1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py UTC_ARGS: --version 4
; RUN: opt -passes='default<O3>,print<scalar-evolution>' -disable-output -S < %s 2>&1 | FileCheck %s
target datalayout = "e-m:m-p:40:64:64:32-i32:32-i16:16-i8:8-n32"
;
; This file contains phase ordering tests for scalar evolution.
; Test that the standard passes don't obfuscate the IR so scalar evolution can't
; recognize expressions.
; The loop body contains two increments by %div.
; Make sure that 2*%div is recognizable, and not expressed as a bit mask of %d.
define void @test1(i32 %d, ptr %p) nounwind uwtable ssp {
; CHECK-LABEL: 'test1'
; CHECK-NEXT: Classifying expressions for: @test1
; CHECK-NEXT: %div1 = lshr i32 %d, 2
; CHECK-NEXT: --> (%d /u 4) U: [0,1073741824) S: [0,1073741824)
; CHECK-NEXT: %i.03 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%for.body> U: [0,64) S: [0,64) Exits: 63 LoopDispositions: { %for.body: Computable }
; CHECK-NEXT: %p.addr.02 = phi ptr [ %p, %entry ], [ %add.ptr1, %for.body ]
; CHECK-NEXT: --> {%p,+,(8 * (%d /u 4))}<%for.body> U: full-set S: full-set Exits: ((504 * (%d /u 4)) + %p) LoopDispositions: { %for.body: Computable }
; CHECK-NEXT: %add.ptr = getelementptr inbounds i32, ptr %p.addr.02, i32 %div1
; CHECK-NEXT: --> {((4 * (%d /u 4))<nuw><nsw> + %p),+,(8 * (%d /u 4))}<%for.body> U: full-set S: full-set Exits: ((508 * (%d /u 4)) + %p) LoopDispositions: { %for.body: Computable }
; CHECK-NEXT: %add.ptr1 = getelementptr inbounds i32, ptr %add.ptr, i32 %div1
; CHECK-NEXT: --> {((8 * (%d /u 4)) + %p),+,(8 * (%d /u 4))}<%for.body> U: full-set S: full-set Exits: ((512 * (%d /u 4)) + %p) LoopDispositions: { %for.body: Computable }
; CHECK-NEXT: %inc = add nuw nsw i32 %i.03, 1
; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%for.body> U: [1,65) S: [1,65) Exits: 64 LoopDispositions: { %for.body: Computable }
; CHECK-NEXT: Determining loop execution counts for: @test1
; CHECK-NEXT: Loop %for.body: backedge-taken count is i32 63
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i32 63
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is i32 63
; CHECK-NEXT: Loop %for.body: Trip multiple is 64
;
entry:
%div = udiv i32 %d, 4
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%p.addr.0 = phi ptr [ %p, %entry ], [ %add.ptr1, %for.inc ]
%i.0 = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
%cmp = icmp ne i32 %i.0, 64
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
store i32 0, ptr %p.addr.0, align 4
%add.ptr = getelementptr inbounds i32, ptr %p.addr.0, i32 %div
store i32 1, ptr %add.ptr, align 4
%add.ptr1 = getelementptr inbounds i32, ptr %add.ptr, i32 %div
br label %for.inc
for.inc: ; preds = %for.body
%inc = add i32 %i.0, 1
br label %for.cond
for.end: ; preds = %for.cond
ret void
}
; Same thing as test1, but it is even more tempting to fold 2 * (%d /u 2)
define void @test1a(i32 %d, ptr %p) nounwind uwtable ssp {
; CHECK-LABEL: 'test1a'
; CHECK-NEXT: Classifying expressions for: @test1a
; CHECK-NEXT: %div1 = lshr i32 %d, 1
; CHECK-NEXT: --> (%d /u 2) U: [0,-2147483648) S: [0,-2147483648)
; CHECK-NEXT: %i.03 = phi i32 [ 0, %entry ], [ %inc, %for.body ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%for.body> U: [0,64) S: [0,64) Exits: 63 LoopDispositions: { %for.body: Computable }
; CHECK-NEXT: %p.addr.02 = phi ptr [ %p, %entry ], [ %add.ptr1, %for.body ]
; CHECK-NEXT: --> {%p,+,(8 * (%d /u 2))}<%for.body> U: full-set S: full-set Exits: ((504 * (%d /u 2)) + %p) LoopDispositions: { %for.body: Computable }
; CHECK-NEXT: %add.ptr = getelementptr inbounds i32, ptr %p.addr.02, i32 %div1
; CHECK-NEXT: --> {((4 * (%d /u 2))<nuw><nsw> + %p),+,(8 * (%d /u 2))}<%for.body> U: full-set S: full-set Exits: ((508 * (%d /u 2)) + %p) LoopDispositions: { %for.body: Computable }
; CHECK-NEXT: %add.ptr1 = getelementptr inbounds i32, ptr %add.ptr, i32 %div1
; CHECK-NEXT: --> {((8 * (%d /u 2)) + %p),+,(8 * (%d /u 2))}<%for.body> U: full-set S: full-set Exits: ((512 * (%d /u 2)) + %p) LoopDispositions: { %for.body: Computable }
; CHECK-NEXT: %inc = add nuw nsw i32 %i.03, 1
; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%for.body> U: [1,65) S: [1,65) Exits: 64 LoopDispositions: { %for.body: Computable }
; CHECK-NEXT: Determining loop execution counts for: @test1a
; CHECK-NEXT: Loop %for.body: backedge-taken count is i32 63
; CHECK-NEXT: Loop %for.body: constant max backedge-taken count is i32 63
; CHECK-NEXT: Loop %for.body: symbolic max backedge-taken count is i32 63
; CHECK-NEXT: Loop %for.body: Trip multiple is 64
;
entry:
%div = udiv i32 %d, 2
br label %for.cond
for.cond: ; preds = %for.inc, %entry
%p.addr.0 = phi ptr [ %p, %entry ], [ %add.ptr1, %for.inc ]
%i.0 = phi i32 [ 0, %entry ], [ %inc, %for.inc ]
%cmp = icmp ne i32 %i.0, 64
br i1 %cmp, label %for.body, label %for.end
for.body: ; preds = %for.cond
store i32 0, ptr %p.addr.0, align 4
%add.ptr = getelementptr inbounds i32, ptr %p.addr.0, i32 %div
store i32 1, ptr %add.ptr, align 4
%add.ptr1 = getelementptr inbounds i32, ptr %add.ptr, i32 %div
br label %for.inc
for.inc: ; preds = %for.body
%inc = add i32 %i.0, 1
br label %for.cond
for.end: ; preds = %for.cond
ret void
}
@array = weak global [101 x i32] zeroinitializer, align 32 ; <ptr> [#uses=1]
define void @test_range_ref1a(i32 %x) {
; CHECK-LABEL: 'test_range_ref1a'
; CHECK-NEXT: Classifying expressions for: @test_range_ref1a
; CHECK-NEXT: %i.01.0 = phi i32 [ 100, %entry ], [ %tmp4, %bb ]
; CHECK-NEXT: --> {100,+,-1}<nsw><%bb> U: [0,101) S: [0,101) Exits: 0 LoopDispositions: { %bb: Computable }
; CHECK-NEXT: %tmp1 = getelementptr [101 x i32], ptr @array, i32 0, i32 %i.01.0
; CHECK-NEXT: --> {(400 + @array),+,-4}<nw><%bb> U: [0,-3) S: [-2147483648,2147483645) Exits: @array LoopDispositions: { %bb: Computable }
; CHECK-NEXT: %tmp4 = add nsw i32 %i.01.0, -1
; CHECK-NEXT: --> {99,+,-1}<nsw><%bb> U: [-1,100) S: [-1,100) Exits: -1 LoopDispositions: { %bb: Computable }
; CHECK-NEXT: Determining loop execution counts for: @test_range_ref1a
; CHECK-NEXT: Loop %bb: backedge-taken count is i32 100
; CHECK-NEXT: Loop %bb: constant max backedge-taken count is i32 100
; CHECK-NEXT: Loop %bb: symbolic max backedge-taken count is i32 100
; CHECK-NEXT: Loop %bb: Trip multiple is 101
;
entry:
br label %bb
bb: ; preds = %bb, %entry
%i.01.0 = phi i32 [ 100, %entry ], [ %tmp4, %bb ] ; <i32> [#uses=2]
%tmp1 = getelementptr [101 x i32], ptr @array, i32 0, i32 %i.01.0 ; <ptr> [#uses=1]
store i32 %x, ptr %tmp1
%tmp4 = add i32 %i.01.0, -1 ; <i32> [#uses=2]
%tmp7 = icmp sgt i32 %tmp4, -1 ; <i1> [#uses=1]
br i1 %tmp7, label %bb, label %return
return: ; preds = %bb
ret void
}
define i32 @test_loop_idiom_recogize(i32 %x, i32 %y, ptr %lam, ptr %alp) nounwind {
; CHECK-LABEL: 'test_loop_idiom_recogize'
; CHECK-NEXT: Classifying expressions for: @test_loop_idiom_recogize
; CHECK-NEXT: %indvar = phi i32 [ 0, %bb1.thread ], [ %indvar.next, %bb1 ]
; CHECK-NEXT: --> {0,+,1}<nuw><nsw><%bb1> U: [0,256) S: [0,256) Exits: 255 LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %i.0.reg2mem.0 = sub nuw nsw i32 255, %indvar
; CHECK-NEXT: --> {255,+,-1}<nsw><%bb1> U: [0,256) S: [0,256) Exits: 0 LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %0 = getelementptr i32, ptr %alp, i32 %i.0.reg2mem.0
; CHECK-NEXT: --> {(1020 + %alp),+,-4}<nw><%bb1> U: full-set S: full-set Exits: %alp LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %1 = load i32, ptr %0, align 4
; CHECK-NEXT: --> %1 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %bb1: Variant }
; CHECK-NEXT: %2 = getelementptr i32, ptr %lam, i32 %i.0.reg2mem.0
; CHECK-NEXT: --> {(1020 + %lam),+,-4}<nw><%bb1> U: full-set S: full-set Exits: %lam LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %indvar.next = add nuw nsw i32 %indvar, 1
; CHECK-NEXT: --> {1,+,1}<nuw><nsw><%bb1> U: [1,257) S: [1,257) Exits: 256 LoopDispositions: { %bb1: Computable }
; CHECK-NEXT: %tmp10 = mul i32 %x, 255
; CHECK-NEXT: --> (255 * %x) U: full-set S: full-set
; CHECK-NEXT: %z.0.reg2mem.0 = add i32 %y, %x
; CHECK-NEXT: --> (%x + %y) U: full-set S: full-set
; CHECK-NEXT: %3 = add i32 %z.0.reg2mem.0, %tmp10
; CHECK-NEXT: --> ((256 * %x) + %y) U: full-set S: full-set
; CHECK-NEXT: Determining loop execution counts for: @test_loop_idiom_recogize
; CHECK-NEXT: Loop %bb1: backedge-taken count is i32 255
; CHECK-NEXT: Loop %bb1: constant max backedge-taken count is i32 255
; CHECK-NEXT: Loop %bb1: symbolic max backedge-taken count is i32 255
; CHECK-NEXT: Loop %bb1: Trip multiple is 256
;
bb1.thread:
br label %bb1
bb1: ; preds = %bb1, %bb1.thread
%indvar = phi i32 [ 0, %bb1.thread ], [ %indvar.next, %bb1 ] ; <i32> [#uses=4]
%i.0.reg2mem.0 = sub i32 255, %indvar ; <i32> [#uses=2]
%0 = getelementptr i32, ptr %alp, i32 %i.0.reg2mem.0 ; <ptr> [#uses=1]
%1 = load i32, ptr %0, align 4 ; <i32> [#uses=1]
%2 = getelementptr i32, ptr %lam, i32 %i.0.reg2mem.0 ; <ptr> [#uses=1]
store i32 %1, ptr %2, align 4
%3 = sub i32 254, %indvar ; <i32> [#uses=1]
%4 = icmp slt i32 %3, 0 ; <i1> [#uses=1]
%indvar.next = add i32 %indvar, 1 ; <i32> [#uses=1]
br i1 %4, label %bb2, label %bb1
bb2: ; preds = %bb1
%tmp10 = mul i32 %indvar, %x ; <i32> [#uses=1]
%z.0.reg2mem.0 = add i32 %tmp10, %y ; <i32> [#uses=1]
%5 = add i32 %z.0.reg2mem.0, %x ; <i32> [#uses=1]
ret i32 %5
}
declare void @use(i1)
declare void @llvm.experimental.guard(i1, ...)
; This tests getRangeRef acts as intended with different idx size.
define void @test_range_ref1(i8 %t) {
; CHECK-LABEL: 'test_range_ref1'
; CHECK-NEXT: Classifying expressions for: @test_range_ref1
; CHECK-NEXT: %0 = zext i8 %t to i40
; CHECK-NEXT: --> (zext i8 %t to i40) U: [0,256) S: [0,256)
; CHECK-NEXT: %t.ptr = inttoptr i40 %0 to ptr
; CHECK-NEXT: --> %t.ptr U: [0,256) S: [0,256)
; CHECK-NEXT: %idx = phi ptr [ %t.ptr, %entry ], [ %snext, %loop ]
; CHECK-NEXT: --> {%t.ptr,+,1}<nuw><%loop> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %snext = getelementptr inbounds i8, ptr %idx, i32 1
; CHECK-NEXT: --> {(1 + %t.ptr)<nuw><nsw>,+,1}<nw><%loop> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @test_range_ref1
; CHECK-NEXT: Loop %loop: Unpredictable backedge-taken count.
; CHECK-NEXT: Loop %loop: Unpredictable constant max backedge-taken count.
; CHECK-NEXT: Loop %loop: Unpredictable symbolic max backedge-taken count.
;
entry:
%t.ptr = inttoptr i8 %t to ptr
%p.42 = inttoptr i8 42 to ptr
%cmp1 = icmp slt ptr %t.ptr, %p.42
call void(i1, ...) @llvm.experimental.guard(i1 %cmp1) [ "deopt"() ]
br label %loop
loop:
%idx = phi ptr [ %t.ptr, %entry ], [ %snext, %loop ]
%snext = getelementptr inbounds i8, ptr %idx, i64 1
%c = icmp slt ptr %idx, %p.42
call void @use(i1 %c)
%be = icmp slt ptr %snext, %p.42
br i1 %be, label %loop, label %exit
exit:
ret void
}
|