1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
; RUN: opt -S -passes=loop-vectorize -force-vector-width=8 -force-vector-interleave=1 < %s | FileCheck %s -check-prefix=VF8
; RUN: opt -S -passes=loop-vectorize -force-vector-width=1 -force-vector-interleave=4 < %s | FileCheck %s -check-prefix=VF1
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
; Given a loop with an induction variable which is being
; truncated/extended using casts that had been proven to
; be redundant under a runtime test, we want to make sure
; that these casts, do not get vectorized/scalarized/widened.
; This is the case for inductions whose SCEV expression is
; of the form "ExtTrunc(%phi) + %step", where "ExtTrunc"
; can be a result of the IR sequences we check below.
;
; See also pr30654.
;
; Case1: Check the following induction pattern:
;
; %p.09 = phi i32 [ 0, %for.body.lr.ph ], [ %add, %for.body ]
; %sext = shl i32 %p.09, 24
; %conv = ashr exact i32 %sext, 24
; %add = add nsw i32 %conv, %step
;
; This is the case in the following code:
;
; void doit1(int n, int step) {
; int i;
; char p = 0;
; for (i = 0; i < n; i++) {
; a[i] = p;
; p = p + step;
; }
; }
;
; The "ExtTrunc" IR sequence here is:
; "%sext = shl i32 %p.09, 24"
; "%conv = ashr exact i32 %sext, 24"
; We check that it does not appear in the vector loop body, whether
; we vectorize or scalarize the induction.
; In the case of widened induction, this means that the induction phi
; is directly used, without shl/ashr on the way.
; VF8-LABEL: @doit1
; VF8: vector.body:
; VF8: %vec.ind = phi <8 x i32>
; VF8: store <8 x i32> %vec.ind
; VF8: middle.block:
; VF1-LABEL: @doit1
; VF1: vector.body:
; VF1-NOT: %{{.*}} = shl i32
; VF1: middle.block:
@a = common local_unnamed_addr global [250 x i32] zeroinitializer, align 16
define void @doit1(i32 %n, i32 %step) {
entry:
%cmp7 = icmp sgt i32 %n, 0
br i1 %cmp7, label %for.body.lr.ph, label %for.end
for.body.lr.ph:
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
%p.09 = phi i32 [ 0, %for.body.lr.ph ], [ %add, %for.body ]
%sext = shl i32 %p.09, 24
%conv = ashr exact i32 %sext, 24
%arrayidx = getelementptr inbounds [250 x i32], ptr @a, i64 0, i64 %indvars.iv
store i32 %conv, ptr %arrayidx, align 4
%add = add nsw i32 %conv, %step
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.end.loopexit, label %for.body
for.end.loopexit:
br label %for.end
for.end:
ret void
}
; Case2: Another variant of the above pattern is where the induction variable
; is used only for address compuation (i.e. it is a GEP index) and therefore
; the induction is not vectorized but rather only the step is widened.
;
; This is the case in the following code, where the induction variable 'w_ix'
; is only used to access the array 'in':
;
; void doit2(int *in, int *out, size_t size, size_t step)
; {
; int w_ix = 0;
; for (size_t offset = 0; offset < size; ++offset)
; {
; int w = in[w_ix];
; out[offset] = w;
; w_ix += step;
; }
; }
;
; The "ExtTrunc" IR sequence here is similar to the previous case:
; "%sext = shl i64 %w_ix.012, 32
; %idxprom = ashr exact i64 %sext, 32"
; We check that it does not appear in the vector loop body, whether
; we widen or scalarize the induction.
; In the case of widened induction, this means that the induction phi
; is directly used, without shl/ashr on the way.
; VF8-LABEL: @doit2
; VF8: vector.body:
; VF8-NEXT: [[INDEX:%.+]] = phi i64 [ 0, %vector.ph ]
; VF8-NEXT: [[OFFSET_IDX:%.+]] = mul i64 [[INDEX]], %step
; VF8-NEXT: [[MUL0:%.+]] = mul i64 0, %step
; VF8-NEXT: [[ADD:%.+]] = add i64 [[OFFSET_IDX]], [[MUL0]]
; VF8: [[I0:%.+]] = add i64 [[INDEX]], 0
; VF8: getelementptr inbounds i32, ptr %in, i64 [[ADD]]
; VF8: middle.block:
; VF1-LABEL: @doit2
; VF1: vector.body:
; VF1-NOT: %{{.*}} = shl i64
; VF1: middle.block:
;
define void @doit2(ptr nocapture readonly %in, ptr nocapture %out, i64 %size, i64 %step) {
entry:
%cmp9 = icmp eq i64 %size, 0
br i1 %cmp9, label %for.cond.cleanup, label %for.body.lr.ph
for.body.lr.ph:
br label %for.body
for.cond.cleanup.loopexit:
br label %for.cond.cleanup
for.cond.cleanup:
ret void
for.body:
%w_ix.011 = phi i64 [ 0, %for.body.lr.ph ], [ %add, %for.body ]
%offset.010 = phi i64 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
%sext = shl i64 %w_ix.011, 32
%idxprom = ashr exact i64 %sext, 32
%arrayidx = getelementptr inbounds i32, ptr %in, i64 %idxprom
%0 = load i32, ptr %arrayidx, align 4
%arrayidx1 = getelementptr inbounds i32, ptr %out, i64 %offset.010
store i32 %0, ptr %arrayidx1, align 4
%add = add i64 %idxprom, %step
%inc = add nuw i64 %offset.010, 1
%exitcond = icmp eq i64 %inc, %size
br i1 %exitcond, label %for.cond.cleanup.loopexit, label %for.body
}
; Case3: Lastly, check also the following induction pattern:
;
; %p.09 = phi i32 [ %val0, %scalar.ph ], [ %add, %for.body ]
; %conv = and i32 %p.09, 255
; %add = add nsw i32 %conv, %step
;
; This is the case in the following code:
;
; int a[N];
; void doit3(int n, int step) {
; int i;
; unsigned char p = 0;
; for (i = 0; i < n; i++) {
; a[i] = p;
; p = p + step;
; }
; }
;
; The "ExtTrunc" IR sequence here is:
; "%conv = and i32 %p.09, 255".
; We check that it does not appear in the vector loop body, whether
; we vectorize or scalarize the induction.
; VF8-LABEL: @doit3
; VF8: vector.body:
; VF8: %vec.ind = phi <8 x i32>
; VF8: store <8 x i32> %vec.ind
; VF8: middle.block:
; VF1-LABEL: @doit3
; VF1: vector.body:
; VF1-NOT: %{{.*}} = and i32
; VF1: middle.block:
define void @doit3(i32 %n, i32 %step) {
entry:
%cmp7 = icmp sgt i32 %n, 0
br i1 %cmp7, label %for.body.lr.ph, label %for.end
for.body.lr.ph:
%wide.trip.count = zext i32 %n to i64
br label %for.body
for.body:
%indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ]
%p.09 = phi i32 [ 0, %for.body.lr.ph ], [ %add, %for.body ]
%conv = and i32 %p.09, 255
%arrayidx = getelementptr inbounds [250 x i32], ptr @a, i64 0, i64 %indvars.iv
store i32 %conv, ptr %arrayidx, align 4
%add = add nsw i32 %conv, %step
%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %wide.trip.count
br i1 %exitcond, label %for.end.loopexit, label %for.body
for.end.loopexit:
br label %for.end
for.end:
ret void
}
; VF8-LABEL: @test_conv_in_latch_block
; VF8: vector.body:
; VF8-NEXT: %index = phi i64
; VF8-NEXT: %vec.ind = phi <8 x i32>
; VF8: store <8 x i32> %vec.ind
; VF8: middle.block:
;
define void @test_conv_in_latch_block(i32 %n, i32 %step, ptr noalias %A, ptr noalias %B) {
entry:
%wide.trip.count = zext i32 %n to i64
br label %loop
loop:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %latch ]
%p.09 = phi i32 [ 0, %entry ], [ %add, %latch ]
%B.gep = getelementptr inbounds i32, ptr %B, i64 %iv
%l = load i32, ptr %B.gep
%c = icmp eq i32 %l, 0
br i1 %c, label %then, label %latch
then:
%A.gep = getelementptr inbounds i32, ptr %A, i64 %iv
store i32 0, ptr %A.gep
br label %latch
latch:
%sext = shl i32 %p.09, 24
%conv = ashr exact i32 %sext, 24
%add = add nsw i32 %conv, %step
store i32 %conv, ptr %B.gep, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %wide.trip.count
br i1 %exitcond, label %exit, label %loop
exit:
ret void
}
|