1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
; REQUIRES: x86-registered-target
; RUN: opt -aa-pipeline=basic-aa -passes=loop-distribute -enable-loop-distribute -verify-loop-info -verify-dom-info -S \
; RUN: < %s | FileCheck %s
; RUN: opt -aa-pipeline=basic-aa -passes='loop-distribute,loop-vectorize' -enable-loop-distribute -force-vector-width=4 \
; RUN: -verify-loop-info -verify-dom-info -S < %s | \
; RUN: FileCheck --check-prefix=VECTORIZE %s
; RUN: opt -aa-pipeline=basic-aa -passes='loop-distribute,print<access-info>' -enable-loop-distribute \
; RUN: -verify-loop-info -verify-dom-info -disable-output < %s 2>&1 | FileCheck %s --check-prefix=ANALYSIS
; The memcheck version of basic.ll. We should distribute and vectorize the
; second part of this loop with 5 memchecks (A+1 x {C, D, E} + C x {A, B})
;
; for (i = 0; i < n; i++) {
; A[i + 1] = A[i] * B[i];
; -------------------------------
; C[i] = D[i] * E[i];
; }
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx10.10.0"
@B = common global ptr null, align 8
@A = common global ptr null, align 8
@C = common global ptr null, align 8
@D = common global ptr null, align 8
@E = common global ptr null, align 8
; CHECK-LABEL: @f(
define void @f() {
entry:
%a = load ptr, ptr @A, align 8
%b = load ptr, ptr @B, align 8
%c = load ptr, ptr @C, align 8
%d = load ptr, ptr @D, align 8
%e = load ptr, ptr @E, align 8
br label %for.body
; We have two compares for each array overlap check.
; Since the checks to A and A + 4 get merged, this will give us a
; total of 8 compares.
;
; CHECK: for.body.lver.check:
; CHECK: = icmp
; CHECK: = icmp
; CHECK: = icmp
; CHECK: = icmp
; CHECK: = icmp
; CHECK: = icmp
; CHECK: = icmp
; CHECK: = icmp
; CHECK-NOT: = icmp
; CHECK: br i1 %conflict.rdx15, label %for.body.ph.lver.orig, label %for.body.ph.ldist1
; The non-distributed loop that the memchecks fall back on.
; CHECK: for.body.ph.lver.orig:
; CHECK: br label %for.body.lver.orig
; CHECK: for.body.lver.orig:
; CHECK: br i1 %exitcond.lver.orig, label %for.end.loopexit, label %for.body.lver.orig
; Verify the two distributed loops.
; CHECK: for.body.ph.ldist1:
; CHECK: br label %for.body.ldist1
; CHECK: for.body.ldist1:
; CHECK: %mulA.ldist1 = mul i32 %loadB.ldist1, %loadA.ldist1
; CHECK: br i1 %exitcond.ldist1, label %for.body.ph, label %for.body.ldist1
; CHECK: for.body.ph:
; CHECK: br label %for.body
; CHECK: for.body:
; CHECK: %mulC = mul i32 %loadD, %loadE
; CHECK: for.end:
; VECTORIZE: mul <4 x i32>
; VECTORIZE: mul <4 x i32>
; VECTORIZE-NOT: mul <4 x i32>
for.body: ; preds = %for.body, %entry
%ind = phi i64 [ 0, %entry ], [ %add, %for.body ]
%arrayidxA = getelementptr inbounds i32, ptr %a, i64 %ind
%loadA = load i32, ptr %arrayidxA, align 4
%arrayidxB = getelementptr inbounds i32, ptr %b, i64 %ind
%loadB = load i32, ptr %arrayidxB, align 4
%mulA = mul i32 %loadB, %loadA
%add = add nuw nsw i64 %ind, 1
%arrayidxA_plus_4 = getelementptr inbounds i32, ptr %a, i64 %add
store i32 %mulA, ptr %arrayidxA_plus_4, align 4
%arrayidxD = getelementptr inbounds i32, ptr %d, i64 %ind
%loadD = load i32, ptr %arrayidxD, align 4
%arrayidxE = getelementptr inbounds i32, ptr %e, i64 %ind
%loadE = load i32, ptr %arrayidxE, align 4
%mulC = mul i32 %loadD, %loadE
%arrayidxC = getelementptr inbounds i32, ptr %c, i64 %ind
store i32 %mulC, ptr %arrayidxC, align 4
%exitcond = icmp eq i64 %add, 20
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
; Make sure there's no "Multiple reports generated" assert with a
; volatile load, and no distribution
; TODO: Distribution of volatile may be possible under some
; circumstance, but the current implementation does not touch them.
; CHECK-LABEL: @f_volatile_load(
; CHECK: br label %for.body{{$}}
; CHECK-NOT: load
; CHECK: {{^}}for.body:
; CHECK: load i32
; CHECK: load i32
; CHECK: load volatile i32
; CHECK: load i32
; CHECK: br i1 %exitcond, label %for.end, label %for.body{{$}}
; CHECK-NOT: load
; VECTORIZE-NOT: load <4 x i32>
; VECTORIZE-NOT: mul <4 x i32>
define void @f_volatile_load() {
entry:
%a = load ptr, ptr @A, align 8
%b = load ptr, ptr @B, align 8
%c = load ptr, ptr @C, align 8
%d = load ptr, ptr @D, align 8
%e = load ptr, ptr @E, align 8
br label %for.body
for.body:
%ind = phi i64 [ 0, %entry ], [ %add, %for.body ]
%arrayidxA = getelementptr inbounds i32, ptr %a, i64 %ind
%loadA = load i32, ptr %arrayidxA, align 4
%arrayidxB = getelementptr inbounds i32, ptr %b, i64 %ind
%loadB = load i32, ptr %arrayidxB, align 4
%mulA = mul i32 %loadB, %loadA
%add = add nuw nsw i64 %ind, 1
%arrayidxA_plus_4 = getelementptr inbounds i32, ptr %a, i64 %add
store i32 %mulA, ptr %arrayidxA_plus_4, align 4
%arrayidxD = getelementptr inbounds i32, ptr %d, i64 %ind
%loadD = load volatile i32, ptr %arrayidxD, align 4
%arrayidxE = getelementptr inbounds i32, ptr %e, i64 %ind
%loadE = load i32, ptr %arrayidxE, align 4
%mulC = mul i32 %loadD, %loadE
%arrayidxC = getelementptr inbounds i32, ptr %c, i64 %ind
store i32 %mulC, ptr %arrayidxC, align 4
%exitcond = icmp eq i64 %add, 20
br i1 %exitcond, label %for.end, label %for.body
for.end:
ret void
}
declare i32 @llvm.convergent(i32) #0
; This is the same as f, and would require the same bounds
; check. However, it is not OK to introduce new control dependencies
; on the convergent call.
; CHECK-LABEL: @f_with_convergent(
; CHECK: call i32 @llvm.convergent
; CHECK-NOT: call i32 @llvm.convergent
; ANALYSIS: for.body:
; ANALYSIS: Report: cannot add control dependency to convergent operation
define void @f_with_convergent() #1 {
entry:
%a = load ptr, ptr @A, align 8
%b = load ptr, ptr @B, align 8
%c = load ptr, ptr @C, align 8
%d = load ptr, ptr @D, align 8
%e = load ptr, ptr @E, align 8
br label %for.body
for.body: ; preds = %for.body, %entry
%ind = phi i64 [ 0, %entry ], [ %add, %for.body ]
%arrayidxA = getelementptr inbounds i32, ptr %a, i64 %ind
%loadA = load i32, ptr %arrayidxA, align 4
%arrayidxB = getelementptr inbounds i32, ptr %b, i64 %ind
%loadB = load i32, ptr %arrayidxB, align 4
%mulA = mul i32 %loadB, %loadA
%add = add nuw nsw i64 %ind, 1
%arrayidxA_plus_4 = getelementptr inbounds i32, ptr %a, i64 %add
store i32 %mulA, ptr %arrayidxA_plus_4, align 4
%arrayidxD = getelementptr inbounds i32, ptr %d, i64 %ind
%loadD = load i32, ptr %arrayidxD, align 4
%arrayidxE = getelementptr inbounds i32, ptr %e, i64 %ind
%loadE = load i32, ptr %arrayidxE, align 4
%convergentD = call i32 @llvm.convergent(i32 %loadD)
%mulC = mul i32 %convergentD, %loadE
%arrayidxC = getelementptr inbounds i32, ptr %c, i64 %ind
store i32 %mulC, ptr %arrayidxC, align 4
%exitcond = icmp eq i64 %add, 20
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}
; Make sure an explicit request for distribution is ignored if it
; requires possibly illegal checks.
; CHECK-LABEL: @f_with_convergent_forced_distribute(
; CHECK: call i32 @llvm.convergent
; CHECK-NOT: call i32 @llvm.convergent
define void @f_with_convergent_forced_distribute() #1 {
entry:
%a = load ptr, ptr @A, align 8
%b = load ptr, ptr @B, align 8
%c = load ptr, ptr @C, align 8
%d = load ptr, ptr @D, align 8
%e = load ptr, ptr @E, align 8
br label %for.body
for.body: ; preds = %for.body, %entry
%ind = phi i64 [ 0, %entry ], [ %add, %for.body ]
%arrayidxA = getelementptr inbounds i32, ptr %a, i64 %ind
%loadA = load i32, ptr %arrayidxA, align 4
%arrayidxB = getelementptr inbounds i32, ptr %b, i64 %ind
%loadB = load i32, ptr %arrayidxB, align 4
%mulA = mul i32 %loadB, %loadA
%add = add nuw nsw i64 %ind, 1
%arrayidxA_plus_4 = getelementptr inbounds i32, ptr %a, i64 %add
store i32 %mulA, ptr %arrayidxA_plus_4, align 4
%arrayidxD = getelementptr inbounds i32, ptr %d, i64 %ind
%loadD = load i32, ptr %arrayidxD, align 4
%arrayidxE = getelementptr inbounds i32, ptr %e, i64 %ind
%loadE = load i32, ptr %arrayidxE, align 4
%convergentD = call i32 @llvm.convergent(i32 %loadD)
%mulC = mul i32 %convergentD, %loadE
%arrayidxC = getelementptr inbounds i32, ptr %c, i64 %ind
store i32 %mulC, ptr %arrayidxC, align 4
%exitcond = icmp eq i64 %add, 20
br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
for.end: ; preds = %for.body
ret void
}
attributes #0 = { nounwind readnone convergent }
attributes #1 = { nounwind convergent }
!0 = distinct !{!0, !1}
!1 = !{!"llvm.loop.distribute.enable", i1 true}
|