1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
|
/*
* Copyright 2015 Sven Verdoolaege
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege
*/
#include "isl_map_private.h"
#include <isl/id.h>
#include <isl/schedule_node.h>
#include <isl/union_set.h>
#include "isl_mat_private.h"
#include "isl_scheduler_clustering.h"
#include "isl_scheduler_scc.h"
#include "isl_seq.h"
#include "isl_tarjan.h"
/* Initialize the clustering data structure "c" from "graph".
*
* In particular, allocate memory, extract the SCCs from "graph"
* into c->scc, initialize scc_cluster and construct
* a band of schedule rows for each SCC.
* Within each SCC, there is only one SCC by definition.
* Each SCC initially belongs to a cluster containing only that SCC.
*/
static isl_stat clustering_init(isl_ctx *ctx, struct isl_clustering *c,
struct isl_sched_graph *graph)
{
int i;
c->n = graph->scc;
c->scc = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
c->cluster = isl_calloc_array(ctx, struct isl_sched_graph, c->n);
c->scc_cluster = isl_calloc_array(ctx, int, c->n);
c->scc_node = isl_calloc_array(ctx, int, c->n);
c->scc_in_merge = isl_calloc_array(ctx, int, c->n);
if (!c->scc || !c->cluster ||
!c->scc_cluster || !c->scc_node || !c->scc_in_merge)
return isl_stat_error;
for (i = 0; i < c->n; ++i) {
if (isl_sched_graph_extract_sub_graph(ctx, graph,
&isl_sched_node_scc_exactly,
&isl_sched_edge_scc_exactly,
i, &c->scc[i]) < 0)
return isl_stat_error;
c->scc[i].scc = 1;
if (isl_sched_graph_compute_maxvar(&c->scc[i]) < 0)
return isl_stat_error;
if (isl_schedule_node_compute_wcc_band(ctx, &c->scc[i]) < 0)
return isl_stat_error;
c->scc_cluster[i] = i;
}
return isl_stat_ok;
}
/* Free all memory allocated for "c".
*/
static void clustering_free(isl_ctx *ctx, struct isl_clustering *c)
{
int i;
if (c->scc)
for (i = 0; i < c->n; ++i)
isl_sched_graph_free(ctx, &c->scc[i]);
free(c->scc);
if (c->cluster)
for (i = 0; i < c->n; ++i)
isl_sched_graph_free(ctx, &c->cluster[i]);
free(c->cluster);
free(c->scc_cluster);
free(c->scc_node);
free(c->scc_in_merge);
}
/* Should we refrain from merging the cluster in "graph" with
* any other cluster?
* In particular, is its current schedule band empty and incomplete.
*/
static int bad_cluster(struct isl_sched_graph *graph)
{
return graph->n_row < graph->maxvar &&
graph->n_total_row == graph->band_start;
}
/* Is "edge" a proximity edge with a non-empty dependence relation?
*/
static isl_bool is_non_empty_proximity(struct isl_sched_edge *edge)
{
if (!isl_sched_edge_is_proximity(edge))
return isl_bool_false;
return isl_bool_not(isl_map_plain_is_empty(edge->map));
}
/* Return the index of an edge in "graph" that can be used to merge
* two clusters in "c".
* Return graph->n_edge if no such edge can be found.
* Return -1 on error.
*
* In particular, return a proximity edge between two clusters
* that is not marked "no_merge" and such that neither of the
* two clusters has an incomplete, empty band.
*
* If there are multiple such edges, then try and find the most
* appropriate edge to use for merging. In particular, pick the edge
* with the greatest weight. If there are multiple of those,
* then pick one with the shortest distance between
* the two cluster representatives.
*/
static int find_proximity(struct isl_sched_graph *graph,
struct isl_clustering *c)
{
int i, best = graph->n_edge, best_dist, best_weight;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
int dist, weight;
isl_bool prox;
prox = is_non_empty_proximity(edge);
if (prox < 0)
return -1;
if (!prox)
continue;
if (edge->no_merge)
continue;
if (bad_cluster(&c->scc[edge->src->scc]) ||
bad_cluster(&c->scc[edge->dst->scc]))
continue;
dist = c->scc_cluster[edge->dst->scc] -
c->scc_cluster[edge->src->scc];
if (dist == 0)
continue;
weight = edge->weight;
if (best < graph->n_edge) {
if (best_weight > weight)
continue;
if (best_weight == weight && best_dist <= dist)
continue;
}
best = i;
best_dist = dist;
best_weight = weight;
}
return best;
}
/* Internal data structure used in mark_merge_sccs.
*
* "graph" is the dependence graph in which a strongly connected
* component is constructed.
* "scc_cluster" maps each SCC index to the cluster to which it belongs.
* "src" and "dst" are the indices of the nodes that are being merged.
*/
struct isl_mark_merge_sccs_data {
struct isl_sched_graph *graph;
int *scc_cluster;
int src;
int dst;
};
/* Check whether the cluster containing node "i" depends on the cluster
* containing node "j". If "i" and "j" belong to the same cluster,
* then they are taken to depend on each other to ensure that
* the resulting strongly connected component consists of complete
* clusters. Furthermore, if "i" and "j" are the two nodes that
* are being merged, then they are taken to depend on each other as well.
* Otherwise, check if there is a (conditional) validity dependence
* from node[j] to node[i], forcing node[i] to follow node[j].
*/
static isl_bool cluster_follows(int i, int j, void *user)
{
struct isl_mark_merge_sccs_data *data = user;
struct isl_sched_graph *graph = data->graph;
int *scc_cluster = data->scc_cluster;
if (data->src == i && data->dst == j)
return isl_bool_true;
if (data->src == j && data->dst == i)
return isl_bool_true;
if (scc_cluster[graph->node[i].scc] == scc_cluster[graph->node[j].scc])
return isl_bool_true;
return isl_sched_graph_has_validity_edge(graph, &graph->node[j],
&graph->node[i]);
}
/* Mark all SCCs that belong to either of the two clusters in "c"
* connected by the edge in "graph" with index "edge", or to any
* of the intermediate clusters.
* The marking is recorded in c->scc_in_merge.
*
* The given edge has been selected for merging two clusters,
* meaning that there is at least a proximity edge between the two nodes.
* However, there may also be (indirect) validity dependences
* between the two nodes. When merging the two clusters, all clusters
* containing one or more of the intermediate nodes along the
* indirect validity dependences need to be merged in as well.
*
* First collect all such nodes by computing the strongly connected
* component (SCC) containing the two nodes connected by the edge, where
* the two nodes are considered to depend on each other to make
* sure they end up in the same SCC. Similarly, each node is considered
* to depend on every other node in the same cluster to ensure
* that the SCC consists of complete clusters.
*
* Then the original SCCs that contain any of these nodes are marked
* in c->scc_in_merge.
*/
static isl_stat mark_merge_sccs(isl_ctx *ctx, struct isl_sched_graph *graph,
int edge, struct isl_clustering *c)
{
struct isl_mark_merge_sccs_data data;
struct isl_tarjan_graph *g;
int i;
for (i = 0; i < c->n; ++i)
c->scc_in_merge[i] = 0;
data.graph = graph;
data.scc_cluster = c->scc_cluster;
data.src = graph->edge[edge].src - graph->node;
data.dst = graph->edge[edge].dst - graph->node;
g = isl_tarjan_graph_component(ctx, graph->n, data.dst,
&cluster_follows, &data);
if (!g)
goto error;
i = g->op;
if (i < 3)
isl_die(ctx, isl_error_internal,
"expecting at least two nodes in component",
goto error);
if (g->order[--i] != -1)
isl_die(ctx, isl_error_internal,
"expecting end of component marker", goto error);
for (--i; i >= 0 && g->order[i] != -1; --i) {
int scc = graph->node[g->order[i]].scc;
c->scc_in_merge[scc] = 1;
}
isl_tarjan_graph_free(g);
return isl_stat_ok;
error:
isl_tarjan_graph_free(g);
return isl_stat_error;
}
/* Construct the identifier "cluster_i".
*/
static __isl_give isl_id *cluster_id(isl_ctx *ctx, int i)
{
char name[40];
snprintf(name, sizeof(name), "cluster_%d", i);
return isl_id_alloc(ctx, name, NULL);
}
/* Construct the space of the cluster with index "i" containing
* the strongly connected component "scc".
*
* In particular, construct a space called cluster_i with dimension equal
* to the number of schedule rows in the current band of "scc".
*/
static __isl_give isl_space *cluster_space(struct isl_sched_graph *scc, int i)
{
int nvar;
isl_space *space;
isl_id *id;
nvar = scc->n_total_row - scc->band_start;
space = isl_space_copy(scc->node[0].space);
space = isl_space_params(space);
space = isl_space_set_from_params(space);
space = isl_space_add_dims(space, isl_dim_set, nvar);
id = cluster_id(isl_space_get_ctx(space), i);
space = isl_space_set_tuple_id(space, isl_dim_set, id);
return space;
}
/* Collect the domain of the graph for merging clusters.
*
* In particular, for each cluster with first SCC "i", construct
* a set in the space called cluster_i with dimension equal
* to the number of schedule rows in the current band of the cluster.
*/
static __isl_give isl_union_set *collect_domain(isl_ctx *ctx,
struct isl_sched_graph *graph, struct isl_clustering *c)
{
int i;
isl_space *space;
isl_union_set *domain;
space = isl_space_params_alloc(ctx, 0);
domain = isl_union_set_empty(space);
for (i = 0; i < graph->scc; ++i) {
isl_space *space;
if (!c->scc_in_merge[i])
continue;
if (c->scc_cluster[i] != i)
continue;
space = cluster_space(&c->scc[i], i);
domain = isl_union_set_add_set(domain, isl_set_universe(space));
}
return domain;
}
/* Construct a map from the original instances to the corresponding
* cluster instance in the current bands of the clusters in "c".
*/
static __isl_give isl_union_map *collect_cluster_map(isl_ctx *ctx,
struct isl_sched_graph *graph, struct isl_clustering *c)
{
int i, j;
isl_space *space;
isl_union_map *cluster_map;
space = isl_space_params_alloc(ctx, 0);
cluster_map = isl_union_map_empty(space);
for (i = 0; i < graph->scc; ++i) {
int start, n;
isl_id *id;
if (!c->scc_in_merge[i])
continue;
id = cluster_id(ctx, c->scc_cluster[i]);
start = c->scc[i].band_start;
n = c->scc[i].n_total_row - start;
for (j = 0; j < c->scc[i].n; ++j) {
isl_multi_aff *ma;
isl_map *map;
struct isl_sched_node *node = &c->scc[i].node[j];
ma = isl_sched_node_extract_partial_schedule_multi_aff(
node, start, n);
ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out,
isl_id_copy(id));
map = isl_map_from_multi_aff(ma);
cluster_map = isl_union_map_add_map(cluster_map, map);
}
isl_id_free(id);
}
return cluster_map;
}
/* Add "umap" to the schedule constraints "sc" of all types of "edge"
* that are not isl_edge_condition or isl_edge_conditional_validity.
*/
static __isl_give isl_schedule_constraints *add_non_conditional_constraints(
struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
__isl_take isl_schedule_constraints *sc)
{
enum isl_edge_type t;
if (!sc)
return NULL;
for (t = isl_edge_first; t <= isl_edge_last; ++t) {
if (t == isl_edge_condition ||
t == isl_edge_conditional_validity)
continue;
if (!isl_sched_edge_has_type(edge, t))
continue;
sc = isl_schedule_constraints_add(sc, t,
isl_union_map_copy(umap));
}
return sc;
}
/* Add schedule constraints of types isl_edge_condition and
* isl_edge_conditional_validity to "sc" by applying "umap" to
* the domains of the wrapped relations in domain and range
* of the corresponding tagged constraints of "edge".
*/
static __isl_give isl_schedule_constraints *add_conditional_constraints(
struct isl_sched_edge *edge, __isl_keep isl_union_map *umap,
__isl_take isl_schedule_constraints *sc)
{
enum isl_edge_type t;
isl_union_map *tagged;
for (t = isl_edge_condition; t <= isl_edge_conditional_validity; ++t) {
if (!isl_sched_edge_has_type(edge, t))
continue;
if (t == isl_edge_condition)
tagged = isl_union_map_copy(edge->tagged_condition);
else
tagged = isl_union_map_copy(edge->tagged_validity);
tagged = isl_union_map_zip(tagged);
tagged = isl_union_map_apply_domain(tagged,
isl_union_map_copy(umap));
tagged = isl_union_map_zip(tagged);
sc = isl_schedule_constraints_add(sc, t, tagged);
if (!sc)
return NULL;
}
return sc;
}
/* Given a mapping "cluster_map" from the original instances to
* the cluster instances, add schedule constraints on the clusters
* to "sc" corresponding to the original constraints represented by "edge".
*
* For non-tagged dependence constraints, the cluster constraints
* are obtained by applying "cluster_map" to the edge->map.
*
* For tagged dependence constraints, "cluster_map" needs to be applied
* to the domains of the wrapped relations in domain and range
* of the tagged dependence constraints. Pick out the mappings
* from these domains from "cluster_map" and construct their product.
* This mapping can then be applied to the pair of domains.
*/
static __isl_give isl_schedule_constraints *collect_edge_constraints(
struct isl_sched_edge *edge, __isl_keep isl_union_map *cluster_map,
__isl_take isl_schedule_constraints *sc)
{
isl_union_map *umap;
isl_space *space;
isl_union_set *uset;
isl_union_map *umap1, *umap2;
if (!sc)
return NULL;
umap = isl_union_map_from_map(isl_map_copy(edge->map));
umap = isl_union_map_apply_domain(umap,
isl_union_map_copy(cluster_map));
umap = isl_union_map_apply_range(umap,
isl_union_map_copy(cluster_map));
sc = add_non_conditional_constraints(edge, umap, sc);
isl_union_map_free(umap);
if (!sc ||
(!isl_sched_edge_is_condition(edge) &&
!isl_sched_edge_is_conditional_validity(edge)))
return sc;
space = isl_space_domain(isl_map_get_space(edge->map));
uset = isl_union_set_from_set(isl_set_universe(space));
umap1 = isl_union_map_copy(cluster_map);
umap1 = isl_union_map_intersect_domain(umap1, uset);
space = isl_space_range(isl_map_get_space(edge->map));
uset = isl_union_set_from_set(isl_set_universe(space));
umap2 = isl_union_map_copy(cluster_map);
umap2 = isl_union_map_intersect_domain(umap2, uset);
umap = isl_union_map_product(umap1, umap2);
sc = add_conditional_constraints(edge, umap, sc);
isl_union_map_free(umap);
return sc;
}
/* Given a mapping "cluster_map" from the original instances to
* the cluster instances, add schedule constraints on the clusters
* to "sc" corresponding to all edges in "graph" between nodes that
* belong to SCCs that are marked for merging in "scc_in_merge".
*/
static __isl_give isl_schedule_constraints *collect_constraints(
struct isl_sched_graph *graph, int *scc_in_merge,
__isl_keep isl_union_map *cluster_map,
__isl_take isl_schedule_constraints *sc)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
if (!scc_in_merge[edge->src->scc])
continue;
if (!scc_in_merge[edge->dst->scc])
continue;
sc = collect_edge_constraints(edge, cluster_map, sc);
}
return sc;
}
/* Construct a dependence graph for scheduling clusters with respect
* to each other and store the result in "merge_graph".
* In particular, the nodes of the graph correspond to the schedule
* dimensions of the current bands of those clusters that have been
* marked for merging in "c".
*
* First construct an isl_schedule_constraints object for this domain
* by transforming the edges in "graph" to the domain.
* Then initialize a dependence graph for scheduling from these
* constraints.
*/
static isl_stat init_merge_graph(isl_ctx *ctx, struct isl_sched_graph *graph,
struct isl_clustering *c, struct isl_sched_graph *merge_graph)
{
isl_union_set *domain;
isl_union_map *cluster_map;
isl_schedule_constraints *sc;
isl_stat r;
domain = collect_domain(ctx, graph, c);
sc = isl_schedule_constraints_on_domain(domain);
if (!sc)
return isl_stat_error;
cluster_map = collect_cluster_map(ctx, graph, c);
sc = collect_constraints(graph, c->scc_in_merge, cluster_map, sc);
isl_union_map_free(cluster_map);
r = isl_sched_graph_init(merge_graph, sc);
isl_schedule_constraints_free(sc);
return r;
}
/* Compute the maximal number of remaining schedule rows that still need
* to be computed for the nodes that belong to clusters with the maximal
* dimension for the current band (i.e., the band that is to be merged).
* Only clusters that are about to be merged are considered.
* "maxvar" is the maximal dimension for the current band.
* "c" contains information about the clusters.
*
* Return the maximal number of remaining schedule rows or
* isl_size_error on error.
*/
static isl_size compute_maxvar_max_slack(int maxvar, struct isl_clustering *c)
{
int i, j;
int max_slack;
max_slack = 0;
for (i = 0; i < c->n; ++i) {
int nvar;
struct isl_sched_graph *scc;
if (!c->scc_in_merge[i])
continue;
scc = &c->scc[i];
nvar = scc->n_total_row - scc->band_start;
if (nvar != maxvar)
continue;
for (j = 0; j < scc->n; ++j) {
struct isl_sched_node *node = &scc->node[j];
int slack;
if (isl_sched_node_update_vmap(node) < 0)
return isl_size_error;
slack = node->nvar - node->rank;
if (slack > max_slack)
max_slack = slack;
}
}
return max_slack;
}
/* If there are any clusters where the dimension of the current band
* (i.e., the band that is to be merged) is smaller than "maxvar" and
* if there are any nodes in such a cluster where the number
* of remaining schedule rows that still need to be computed
* is greater than "max_slack", then return the smallest current band
* dimension of all these clusters. Otherwise return the original value
* of "maxvar". Return isl_size_error in case of any error.
* Only clusters that are about to be merged are considered.
* "c" contains information about the clusters.
*/
static isl_size limit_maxvar_to_slack(int maxvar, int max_slack,
struct isl_clustering *c)
{
int i, j;
for (i = 0; i < c->n; ++i) {
int nvar;
struct isl_sched_graph *scc;
if (!c->scc_in_merge[i])
continue;
scc = &c->scc[i];
nvar = scc->n_total_row - scc->band_start;
if (nvar >= maxvar)
continue;
for (j = 0; j < scc->n; ++j) {
struct isl_sched_node *node = &scc->node[j];
int slack;
if (isl_sched_node_update_vmap(node) < 0)
return isl_size_error;
slack = node->nvar - node->rank;
if (slack > max_slack) {
maxvar = nvar;
break;
}
}
}
return maxvar;
}
/* Adjust merge_graph->maxvar based on the number of remaining schedule rows
* that still need to be computed. In particular, if there is a node
* in a cluster where the dimension of the current band is smaller
* than merge_graph->maxvar, but the number of remaining schedule rows
* is greater than that of any node in a cluster with the maximal
* dimension for the current band (i.e., merge_graph->maxvar),
* then adjust merge_graph->maxvar to the (smallest) current band dimension
* of those clusters. Without this adjustment, the total number of
* schedule dimensions would be increased, resulting in a skewed view
* of the number of coincident dimensions.
* "c" contains information about the clusters.
*
* If the maximize_band_depth option is set and merge_graph->maxvar is reduced,
* then there is no point in attempting any merge since it will be rejected
* anyway. Set merge_graph->maxvar to zero in such cases.
*/
static isl_stat adjust_maxvar_to_slack(isl_ctx *ctx,
struct isl_sched_graph *merge_graph, struct isl_clustering *c)
{
isl_size max_slack, maxvar;
max_slack = compute_maxvar_max_slack(merge_graph->maxvar, c);
if (max_slack < 0)
return isl_stat_error;
maxvar = limit_maxvar_to_slack(merge_graph->maxvar, max_slack, c);
if (maxvar < 0)
return isl_stat_error;
if (maxvar < merge_graph->maxvar) {
if (isl_options_get_schedule_maximize_band_depth(ctx))
merge_graph->maxvar = 0;
else
merge_graph->maxvar = maxvar;
}
return isl_stat_ok;
}
/* Return the number of coincident dimensions in the current band of "graph",
* where the nodes of "graph" are assumed to be scheduled by a single band.
*/
static int get_n_coincident(struct isl_sched_graph *graph)
{
int i;
for (i = graph->band_start; i < graph->n_total_row; ++i)
if (!graph->node[0].coincident[i])
break;
return i - graph->band_start;
}
/* Should the clusters be merged based on the cluster schedule
* in the current (and only) band of "merge_graph", given that
* coincidence should be maximized?
*
* If the number of coincident schedule dimensions in the merged band
* would be less than the maximal number of coincident schedule dimensions
* in any of the merged clusters, then the clusters should not be merged.
*/
static isl_bool ok_to_merge_coincident(struct isl_clustering *c,
struct isl_sched_graph *merge_graph)
{
int i;
int n_coincident;
int max_coincident;
max_coincident = 0;
for (i = 0; i < c->n; ++i) {
if (!c->scc_in_merge[i])
continue;
n_coincident = get_n_coincident(&c->scc[i]);
if (n_coincident > max_coincident)
max_coincident = n_coincident;
}
n_coincident = get_n_coincident(merge_graph);
return isl_bool_ok(n_coincident >= max_coincident);
}
/* Return the transformation on "node" expressed by the current (and only)
* band of "merge_graph" applied to the clusters in "c".
*
* First find the representation of "node" in its SCC in "c" and
* extract the transformation expressed by the current band.
* Then extract the transformation applied by "merge_graph"
* to the cluster to which this SCC belongs.
* Combine the two to obtain the complete transformation on the node.
*
* Note that the range of the first transformation is an anonymous space,
* while the domain of the second is named "cluster_X". The range
* of the former therefore needs to be adjusted before the two
* can be combined.
*/
static __isl_give isl_map *extract_node_transformation(isl_ctx *ctx,
struct isl_sched_node *node, struct isl_clustering *c,
struct isl_sched_graph *merge_graph)
{
struct isl_sched_node *scc_node, *cluster_node;
int start, n;
isl_id *id;
isl_space *space;
isl_multi_aff *ma, *ma2;
scc_node = isl_sched_graph_find_node(ctx, &c->scc[node->scc],
node->space);
if (scc_node && !isl_sched_graph_is_node(&c->scc[node->scc], scc_node))
isl_die(ctx, isl_error_internal, "unable to find node",
return NULL);
start = c->scc[node->scc].band_start;
n = c->scc[node->scc].n_total_row - start;
ma = isl_sched_node_extract_partial_schedule_multi_aff(scc_node,
start, n);
space = cluster_space(&c->scc[node->scc], c->scc_cluster[node->scc]);
cluster_node = isl_sched_graph_find_node(ctx, merge_graph, space);
if (cluster_node && !isl_sched_graph_is_node(merge_graph, cluster_node))
isl_die(ctx, isl_error_internal, "unable to find cluster",
space = isl_space_free(space));
id = isl_space_get_tuple_id(space, isl_dim_set);
ma = isl_multi_aff_set_tuple_id(ma, isl_dim_out, id);
isl_space_free(space);
n = merge_graph->n_total_row;
ma2 = isl_sched_node_extract_partial_schedule_multi_aff(cluster_node,
0, n);
ma = isl_multi_aff_pullback_multi_aff(ma2, ma);
return isl_map_from_multi_aff(ma);
}
/* Give a set of distances "set", are they bounded by a small constant
* in direction "pos"?
* In practice, check if they are bounded by 2 by checking that there
* are no elements with a value greater than or equal to 3 or
* smaller than or equal to -3.
*/
static isl_bool distance_is_bounded(__isl_keep isl_set *set, int pos)
{
isl_bool bounded;
isl_set *test;
if (!set)
return isl_bool_error;
test = isl_set_copy(set);
test = isl_set_lower_bound_si(test, isl_dim_set, pos, 3);
bounded = isl_set_is_empty(test);
isl_set_free(test);
if (bounded < 0 || !bounded)
return bounded;
test = isl_set_copy(set);
test = isl_set_upper_bound_si(test, isl_dim_set, pos, -3);
bounded = isl_set_is_empty(test);
isl_set_free(test);
return bounded;
}
/* Does the set "set" have a fixed (but possible parametric) value
* at dimension "pos"?
*/
static isl_bool has_single_value(__isl_keep isl_set *set, int pos)
{
isl_size n;
isl_bool single;
n = isl_set_dim(set, isl_dim_set);
if (n < 0)
return isl_bool_error;
set = isl_set_copy(set);
set = isl_set_project_out(set, isl_dim_set, pos + 1, n - (pos + 1));
set = isl_set_project_out(set, isl_dim_set, 0, pos);
single = isl_set_is_singleton(set);
isl_set_free(set);
return single;
}
/* Does "map" have a fixed (but possible parametric) value
* at dimension "pos" of either its domain or its range?
*/
static isl_bool has_singular_src_or_dst(__isl_keep isl_map *map, int pos)
{
isl_set *set;
isl_bool single;
set = isl_map_domain(isl_map_copy(map));
single = has_single_value(set, pos);
isl_set_free(set);
if (single < 0 || single)
return single;
set = isl_map_range(isl_map_copy(map));
single = has_single_value(set, pos);
isl_set_free(set);
return single;
}
/* Does the edge "edge" from "graph" have bounded dependence distances
* in the merged graph "merge_graph" of a selection of clusters in "c"?
*
* Extract the complete transformations of the source and destination
* nodes of the edge, apply them to the edge constraints and
* compute the differences. Finally, check if these differences are bounded
* in each direction.
*
* If the dimension of the band is greater than the number of
* dimensions that can be expected to be optimized by the edge
* (based on its weight), then also allow the differences to be unbounded
* in the remaining dimensions, but only if either the source or
* the destination has a fixed value in that direction.
* This allows a statement that produces values that are used by
* several instances of another statement to be merged with that
* other statement.
* However, merging such clusters will introduce an inherently
* large proximity distance inside the merged cluster, meaning
* that proximity distances will no longer be optimized in
* subsequent merges. These merges are therefore only allowed
* after all other possible merges have been tried.
* The first time such a merge is encountered, the weight of the edge
* is replaced by a negative weight. The second time (i.e., after
* all merges over edges with a non-negative weight have been tried),
* the merge is allowed.
*/
static isl_bool has_bounded_distances(isl_ctx *ctx, struct isl_sched_edge *edge,
struct isl_sched_graph *graph, struct isl_clustering *c,
struct isl_sched_graph *merge_graph)
{
int i, n_slack;
isl_size n;
isl_bool bounded;
isl_map *map, *t;
isl_set *dist;
map = isl_map_copy(edge->map);
t = extract_node_transformation(ctx, edge->src, c, merge_graph);
map = isl_map_apply_domain(map, t);
t = extract_node_transformation(ctx, edge->dst, c, merge_graph);
map = isl_map_apply_range(map, t);
dist = isl_map_deltas(isl_map_copy(map));
bounded = isl_bool_true;
n = isl_set_dim(dist, isl_dim_set);
if (n < 0)
goto error;
n_slack = n - edge->weight;
if (edge->weight < 0)
n_slack -= graph->max_weight + 1;
for (i = 0; i < n; ++i) {
isl_bool bounded_i, singular_i;
bounded_i = distance_is_bounded(dist, i);
if (bounded_i < 0)
goto error;
if (bounded_i)
continue;
if (edge->weight >= 0)
bounded = isl_bool_false;
n_slack--;
if (n_slack < 0)
break;
singular_i = has_singular_src_or_dst(map, i);
if (singular_i < 0)
goto error;
if (singular_i)
continue;
bounded = isl_bool_false;
break;
}
if (!bounded && i >= n && edge->weight >= 0)
edge->weight -= graph->max_weight + 1;
isl_map_free(map);
isl_set_free(dist);
return bounded;
error:
isl_map_free(map);
isl_set_free(dist);
return isl_bool_error;
}
/* Should the clusters be merged based on the cluster schedule
* in the current (and only) band of "merge_graph"?
* "graph" is the original dependence graph, while "c" records
* which SCCs are involved in the latest merge.
*
* In particular, is there at least one proximity constraint
* that is optimized by the merge?
*
* A proximity constraint is considered to be optimized
* if the dependence distances are small.
*/
static isl_bool ok_to_merge_proximity(isl_ctx *ctx,
struct isl_sched_graph *graph, struct isl_clustering *c,
struct isl_sched_graph *merge_graph)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
isl_bool bounded;
if (!isl_sched_edge_is_proximity(edge))
continue;
if (!c->scc_in_merge[edge->src->scc])
continue;
if (!c->scc_in_merge[edge->dst->scc])
continue;
if (c->scc_cluster[edge->dst->scc] ==
c->scc_cluster[edge->src->scc])
continue;
bounded = has_bounded_distances(ctx, edge, graph, c,
merge_graph);
if (bounded < 0 || bounded)
return bounded;
}
return isl_bool_false;
}
/* Should the clusters be merged based on the cluster schedule
* in the current (and only) band of "merge_graph"?
* "graph" is the original dependence graph, while "c" records
* which SCCs are involved in the latest merge.
*
* If the current band is empty, then the clusters should not be merged.
*
* If the band depth should be maximized and the merge schedule
* is incomplete (meaning that the dimension of some of the schedule
* bands in the original schedule will be reduced), then the clusters
* should not be merged.
*
* If the schedule_maximize_coincidence option is set, then check that
* the number of coincident schedule dimensions is not reduced.
*
* Finally, only allow the merge if at least one proximity
* constraint is optimized.
*/
static isl_bool ok_to_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
struct isl_clustering *c, struct isl_sched_graph *merge_graph)
{
if (merge_graph->n_total_row == merge_graph->band_start)
return isl_bool_false;
if (isl_options_get_schedule_maximize_band_depth(ctx) &&
merge_graph->n_total_row < merge_graph->maxvar)
return isl_bool_false;
if (isl_options_get_schedule_maximize_coincidence(ctx)) {
isl_bool ok;
ok = ok_to_merge_coincident(c, merge_graph);
if (ok < 0 || !ok)
return ok;
}
return ok_to_merge_proximity(ctx, graph, c, merge_graph);
}
/* Apply the schedule in "t_node" to the "n" rows starting at "first"
* of the schedule in "node" and return the result.
*
* That is, essentially compute
*
* T * N(first:first+n-1)
*
* taking into account the constant term and the parameter coefficients
* in "t_node".
*/
static __isl_give isl_mat *node_transformation(isl_ctx *ctx,
struct isl_sched_node *t_node, struct isl_sched_node *node,
int first, int n)
{
int i, j;
isl_mat *t;
isl_size n_row, n_col;
int n_param, n_var;
n_param = node->nparam;
n_var = node->nvar;
n_row = isl_mat_rows(t_node->sched);
n_col = isl_mat_cols(node->sched);
if (n_row < 0 || n_col < 0)
return NULL;
t = isl_mat_alloc(ctx, n_row, n_col);
if (!t)
return NULL;
for (i = 0; i < n_row; ++i) {
isl_seq_cpy(t->row[i], t_node->sched->row[i], 1 + n_param);
isl_seq_clr(t->row[i] + 1 + n_param, n_var);
for (j = 0; j < n; ++j)
isl_seq_addmul(t->row[i],
t_node->sched->row[i][1 + n_param + j],
node->sched->row[first + j],
1 + n_param + n_var);
}
return t;
}
/* Apply the cluster schedule in "t_node" to the current band
* schedule of the nodes in "graph".
*
* In particular, replace the rows starting at band_start
* by the result of applying the cluster schedule in "t_node"
* to the original rows.
*
* The coincidence of the schedule is determined by the coincidence
* of the cluster schedule.
*/
static isl_stat transform(isl_ctx *ctx, struct isl_sched_graph *graph,
struct isl_sched_node *t_node)
{
int i, j;
isl_size n_new;
int start, n;
start = graph->band_start;
n = graph->n_total_row - start;
n_new = isl_mat_rows(t_node->sched);
if (n_new < 0)
return isl_stat_error;
for (i = 0; i < graph->n; ++i) {
struct isl_sched_node *node = &graph->node[i];
isl_mat *t;
t = node_transformation(ctx, t_node, node, start, n);
node->sched = isl_mat_drop_rows(node->sched, start, n);
node->sched = isl_mat_concat(node->sched, t);
node->sched_map = isl_map_free(node->sched_map);
if (!node->sched)
return isl_stat_error;
for (j = 0; j < n_new; ++j)
node->coincident[start + j] = t_node->coincident[j];
}
graph->n_total_row -= n;
graph->n_row -= n;
graph->n_total_row += n_new;
graph->n_row += n_new;
return isl_stat_ok;
}
/* Merge the clusters marked for merging in "c" into a single
* cluster using the cluster schedule in the current band of "merge_graph".
* The representative SCC for the new cluster is the SCC with
* the smallest index.
*
* The current band schedule of each SCC in the new cluster is obtained
* by applying the schedule of the corresponding original cluster
* to the original band schedule.
* All SCCs in the new cluster have the same number of schedule rows.
*/
static isl_stat merge(isl_ctx *ctx, struct isl_clustering *c,
struct isl_sched_graph *merge_graph)
{
int i;
int cluster = -1;
isl_space *space;
for (i = 0; i < c->n; ++i) {
struct isl_sched_node *node;
if (!c->scc_in_merge[i])
continue;
if (cluster < 0)
cluster = i;
space = cluster_space(&c->scc[i], c->scc_cluster[i]);
node = isl_sched_graph_find_node(ctx, merge_graph, space);
isl_space_free(space);
if (!node)
return isl_stat_error;
if (!isl_sched_graph_is_node(merge_graph, node))
isl_die(ctx, isl_error_internal,
"unable to find cluster",
return isl_stat_error);
if (transform(ctx, &c->scc[i], node) < 0)
return isl_stat_error;
c->scc_cluster[i] = cluster;
}
return isl_stat_ok;
}
/* Try and merge the clusters of SCCs marked in c->scc_in_merge
* by scheduling the current cluster bands with respect to each other.
*
* Construct a dependence graph with a space for each cluster and
* with the coordinates of each space corresponding to the schedule
* dimensions of the current band of that cluster.
* Construct a cluster schedule in this cluster dependence graph and
* apply it to the current cluster bands if it is applicable
* according to ok_to_merge.
*
* If the number of remaining schedule dimensions in a cluster
* with a non-maximal current schedule dimension is greater than
* the number of remaining schedule dimensions in clusters
* with a maximal current schedule dimension, then restrict
* the number of rows to be computed in the cluster schedule
* to the minimal such non-maximal current schedule dimension.
* Do this by adjusting merge_graph.maxvar.
*
* Return isl_bool_true if the clusters have effectively been merged
* into a single cluster.
*
* Note that since the standard scheduling algorithm minimizes the maximal
* distance over proximity constraints, the proximity constraints between
* the merged clusters may not be optimized any further than what is
* sufficient to bring the distances within the limits of the internal
* proximity constraints inside the individual clusters.
* It may therefore make sense to perform an additional translation step
* to bring the clusters closer to each other, while maintaining
* the linear part of the merging schedule found using the standard
* scheduling algorithm.
*/
static isl_bool try_merge(isl_ctx *ctx, struct isl_sched_graph *graph,
struct isl_clustering *c)
{
struct isl_sched_graph merge_graph = { 0 };
isl_bool merged;
if (init_merge_graph(ctx, graph, c, &merge_graph) < 0)
goto error;
if (isl_sched_graph_compute_maxvar(&merge_graph) < 0)
goto error;
if (adjust_maxvar_to_slack(ctx, &merge_graph,c) < 0)
goto error;
if (isl_schedule_node_compute_wcc_band(ctx, &merge_graph) < 0)
goto error;
merged = ok_to_merge(ctx, graph, c, &merge_graph);
if (merged && merge(ctx, c, &merge_graph) < 0)
goto error;
isl_sched_graph_free(ctx, &merge_graph);
return merged;
error:
isl_sched_graph_free(ctx, &merge_graph);
return isl_bool_error;
}
/* Is there any edge marked "no_merge" between two SCCs that are
* about to be merged (i.e., that are set in "scc_in_merge")?
* "merge_edge" is the proximity edge along which the clusters of SCCs
* are going to be merged.
*
* If there is any edge between two SCCs with a negative weight,
* while the weight of "merge_edge" is non-negative, then this
* means that the edge was postponed. "merge_edge" should then
* also be postponed since merging along the edge with negative weight should
* be postponed until all edges with non-negative weight have been tried.
* Replace the weight of "merge_edge" by a negative weight as well and
* tell the caller not to attempt a merge.
*/
static int any_no_merge(struct isl_sched_graph *graph, int *scc_in_merge,
struct isl_sched_edge *merge_edge)
{
int i;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
if (!scc_in_merge[edge->src->scc])
continue;
if (!scc_in_merge[edge->dst->scc])
continue;
if (edge->no_merge)
return 1;
if (merge_edge->weight >= 0 && edge->weight < 0) {
merge_edge->weight -= graph->max_weight + 1;
return 1;
}
}
return 0;
}
/* Merge the two clusters in "c" connected by the edge in "graph"
* with index "edge" into a single cluster.
* If it turns out to be impossible to merge these two clusters,
* then mark the edge as "no_merge" such that it will not be
* considered again.
*
* First mark all SCCs that need to be merged. This includes the SCCs
* in the two clusters, but it may also include the SCCs
* of intermediate clusters.
* If there is already a no_merge edge between any pair of such SCCs,
* then simply mark the current edge as no_merge as well.
* Likewise, if any of those edges was postponed by has_bounded_distances,
* then postpone the current edge as well.
* Otherwise, try and merge the clusters and mark "edge" as "no_merge"
* if the clusters did not end up getting merged, unless the non-merge
* is due to the fact that the edge was postponed. This postponement
* can be recognized by a change in weight (from non-negative to negative).
*/
static isl_stat merge_clusters_along_edge(isl_ctx *ctx,
struct isl_sched_graph *graph, int edge, struct isl_clustering *c)
{
isl_bool merged;
int edge_weight = graph->edge[edge].weight;
if (mark_merge_sccs(ctx, graph, edge, c) < 0)
return isl_stat_error;
if (any_no_merge(graph, c->scc_in_merge, &graph->edge[edge]))
merged = isl_bool_false;
else
merged = try_merge(ctx, graph, c);
if (merged < 0)
return isl_stat_error;
if (!merged && edge_weight == graph->edge[edge].weight)
graph->edge[edge].no_merge = 1;
return isl_stat_ok;
}
/* Does "node" belong to the cluster identified by "cluster"?
*/
static int node_cluster_exactly(struct isl_sched_node *node, int cluster)
{
return node->cluster == cluster;
}
/* Does "edge" connect two nodes belonging to the cluster
* identified by "cluster"?
*/
static int edge_cluster_exactly(struct isl_sched_edge *edge, int cluster)
{
return edge->src->cluster == cluster && edge->dst->cluster == cluster;
}
/* Swap the schedule of "node1" and "node2".
* Both nodes have been derived from the same node in a common parent graph.
* Since the "coincident" field is shared with that node
* in the parent graph, there is no need to also swap this field.
*/
static void swap_sched(struct isl_sched_node *node1,
struct isl_sched_node *node2)
{
isl_mat *sched;
isl_map *sched_map;
sched = node1->sched;
node1->sched = node2->sched;
node2->sched = sched;
sched_map = node1->sched_map;
node1->sched_map = node2->sched_map;
node2->sched_map = sched_map;
}
/* Copy the current band schedule from the SCCs that form the cluster
* with index "pos" to the actual cluster at position "pos".
* By construction, the index of the first SCC that belongs to the cluster
* is also "pos".
*
* The order of the nodes inside both the SCCs and the cluster
* is assumed to be same as the order in the original "graph".
*
* Since the SCC graphs will no longer be used after this function,
* the schedules are actually swapped rather than copied.
*/
static isl_stat copy_partial(struct isl_sched_graph *graph,
struct isl_clustering *c, int pos)
{
int i, j;
c->cluster[pos].n_total_row = c->scc[pos].n_total_row;
c->cluster[pos].n_row = c->scc[pos].n_row;
c->cluster[pos].maxvar = c->scc[pos].maxvar;
j = 0;
for (i = 0; i < graph->n; ++i) {
int k;
int s;
if (graph->node[i].cluster != pos)
continue;
s = graph->node[i].scc;
k = c->scc_node[s]++;
swap_sched(&c->cluster[pos].node[j], &c->scc[s].node[k]);
if (c->scc[s].maxvar > c->cluster[pos].maxvar)
c->cluster[pos].maxvar = c->scc[s].maxvar;
++j;
}
return isl_stat_ok;
}
/* Is there a (conditional) validity dependence from node[j] to node[i],
* forcing node[i] to follow node[j] or do the nodes belong to the same
* cluster?
*/
static isl_bool node_follows_strong_or_same_cluster(int i, int j, void *user)
{
struct isl_sched_graph *graph = user;
if (graph->node[i].cluster == graph->node[j].cluster)
return isl_bool_true;
return isl_sched_graph_has_validity_edge(graph, &graph->node[j],
&graph->node[i]);
}
/* Extract the merged clusters of SCCs in "graph", sort them, and
* store them in c->clusters. Update c->scc_cluster accordingly.
*
* First keep track of the cluster containing the SCC to which a node
* belongs in the node itself.
* Then extract the clusters into c->clusters, copying the current
* band schedule from the SCCs that belong to the cluster.
* Do this only once per cluster.
*
* Finally, topologically sort the clusters and update c->scc_cluster
* to match the new scc numbering. While the SCCs were originally
* sorted already, some SCCs that depend on some other SCCs may
* have been merged with SCCs that appear before these other SCCs.
* A reordering may therefore be required.
*/
static isl_stat extract_clusters(isl_ctx *ctx, struct isl_sched_graph *graph,
struct isl_clustering *c)
{
int i;
for (i = 0; i < graph->n; ++i)
graph->node[i].cluster = c->scc_cluster[graph->node[i].scc];
for (i = 0; i < graph->scc; ++i) {
if (c->scc_cluster[i] != i)
continue;
if (isl_sched_graph_extract_sub_graph(ctx, graph,
&node_cluster_exactly,
&edge_cluster_exactly, i, &c->cluster[i]) < 0)
return isl_stat_error;
c->cluster[i].src_scc = -1;
c->cluster[i].dst_scc = -1;
if (copy_partial(graph, c, i) < 0)
return isl_stat_error;
}
if (isl_sched_graph_detect_ccs(ctx, graph,
&node_follows_strong_or_same_cluster) < 0)
return isl_stat_error;
for (i = 0; i < graph->n; ++i)
c->scc_cluster[graph->node[i].scc] = graph->node[i].cluster;
return isl_stat_ok;
}
/* Compute weights on the proximity edges of "graph" that can
* be used by find_proximity to find the most appropriate
* proximity edge to use to merge two clusters in "c".
* The weights are also used by has_bounded_distances to determine
* whether the merge should be allowed.
* Store the maximum of the computed weights in graph->max_weight.
*
* The computed weight is a measure for the number of remaining schedule
* dimensions that can still be completely aligned.
* In particular, compute the number of equalities between
* input dimensions and output dimensions in the proximity constraints.
* The directions that are already handled by outer schedule bands
* are projected out prior to determining this number.
*
* Edges that will never be considered by find_proximity are ignored.
*/
static isl_stat compute_weights(struct isl_sched_graph *graph,
struct isl_clustering *c)
{
int i;
graph->max_weight = 0;
for (i = 0; i < graph->n_edge; ++i) {
struct isl_sched_edge *edge = &graph->edge[i];
struct isl_sched_node *src = edge->src;
struct isl_sched_node *dst = edge->dst;
isl_basic_map *hull;
isl_bool prox;
isl_size n_in, n_out, n;
prox = is_non_empty_proximity(edge);
if (prox < 0)
return isl_stat_error;
if (!prox)
continue;
if (bad_cluster(&c->scc[edge->src->scc]) ||
bad_cluster(&c->scc[edge->dst->scc]))
continue;
if (c->scc_cluster[edge->dst->scc] ==
c->scc_cluster[edge->src->scc])
continue;
hull = isl_map_affine_hull(isl_map_copy(edge->map));
hull = isl_basic_map_transform_dims(hull, isl_dim_in, 0,
isl_mat_copy(src->vmap));
hull = isl_basic_map_transform_dims(hull, isl_dim_out, 0,
isl_mat_copy(dst->vmap));
hull = isl_basic_map_project_out(hull,
isl_dim_in, 0, src->rank);
hull = isl_basic_map_project_out(hull,
isl_dim_out, 0, dst->rank);
hull = isl_basic_map_remove_divs(hull);
n_in = isl_basic_map_dim(hull, isl_dim_in);
n_out = isl_basic_map_dim(hull, isl_dim_out);
if (n_in < 0 || n_out < 0)
hull = isl_basic_map_free(hull);
hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
isl_dim_in, 0, n_in);
hull = isl_basic_map_drop_constraints_not_involving_dims(hull,
isl_dim_out, 0, n_out);
n = isl_basic_map_n_equality(hull);
isl_basic_map_free(hull);
if (n < 0)
return isl_stat_error;
edge->weight = n;
if (edge->weight > graph->max_weight)
graph->max_weight = edge->weight;
}
return isl_stat_ok;
}
/* Call isl_schedule_node_compute_finish_band on each of the clusters in "c" and
* update "node" to arrange for them to be executed in an order
* possibly involving set nodes that generalizes the topological order
* determined by the scc fields of the nodes in "graph".
*
* Note that at this stage, there are graph->scc clusters and
* their positions in c->cluster are determined by the values
* of c->scc_cluster.
*
* Construct an isl_scc_graph and perform the decomposition
* using this graph.
*/
static __isl_give isl_schedule_node *finish_bands_decompose(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
struct isl_clustering *c)
{
isl_ctx *ctx;
struct isl_scc_graph *scc_graph;
ctx = isl_schedule_node_get_ctx(node);
scc_graph = isl_scc_graph_from_sched_graph(ctx, graph, c);
node = isl_scc_graph_decompose(scc_graph, node);
isl_scc_graph_free(scc_graph);
return node;
}
/* Call isl_schedule_node_compute_finish_band on each of the clusters in "c"
* in their topological order. This order is determined by the scc
* fields of the nodes in "graph".
* Combine the results in a sequence expressing the topological order.
*
* If there is only one cluster left, then there is no need to introduce
* a sequence node. Also, in this case, the cluster necessarily contains
* the SCC at position 0 in the original graph and is therefore also
* stored in the first cluster of "c".
*
* If there are more than two clusters left, then some subsets of the clusters
* may still be independent of each other. These could then still
* be reordered with respect to each other. Call finish_bands_decompose
* to try and construct an ordering involving set and sequence nodes
* that generalizes the topological order.
* Note that at the outermost level there can be no independent components
* because isl_schedule_node_compute_wcc_clustering is called
* on a (weakly) connected component.
*/
static __isl_give isl_schedule_node *finish_bands_clustering(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph,
struct isl_clustering *c)
{
int i;
isl_ctx *ctx;
isl_union_set_list *filters;
if (graph->scc == 1)
return isl_schedule_node_compute_finish_band(node,
&c->cluster[0], 0);
if (graph->scc > 2)
return finish_bands_decompose(node, graph, c);
ctx = isl_schedule_node_get_ctx(node);
filters = isl_sched_graph_extract_sccs(ctx, graph);
node = isl_schedule_node_insert_sequence(node, filters);
for (i = 0; i < graph->scc; ++i) {
int j = c->scc_cluster[i];
node = isl_schedule_node_grandchild(node, i, 0);
node = isl_schedule_node_compute_finish_band(node,
&c->cluster[j], 0);
node = isl_schedule_node_grandparent(node);
}
return node;
}
/* Compute a schedule for a connected dependence graph by first considering
* each strongly connected component (SCC) in the graph separately and then
* incrementally combining them into clusters.
* Return the updated schedule node.
*
* Initially, each cluster consists of a single SCC, each with its
* own band schedule. The algorithm then tries to merge pairs
* of clusters along a proximity edge until no more suitable
* proximity edges can be found. During this merging, the schedule
* is maintained in the individual SCCs.
* After the merging is completed, the full resulting clusters
* are extracted and in finish_bands_clustering,
* isl_schedule_node_compute_finish_band is called on each of them to integrate
* the band into "node" and to continue the computation.
*
* compute_weights initializes the weights that are used by find_proximity.
*/
__isl_give isl_schedule_node *isl_schedule_node_compute_wcc_clustering(
__isl_take isl_schedule_node *node, struct isl_sched_graph *graph)
{
isl_ctx *ctx;
struct isl_clustering c;
int i;
ctx = isl_schedule_node_get_ctx(node);
if (clustering_init(ctx, &c, graph) < 0)
goto error;
if (compute_weights(graph, &c) < 0)
goto error;
for (;;) {
i = find_proximity(graph, &c);
if (i < 0)
goto error;
if (i >= graph->n_edge)
break;
if (merge_clusters_along_edge(ctx, graph, i, &c) < 0)
goto error;
}
if (extract_clusters(ctx, graph, &c) < 0)
goto error;
node = finish_bands_clustering(node, graph, &c);
clustering_free(ctx, &c);
return node;
error:
clustering_free(ctx, &c);
return isl_schedule_node_free(node);
}
|