1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -passes=instsimplify -S -data-layout="E" | FileCheck %s --check-prefixes=CHECK,BIGENDIAN
; RUN: opt < %s -passes=instsimplify -S -data-layout="e" | FileCheck %s --check-prefixes=CHECK,LITTLEENDIAN
; If any bits of the shift amount are known to make it exceed or equal
; the number of bits in the type, the shift causes undefined behavior.
define i32 @shl_amount_is_known_bogus(i32 %a, i32 %b) {
; CHECK-LABEL: @shl_amount_is_known_bogus(
; CHECK-NEXT: ret i32 poison
;
%or = or i32 %b, 32
%shl = shl i32 %a, %or
ret i32 %shl
}
define i32 @shl_amount_is_known_bogus_range_attr(i32 %a, i32 range(i32 32, 64) %b) {
; CHECK-LABEL: @shl_amount_is_known_bogus_range_attr(
; CHECK-NEXT: ret i32 poison
;
%shl = shl i32 %a, %b
ret i32 %shl
}
define i32 @neg_shl_amount_is_known_bogus_range_attr(i32 %a, i32 range(i32 0, 32) %b) {
; CHECK-LABEL: @neg_shl_amount_is_known_bogus_range_attr(
; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: ret i32 [[SHL]]
;
%shl = shl i32 %a, %b
ret i32 %shl
}
declare range(i32 32, 64) i32 @returns_out_of_range_helper()
declare range(i32 0, 32) i32 @returns_in_range_helper()
define i32 @shl_amount_is_known_bogus_range_return(i32 %a) {
; CHECK-LABEL: @shl_amount_is_known_bogus_range_return(
; CHECK-NEXT: [[B:%.*]] = call i32 @returns_out_of_range_helper()
; CHECK-NEXT: ret i32 poison
;
%b = call i32 @returns_out_of_range_helper()
%shl = shl i32 %a, %b
ret i32 %shl
}
define i32 @neg_shl_amount_is_known_bogus_range_return(i32 %a) {
; CHECK-LABEL: @neg_shl_amount_is_known_bogus_range_return(
; CHECK-NEXT: [[B:%.*]] = call i32 @returns_in_range_helper()
; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[A:%.*]], [[B]]
; CHECK-NEXT: ret i32 [[SHL]]
;
%b = call i32 @returns_in_range_helper()
%shl = shl i32 %a, %b
ret i32 %shl
}
declare i32 @returns_i32_helper()
define i32 @shl_amount_is_known_bogus_range_call(i32 %a) {
; CHECK-LABEL: @shl_amount_is_known_bogus_range_call(
; CHECK-NEXT: [[B:%.*]] = call range(i32 32, 64) i32 @returns_i32_helper()
; CHECK-NEXT: ret i32 poison
;
%b = call range(i32 32, 64) i32 @returns_i32_helper()
%shl = shl i32 %a, %b
ret i32 %shl
}
define i32 @neg_shl_amount_is_known_bogus_range_call(i32 %a) {
; CHECK-LABEL: @neg_shl_amount_is_known_bogus_range_call(
; CHECK-NEXT: [[B:%.*]] = call range(i32 0, 32) i32 @returns_i32_helper()
; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[A:%.*]], [[B]]
; CHECK-NEXT: ret i32 [[SHL]]
;
%b = call range(i32 0, 32) i32 @returns_i32_helper()
%shl = shl i32 %a, %b
ret i32 %shl
}
define <2 x i32> @shl_amount_is_known_bogus_range_attr_vec(<2 x i32> %a, <2 x i32> range(i32 32, 64) %b) {
; CHECK-LABEL: @shl_amount_is_known_bogus_range_attr_vec(
; CHECK-NEXT: ret <2 x i32> poison
;
%shl = shl <2 x i32> %a, %b
ret <2 x i32> %shl
}
define <2 x i32> @neg_shl_amount_is_known_bogus_range_attr_vec(<2 x i32> %a, <2 x i32> range(i32 0, 32) %b) {
; CHECK-LABEL: @neg_shl_amount_is_known_bogus_range_attr_vec(
; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: ret <2 x i32> [[SHL]]
;
%shl = shl <2 x i32> %a, %b
ret <2 x i32> %shl
}
declare range(i32 32, 64) <2 x i32> @returns_out_of_range_helper_vec()
declare range(i32 0, 32) <2 x i32> @returns_in_range_helper_vec()
define <2 x i32> @shl_amount_is_known_bogus_range_return_vec(<2 x i32> %a) {
; CHECK-LABEL: @shl_amount_is_known_bogus_range_return_vec(
; CHECK-NEXT: [[B:%.*]] = call <2 x i32> @returns_out_of_range_helper_vec()
; CHECK-NEXT: ret <2 x i32> poison
;
%b = call <2 x i32> @returns_out_of_range_helper_vec()
%shl = shl <2 x i32> %a, %b
ret <2 x i32> %shl
}
define <2 x i32> @neg_shl_amount_is_known_bogus_range_return_vec(<2 x i32> %a) {
; CHECK-LABEL: @neg_shl_amount_is_known_bogus_range_return_vec(
; CHECK-NEXT: [[B:%.*]] = call <2 x i32> @returns_in_range_helper_vec()
; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i32> [[A:%.*]], [[B]]
; CHECK-NEXT: ret <2 x i32> [[SHL]]
;
%b = call <2 x i32> @returns_in_range_helper_vec()
%shl = shl <2 x i32> %a, %b
ret <2 x i32> %shl
}
declare <2 x i32> @returns_i32_helper_vec()
define <2 x i32> @shl_amount_is_known_bogus_range_call_vec(<2 x i32> %a) {
; CHECK-LABEL: @shl_amount_is_known_bogus_range_call_vec(
; CHECK-NEXT: [[B:%.*]] = call range(i32 32, 64) <2 x i32> @returns_i32_helper_vec()
; CHECK-NEXT: ret <2 x i32> poison
;
%b = call range(i32 32, 64) <2 x i32> @returns_i32_helper_vec()
%shl = shl <2 x i32> %a, %b
ret <2 x i32> %shl
}
define <2 x i32> @neg_shl_amount_is_known_bogus_range_call_vec(<2 x i32> %a) {
; CHECK-LABEL: @neg_shl_amount_is_known_bogus_range_call_vec(
; CHECK-NEXT: [[B:%.*]] = call range(i32 0, 32) <2 x i32> @returns_i32_helper_vec()
; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i32> [[A:%.*]], [[B]]
; CHECK-NEXT: ret <2 x i32> [[SHL]]
;
%b = call range(i32 0, 32) <2 x i32> @returns_i32_helper_vec()
%shl = shl <2 x i32> %a, %b
ret <2 x i32> %shl
}
define i32 @shl_amount_is_not_known_bogus_range_call_and_range_metadata(i32 %a) {
; CHECK-LABEL: @shl_amount_is_not_known_bogus_range_call_and_range_metadata(
; CHECK-NEXT: [[B:%.*]] = call range(i32 0, 32) i32 @returns_i32_helper(), !range [[RNG0:![0-9]+]]
; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[A:%.*]], [[B]]
; CHECK-NEXT: ret i32 [[SHL]]
;
%b = call range(i32 0, 32) i32 @returns_i32_helper(), !range !{ i32 32, i32 64 }
%shl = shl i32 %a, %b
ret i32 %shl
}
; Check some weird types and the other shift ops.
define i31 @lshr_amount_is_known_bogus(i31 %a, i31 %b) {
; CHECK-LABEL: @lshr_amount_is_known_bogus(
; CHECK-NEXT: ret i31 poison
;
%or = or i31 %b, 31
%shr = lshr i31 %a, %or
ret i31 %shr
}
define i33 @ashr_amount_is_known_bogus(i33 %a, i33 %b) {
; CHECK-LABEL: @ashr_amount_is_known_bogus(
; CHECK-NEXT: ret i33 poison
;
%or = or i33 %b, 33
%shr = ashr i33 %a, %or
ret i33 %shr
}
; If all valid bits of the shift amount are known 0, there's no shift.
; It doesn't matter if high bits are set because that would be undefined.
; Therefore, the only possible valid result of these shifts is %a.
define i16 @ashr_amount_is_zero(i16 %a, i16 %b) {
; CHECK-LABEL: @ashr_amount_is_zero(
; CHECK-NEXT: ret i16 [[A:%.*]]
;
%and = and i16 %b, 65520 ; 0xfff0
%shr = ashr i16 %a, %and
ret i16 %shr
}
define i300 @lshr_amount_is_zero(i300 %a, i300 %b) {
; CHECK-LABEL: @lshr_amount_is_zero(
; CHECK-NEXT: ret i300 [[A:%.*]]
;
%and = and i300 %b, 2048
%shr = lshr i300 %a, %and
ret i300 %shr
}
define i9 @shl_amount_is_zero(i9 %a, i9 %b) {
; CHECK-LABEL: @shl_amount_is_zero(
; CHECK-NEXT: ret i9 [[A:%.*]]
;
%and = and i9 %b, 496 ; 0x1f0
%shl = shl i9 %a, %and
ret i9 %shl
}
; Verify that we've calculated the log2 boundary of valid bits correctly for a weird type.
define i9 @shl_amount_is_not_known_zero(i9 %a, i9 %b) {
; CHECK-LABEL: @shl_amount_is_not_known_zero(
; CHECK-NEXT: [[AND:%.*]] = and i9 [[B:%.*]], -8
; CHECK-NEXT: [[SHL:%.*]] = shl i9 [[A:%.*]], [[AND]]
; CHECK-NEXT: ret i9 [[SHL]]
;
%and = and i9 %b, 504 ; 0x1f8
%shl = shl i9 %a, %and
ret i9 %shl
}
; For vectors, we need all scalar elements to meet the requirements to optimize.
define <2 x i32> @ashr_vector_bogus(<2 x i32> %a, <2 x i32> %b) {
; CHECK-LABEL: @ashr_vector_bogus(
; CHECK-NEXT: ret <2 x i32> poison
;
%or = or <2 x i32> %b, <i32 32, i32 32>
%shr = ashr <2 x i32> %a, %or
ret <2 x i32> %shr
}
; FIXME: This is undef, but computeKnownBits doesn't handle the union.
define <2 x i32> @shl_vector_bogus(<2 x i32> %a, <2 x i32> %b) {
; CHECK-LABEL: @shl_vector_bogus(
; CHECK-NEXT: [[OR:%.*]] = or <2 x i32> [[B:%.*]], <i32 32, i32 64>
; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i32> [[A:%.*]], [[OR]]
; CHECK-NEXT: ret <2 x i32> [[SHL]]
;
%or = or <2 x i32> %b, <i32 32, i32 64>
%shl = shl <2 x i32> %a, %or
ret <2 x i32> %shl
}
define <2 x i32> @lshr_vector_zero(<2 x i32> %a, <2 x i32> %b) {
; CHECK-LABEL: @lshr_vector_zero(
; CHECK-NEXT: ret <2 x i32> [[A:%.*]]
;
%and = and <2 x i32> %b, <i32 64, i32 256>
%shr = lshr <2 x i32> %a, %and
ret <2 x i32> %shr
}
; Make sure that weird vector types work too.
define <2 x i15> @shl_vector_zero(<2 x i15> %a, <2 x i15> %b) {
; CHECK-LABEL: @shl_vector_zero(
; CHECK-NEXT: ret <2 x i15> [[A:%.*]]
;
%and = and <2 x i15> %b, <i15 1024, i15 1024>
%shl = shl <2 x i15> %a, %and
ret <2 x i15> %shl
}
define <2 x i32> @shl_vector_for_real(<2 x i32> %a, <2 x i32> %b) {
; CHECK-LABEL: @shl_vector_for_real(
; CHECK-NEXT: [[AND:%.*]] = and <2 x i32> [[B:%.*]], <i32 3, i32 3>
; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i32> [[A:%.*]], [[AND]]
; CHECK-NEXT: ret <2 x i32> [[SHL]]
;
%and = and <2 x i32> %b, <i32 3, i32 3> ; a necessary mask op
%shl = shl <2 x i32> %a, %and
ret <2 x i32> %shl
}
; We calculate the valid bits of the shift using log2, and log2 of 1 (the type width) is 0.
; That should be ok. Either the shift amount is 0 or invalid (1), so we can always return %a.
define i1 @shl_i1(i1 %a, i1 %b) {
; CHECK-LABEL: @shl_i1(
; CHECK-NEXT: ret i1 [[A:%.*]]
;
%shl = shl i1 %a, %b
ret i1 %shl
}
; The following cases only get folded by InstCombine,
; see InstCombine/lshr.ll.
declare i32 @llvm.cttz.i32(i32, i1) nounwind readnone
declare i32 @llvm.ctlz.i32(i32, i1) nounwind readnone
declare <2 x i8> @llvm.cttz.v2i8(<2 x i8>, i1) nounwind readnone
declare <2 x i8> @llvm.ctlz.v2i8(<2 x i8>, i1) nounwind readnone
define i32 @lshr_ctlz_zero_is_undef(i32 %x) {
; CHECK-LABEL: @lshr_ctlz_zero_is_undef(
; CHECK-NEXT: [[CT:%.*]] = call i32 @llvm.ctlz.i32(i32 [[X:%.*]], i1 true)
; CHECK-NEXT: [[SH:%.*]] = lshr i32 [[CT]], 5
; CHECK-NEXT: ret i32 [[SH]]
;
%ct = call i32 @llvm.ctlz.i32(i32 %x, i1 true)
%sh = lshr i32 %ct, 5
ret i32 %sh
}
define i32 @lshr_cttz_zero_is_undef(i32 %x) {
; CHECK-LABEL: @lshr_cttz_zero_is_undef(
; CHECK-NEXT: [[CT:%.*]] = call i32 @llvm.cttz.i32(i32 [[X:%.*]], i1 true)
; CHECK-NEXT: [[SH:%.*]] = lshr i32 [[CT]], 5
; CHECK-NEXT: ret i32 [[SH]]
;
%ct = call i32 @llvm.cttz.i32(i32 %x, i1 true)
%sh = lshr i32 %ct, 5
ret i32 %sh
}
define <2 x i8> @lshr_ctlz_zero_is_undef_splat_vec(<2 x i8> %x) {
; CHECK-LABEL: @lshr_ctlz_zero_is_undef_splat_vec(
; CHECK-NEXT: [[CT:%.*]] = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> [[X:%.*]], i1 true)
; CHECK-NEXT: [[SH:%.*]] = lshr <2 x i8> [[CT]], <i8 3, i8 3>
; CHECK-NEXT: ret <2 x i8> [[SH]]
;
%ct = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> %x, i1 true)
%sh = lshr <2 x i8> %ct, <i8 3, i8 3>
ret <2 x i8> %sh
}
define i8 @lshr_ctlz_zero_is_undef_vec(<2 x i8> %x) {
; CHECK-LABEL: @lshr_ctlz_zero_is_undef_vec(
; CHECK-NEXT: [[CT:%.*]] = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> [[X:%.*]], i1 true)
; CHECK-NEXT: [[SH:%.*]] = lshr <2 x i8> [[CT]], <i8 3, i8 0>
; CHECK-NEXT: [[EX:%.*]] = extractelement <2 x i8> [[SH]], i32 0
; CHECK-NEXT: ret i8 [[EX]]
;
%ct = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> %x, i1 true)
%sh = lshr <2 x i8> %ct, <i8 3, i8 0>
%ex = extractelement <2 x i8> %sh, i32 0
ret i8 %ex
}
define <2 x i8> @lshr_cttz_zero_is_undef_splat_vec(<2 x i8> %x) {
; CHECK-LABEL: @lshr_cttz_zero_is_undef_splat_vec(
; CHECK-NEXT: [[CT:%.*]] = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> [[X:%.*]], i1 true)
; CHECK-NEXT: [[SH:%.*]] = lshr <2 x i8> [[CT]], <i8 3, i8 3>
; CHECK-NEXT: ret <2 x i8> [[SH]]
;
%ct = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> %x, i1 true)
%sh = lshr <2 x i8> %ct, <i8 3, i8 3>
ret <2 x i8> %sh
}
define i8 @lshr_cttz_zero_is_undef_vec(<2 x i8> %x) {
; CHECK-LABEL: @lshr_cttz_zero_is_undef_vec(
; CHECK-NEXT: [[CT:%.*]] = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> [[X:%.*]], i1 true)
; CHECK-NEXT: [[SH:%.*]] = lshr <2 x i8> [[CT]], <i8 3, i8 0>
; CHECK-NEXT: [[EX:%.*]] = extractelement <2 x i8> [[SH]], i32 0
; CHECK-NEXT: ret i8 [[EX]]
;
%ct = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> %x, i1 true)
%sh = lshr <2 x i8> %ct, <i8 3, i8 0>
%ex = extractelement <2 x i8> %sh, i32 0
ret i8 %ex
}
; The shift amount is 0 on either of high/low bytes. The middle byte doesn't matter.
define i24 @bitcast_noshift_scalar(<3 x i8> %v1, i24 %v2) {
; CHECK-LABEL: @bitcast_noshift_scalar(
; CHECK-NEXT: ret i24 [[V2:%.*]]
;
%c = insertelement <3 x i8> poison, i8 0, i64 0
%s = shufflevector <3 x i8> %v1, <3 x i8> %c, <3 x i32> <i32 3, i32 1, i32 3>
%b = bitcast <3 x i8> %s to i24
%r = shl i24 %v2, %b
ret i24 %r
}
; The shift amount is 0 on low byte of big-endian and unknown on little-endian.
define i24 @bitcast_noshift_scalar_bigend(<3 x i8> %v1, i24 %v2) {
; BIGENDIAN-LABEL: @bitcast_noshift_scalar_bigend(
; BIGENDIAN-NEXT: ret i24 [[V2:%.*]]
;
; LITTLEENDIAN-LABEL: @bitcast_noshift_scalar_bigend(
; LITTLEENDIAN-NEXT: [[S:%.*]] = shufflevector <3 x i8> [[V1:%.*]], <3 x i8> <i8 0, i8 poison, i8 poison>, <3 x i32> <i32 0, i32 1, i32 3>
; LITTLEENDIAN-NEXT: [[B:%.*]] = bitcast <3 x i8> [[S]] to i24
; LITTLEENDIAN-NEXT: [[R:%.*]] = shl i24 [[V2:%.*]], [[B]]
; LITTLEENDIAN-NEXT: ret i24 [[R]]
;
%c = insertelement <3 x i8> poison, i8 0, i64 0
%s = shufflevector <3 x i8> %v1, <3 x i8> %c, <3 x i32> <i32 0, i32 1, i32 3>
%b = bitcast <3 x i8> %s to i24
%r = shl i24 %v2, %b
ret i24 %r
}
; The shift amount is 0 on low byte of little-endian and unknown on big-endian.
define i24 @bitcast_noshift_scalar_littleend(<3 x i8> %v1, i24 %v2) {
; BIGENDIAN-LABEL: @bitcast_noshift_scalar_littleend(
; BIGENDIAN-NEXT: [[S:%.*]] = shufflevector <3 x i8> [[V1:%.*]], <3 x i8> <i8 0, i8 poison, i8 poison>, <3 x i32> <i32 3, i32 1, i32 2>
; BIGENDIAN-NEXT: [[B:%.*]] = bitcast <3 x i8> [[S]] to i24
; BIGENDIAN-NEXT: [[R:%.*]] = shl i24 [[V2:%.*]], [[B]]
; BIGENDIAN-NEXT: ret i24 [[R]]
;
; LITTLEENDIAN-LABEL: @bitcast_noshift_scalar_littleend(
; LITTLEENDIAN-NEXT: ret i24 [[V2:%.*]]
;
%c = insertelement <3 x i8> poison, i8 0, i64 0
%s = shufflevector <3 x i8> %v1, <3 x i8> %c, <3 x i32> <i32 3, i32 1, i32 2>
%b = bitcast <3 x i8> %s to i24
%r = shl i24 %v2, %b
ret i24 %r
}
; The shift amount is known 24 on little-endian and known 24<<16 on big-endian
; across all vector elements, so it's an overshift either way.
define <3 x i24> @bitcast_overshift_vector(<9 x i8> %v1, <3 x i24> %v2) {
; CHECK-LABEL: @bitcast_overshift_vector(
; CHECK-NEXT: ret <3 x i24> poison
;
%c = insertelement <9 x i8> poison, i8 24, i64 0
%s = shufflevector <9 x i8> %v1, <9 x i8> %c, <9 x i32> <i32 9, i32 1, i32 2, i32 9, i32 4, i32 5, i32 9, i32 7, i32 8>
%b = bitcast <9 x i8> %s to <3 x i24>
%r = shl <3 x i24> %v2, %b
ret <3 x i24> %r
}
; The shift amount is known 23 on little-endian and known 23<<16 on big-endian
; across all vector elements, so it's an overshift for big-endian.
define <3 x i24> @bitcast_overshift_vector_bigend(<9 x i8> %v1, <3 x i24> %v2) {
; BIGENDIAN-LABEL: @bitcast_overshift_vector_bigend(
; BIGENDIAN-NEXT: ret <3 x i24> poison
;
; LITTLEENDIAN-LABEL: @bitcast_overshift_vector_bigend(
; LITTLEENDIAN-NEXT: [[S:%.*]] = shufflevector <9 x i8> [[V1:%.*]], <9 x i8> <i8 23, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison>, <9 x i32> <i32 9, i32 1, i32 2, i32 9, i32 4, i32 5, i32 9, i32 7, i32 8>
; LITTLEENDIAN-NEXT: [[B:%.*]] = bitcast <9 x i8> [[S]] to <3 x i24>
; LITTLEENDIAN-NEXT: [[R:%.*]] = shl <3 x i24> [[V2:%.*]], [[B]]
; LITTLEENDIAN-NEXT: ret <3 x i24> [[R]]
;
%c = insertelement <9 x i8> poison, i8 23, i64 0
%s = shufflevector <9 x i8> %v1, <9 x i8> %c, <9 x i32> <i32 9, i32 1, i32 2, i32 9, i32 4, i32 5, i32 9, i32 7, i32 8>
%b = bitcast <9 x i8> %s to <3 x i24>
%r = shl <3 x i24> %v2, %b
ret <3 x i24> %r
}
; The shift amount is known 23 on big-endian and known 23<<16 on little-endian
; across all vector elements, so it's an overshift for little-endian.
define <3 x i24> @bitcast_overshift_vector_littleend(<9 x i8> %v1, <3 x i24> %v2) {
; BIGENDIAN-LABEL: @bitcast_overshift_vector_littleend(
; BIGENDIAN-NEXT: [[S:%.*]] = shufflevector <9 x i8> [[V1:%.*]], <9 x i8> <i8 23, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison>, <9 x i32> <i32 0, i32 1, i32 9, i32 3, i32 4, i32 9, i32 6, i32 7, i32 9>
; BIGENDIAN-NEXT: [[B:%.*]] = bitcast <9 x i8> [[S]] to <3 x i24>
; BIGENDIAN-NEXT: [[R:%.*]] = shl <3 x i24> [[V2:%.*]], [[B]]
; BIGENDIAN-NEXT: ret <3 x i24> [[R]]
;
; LITTLEENDIAN-LABEL: @bitcast_overshift_vector_littleend(
; LITTLEENDIAN-NEXT: ret <3 x i24> poison
;
%c = insertelement <9 x i8> poison, i8 23, i64 0
%s = shufflevector <9 x i8> %v1, <9 x i8> %c, <9 x i32> <i32 0, i32 1, i32 9, i32 3, i32 4, i32 9, i32 6, i32 7, i32 9>
%b = bitcast <9 x i8> %s to <3 x i24>
%r = shl <3 x i24> %v2, %b
ret <3 x i24> %r
}
; Negative test - the shift amount is known 24 or 24<<16 on only 2 out of 3 elements.
define <3 x i24> @bitcast_partial_overshift_vector(<9 x i8> %v1, <3 x i24> %v2) {
; CHECK-LABEL: @bitcast_partial_overshift_vector(
; CHECK-NEXT: [[S:%.*]] = shufflevector <9 x i8> [[V1:%.*]], <9 x i8> <i8 24, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison, i8 poison>, <9 x i32> <i32 9, i32 1, i32 2, i32 9, i32 4, i32 5, i32 6, i32 7, i32 8>
; CHECK-NEXT: [[B:%.*]] = bitcast <9 x i8> [[S]] to <3 x i24>
; CHECK-NEXT: [[R:%.*]] = shl <3 x i24> [[V2:%.*]], [[B]]
; CHECK-NEXT: ret <3 x i24> [[R]]
;
%c = insertelement <9 x i8> poison, i8 24, i64 0
%s = shufflevector <9 x i8> %v1, <9 x i8> %c, <9 x i32> <i32 9, i32 1, i32 2, i32 9, i32 4, i32 5, i32 6, i32 7, i32 8>
%b = bitcast <9 x i8> %s to <3 x i24>
%r = shl <3 x i24> %v2, %b
ret <3 x i24> %r
}
; Negative test - don't know how to look through a cast with non-integer type (but we could handle this...).
define <1 x i64> @bitcast_noshift_vector_wrong_type(<2 x float> %v1, <1 x i64> %v2) {
; CHECK-LABEL: @bitcast_noshift_vector_wrong_type(
; CHECK-NEXT: [[S:%.*]] = shufflevector <2 x float> [[V1:%.*]], <2 x float> <float 0.000000e+00, float poison>, <2 x i32> <i32 2, i32 1>
; CHECK-NEXT: [[B:%.*]] = bitcast <2 x float> [[S]] to <1 x i64>
; CHECK-NEXT: [[R:%.*]] = shl <1 x i64> [[V2:%.*]], [[B]]
; CHECK-NEXT: ret <1 x i64> [[R]]
;
%c = insertelement <2 x float> poison, float 0.0, i64 0
%s = shufflevector <2 x float> %v1, <2 x float> %c, <2 x i32> <i32 2, i32 1>
%b = bitcast <2 x float> %s to <1 x i64>
%r = shl <1 x i64> %v2, %b
ret <1 x i64> %r
}
|