1> %arg)
define void @freeze_poison(i1 %c, i1 %g) {
; CHECK-LABEL: @freeze_poison(
; CHECK-NEXT: entry:
; CHECK-NEXT: [[DOTGW_FR:%.*]] = freeze i1 poison
; CHECK-NEXT: br i1 [[C:%.*]], label [[LEFT:%.*]], label [[RIGHT:%.*]]
; CHECK: left:
; CHECK-NEXT: call void @dummy_vec(<4 x i1> <i1 false, i1 poison, i1 poison, i1 poison>)
; CHECK-NEXT: ret void
; CHECK: right:
; CHECK-NEXT: [[WIDE_CHK:%.*]] = and i1 [[G:%.*]], [[DOTGW_FR]]
; CHECK-NEXT: call void (i1, ...) @llvm.experimental.guard(i1 [[WIDE_CHK]]) [ "deopt"() ]
; CHECK-NEXT: ret void
;
entry:
br i1 %c, label %left, label %right
left:
call void @dummy_vec(<4 x i1> <i1 0, i1 poison, i1 poison, i1 poison>)
ret void
right:
call void (i1, ...) @llvm.experimental.guard(i1 %g) [ "deopt"() ]
call void (i1, ...) @llvm.experimental.guard(i1 poison) [ "deopt"() ]
ret void
}
|