| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 
 | //===-- xray_basic_logging.cpp ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of a simple in-memory log of XRay events. This defines a
// logging function that's compatible with the XRay handler interface, and
// routines for exporting data to files.
//
//===----------------------------------------------------------------------===//
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/stat.h>
#if SANITIZER_FREEBSD || SANITIZER_NETBSD || SANITIZER_APPLE
#include <sys/syscall.h>
#endif
#include <sys/types.h>
#include <time.h>
#include <unistd.h>
#include "sanitizer_common/sanitizer_allocator_internal.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "xray/xray_records.h"
#include "xray_recursion_guard.h"
#include "xray_basic_flags.h"
#include "xray_basic_logging.h"
#include "xray_defs.h"
#include "xray_flags.h"
#include "xray_interface_internal.h"
#include "xray_tsc.h"
#include "xray_utils.h"
namespace __xray {
static SpinMutex LogMutex;
namespace {
// We use elements of this type to record the entry TSC of every function ID we
// see as we're tracing a particular thread's execution.
struct alignas(16) StackEntry {
  int32_t FuncId;
  uint16_t Type;
  uint8_t CPU;
  uint8_t Padding;
  uint64_t TSC;
};
static_assert(sizeof(StackEntry) == 16, "Wrong size for StackEntry");
struct XRAY_TLS_ALIGNAS(64) ThreadLocalData {
  void *InMemoryBuffer = nullptr;
  size_t BufferSize = 0;
  size_t BufferOffset = 0;
  void *ShadowStack = nullptr;
  size_t StackSize = 0;
  size_t StackEntries = 0;
  __xray::LogWriter *LogWriter = nullptr;
};
struct BasicLoggingOptions {
  int DurationFilterMicros = 0;
  size_t MaxStackDepth = 0;
  size_t ThreadBufferSize = 0;
};
} // namespace
static pthread_key_t PThreadKey;
static atomic_uint8_t BasicInitialized{0};
struct BasicLoggingOptions GlobalOptions;
thread_local atomic_uint8_t Guard{0};
static atomic_uint8_t UseRealTSC{0};
static atomic_uint64_t ThresholdTicks{0};
static atomic_uint64_t TicksPerSec{0};
static atomic_uint64_t CycleFrequency{NanosecondsPerSecond};
static LogWriter *getLog() XRAY_NEVER_INSTRUMENT {
  LogWriter* LW = LogWriter::Open();
  if (LW == nullptr)
    return LW;
  static pthread_once_t DetectOnce = PTHREAD_ONCE_INIT;
  pthread_once(&DetectOnce, +[] {
    if (atomic_load(&UseRealTSC, memory_order_acquire))
      atomic_store(&CycleFrequency, getTSCFrequency(), memory_order_release);
  });
  // Since we're here, we get to write the header. We set it up so that the
  // header will only be written once, at the start, and let the threads
  // logging do writes which just append.
  XRayFileHeader Header;
  // Version 2 includes tail exit records.
  // Version 3 includes pid inside records.
  Header.Version = 3;
  Header.Type = FileTypes::NAIVE_LOG;
  Header.CycleFrequency = atomic_load(&CycleFrequency, memory_order_acquire);
  // FIXME: Actually check whether we have 'constant_tsc' and 'nonstop_tsc'
  // before setting the values in the header.
  Header.ConstantTSC = 1;
  Header.NonstopTSC = 1;
  LW->WriteAll(reinterpret_cast<char *>(&Header),
               reinterpret_cast<char *>(&Header) + sizeof(Header));
  return LW;
}
static LogWriter *getGlobalLog() XRAY_NEVER_INSTRUMENT {
  static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
  static LogWriter *LW = nullptr;
  pthread_once(&OnceInit, +[] { LW = getLog(); });
  return LW;
}
static ThreadLocalData &getThreadLocalData() XRAY_NEVER_INSTRUMENT {
  thread_local ThreadLocalData TLD;
  thread_local bool UNUSED TOnce = [] {
    if (GlobalOptions.ThreadBufferSize == 0) {
      if (Verbosity())
        Report("Not initializing TLD since ThreadBufferSize == 0.\n");
      return false;
    }
    pthread_setspecific(PThreadKey, &TLD);
    TLD.LogWriter = getGlobalLog();
    TLD.InMemoryBuffer = reinterpret_cast<XRayRecord *>(
        InternalAlloc(sizeof(XRayRecord) * GlobalOptions.ThreadBufferSize,
                      nullptr, alignof(XRayRecord)));
    TLD.BufferSize = GlobalOptions.ThreadBufferSize;
    TLD.BufferOffset = 0;
    if (GlobalOptions.MaxStackDepth == 0) {
      if (Verbosity())
        Report("Not initializing the ShadowStack since MaxStackDepth == 0.\n");
      TLD.StackSize = 0;
      TLD.StackEntries = 0;
      TLD.ShadowStack = nullptr;
      return false;
    }
    TLD.ShadowStack = reinterpret_cast<StackEntry *>(
        InternalAlloc(sizeof(StackEntry) * GlobalOptions.MaxStackDepth, nullptr,
                      alignof(StackEntry)));
    TLD.StackSize = GlobalOptions.MaxStackDepth;
    TLD.StackEntries = 0;
    return false;
  }();
  return TLD;
}
template <class RDTSC>
void InMemoryRawLog(int32_t FuncId, XRayEntryType Type,
                    RDTSC ReadTSC) XRAY_NEVER_INSTRUMENT {
  auto &TLD = getThreadLocalData();
  LogWriter *LW = getGlobalLog();
  if (LW == nullptr)
    return;
  // Use a simple recursion guard, to handle cases where we're already logging
  // and for one reason or another, this function gets called again in the same
  // thread.
  RecursionGuard G(Guard);
  if (!G)
    return;
  uint8_t CPU = 0;
  uint64_t TSC = ReadTSC(CPU);
  switch (Type) {
  case XRayEntryType::ENTRY:
  case XRayEntryType::LOG_ARGS_ENTRY: {
    // Short circuit if we've reached the maximum depth of the stack.
    if (TLD.StackEntries++ >= TLD.StackSize)
      return;
    // When we encounter an entry event, we keep track of the TSC and the CPU,
    // and put it in the stack.
    StackEntry E;
    E.FuncId = FuncId;
    E.CPU = CPU;
    E.Type = Type;
    E.TSC = TSC;
    auto StackEntryPtr = static_cast<char *>(TLD.ShadowStack) +
                         (sizeof(StackEntry) * (TLD.StackEntries - 1));
    internal_memcpy(StackEntryPtr, &E, sizeof(StackEntry));
    break;
  }
  case XRayEntryType::EXIT:
  case XRayEntryType::TAIL: {
    if (TLD.StackEntries == 0)
      break;
    if (--TLD.StackEntries >= TLD.StackSize)
      return;
    // When we encounter an exit event, we check whether all the following are
    // true:
    //
    // - The Function ID is the same as the most recent entry in the stack.
    // - The CPU is the same as the most recent entry in the stack.
    // - The Delta of the TSCs is less than the threshold amount of time we're
    //   looking to record.
    //
    // If all of these conditions are true, we pop the stack and don't write a
    // record and move the record offset back.
    StackEntry StackTop;
    auto StackEntryPtr = static_cast<char *>(TLD.ShadowStack) +
                         (sizeof(StackEntry) * TLD.StackEntries);
    internal_memcpy(&StackTop, StackEntryPtr, sizeof(StackEntry));
    if (StackTop.FuncId == FuncId && StackTop.CPU == CPU &&
        StackTop.TSC < TSC) {
      auto Delta = TSC - StackTop.TSC;
      if (Delta < atomic_load(&ThresholdTicks, memory_order_relaxed)) {
        DCHECK(TLD.BufferOffset > 0);
        TLD.BufferOffset -= StackTop.Type == XRayEntryType::ENTRY ? 1 : 2;
        return;
      }
    }
    break;
  }
  default:
    // Should be unreachable.
    DCHECK(false && "Unsupported XRayEntryType encountered.");
    break;
  }
  // First determine whether the delta between the function's enter record and
  // the exit record is higher than the threshold.
  XRayRecord R;
  R.RecordType = RecordTypes::NORMAL;
  R.CPU = CPU;
  R.TSC = TSC;
  R.TId = GetTid(); 
  R.PId = internal_getpid(); 
  R.Type = Type;
  R.FuncId = FuncId;
  auto FirstEntry = reinterpret_cast<XRayRecord *>(TLD.InMemoryBuffer);
  internal_memcpy(FirstEntry + TLD.BufferOffset, &R, sizeof(R));
  if (++TLD.BufferOffset == TLD.BufferSize) {
    SpinMutexLock Lock(&LogMutex);
    LW->WriteAll(reinterpret_cast<char *>(FirstEntry),
                 reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
    TLD.BufferOffset = 0;
    TLD.StackEntries = 0;
  }
}
template <class RDTSC>
void InMemoryRawLogWithArg(int32_t FuncId, XRayEntryType Type, uint64_t Arg1,
                           RDTSC ReadTSC) XRAY_NEVER_INSTRUMENT {
  auto &TLD = getThreadLocalData();
  auto FirstEntry =
      reinterpret_cast<XRayArgPayload *>(TLD.InMemoryBuffer);
  const auto &BuffLen = TLD.BufferSize;
  LogWriter *LW = getGlobalLog();
  if (LW == nullptr)
    return;
  // First we check whether there's enough space to write the data consecutively
  // in the thread-local buffer. If not, we first flush the buffer before
  // attempting to write the two records that must be consecutive.
  if (TLD.BufferOffset + 2 > BuffLen) {
    SpinMutexLock Lock(&LogMutex);
    LW->WriteAll(reinterpret_cast<char *>(FirstEntry),
                 reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
    TLD.BufferOffset = 0;
    TLD.StackEntries = 0;
  }
  // Then we write the "we have an argument" record.
  InMemoryRawLog(FuncId, Type, ReadTSC);
  RecursionGuard G(Guard);
  if (!G)
    return;
  // And, from here on write the arg payload.
  XRayArgPayload R;
  R.RecordType = RecordTypes::ARG_PAYLOAD;
  R.FuncId = FuncId;
  R.TId = GetTid(); 
  R.PId = internal_getpid(); 
  R.Arg = Arg1;
  internal_memcpy(FirstEntry + TLD.BufferOffset, &R, sizeof(R));
  if (++TLD.BufferOffset == BuffLen) {
    SpinMutexLock Lock(&LogMutex);
    LW->WriteAll(reinterpret_cast<char *>(FirstEntry),
                 reinterpret_cast<char *>(FirstEntry + TLD.BufferOffset));
    TLD.BufferOffset = 0;
    TLD.StackEntries = 0;
  }
}
void basicLoggingHandleArg0RealTSC(int32_t FuncId,
                                   XRayEntryType Type) XRAY_NEVER_INSTRUMENT {
  InMemoryRawLog(FuncId, Type, readTSC);
}
void basicLoggingHandleArg0EmulateTSC(int32_t FuncId, XRayEntryType Type)
    XRAY_NEVER_INSTRUMENT {
  InMemoryRawLog(FuncId, Type, [](uint8_t &CPU) XRAY_NEVER_INSTRUMENT {
    timespec TS;
    int result = clock_gettime(CLOCK_REALTIME, &TS);
    if (result != 0) {
      Report("clock_gettimg(2) return %d, errno=%d.", result, int(errno));
      TS = {0, 0};
    }
    CPU = 0;
    return TS.tv_sec * NanosecondsPerSecond + TS.tv_nsec;
  });
}
void basicLoggingHandleArg1RealTSC(int32_t FuncId, XRayEntryType Type,
                                   uint64_t Arg1) XRAY_NEVER_INSTRUMENT {
  InMemoryRawLogWithArg(FuncId, Type, Arg1, readTSC);
}
void basicLoggingHandleArg1EmulateTSC(int32_t FuncId, XRayEntryType Type,
                                      uint64_t Arg1) XRAY_NEVER_INSTRUMENT {
  InMemoryRawLogWithArg(
      FuncId, Type, Arg1, [](uint8_t &CPU) XRAY_NEVER_INSTRUMENT {
        timespec TS;
        int result = clock_gettime(CLOCK_REALTIME, &TS);
        if (result != 0) {
          Report("clock_gettimg(2) return %d, errno=%d.", result, int(errno));
          TS = {0, 0};
        }
        CPU = 0;
        return TS.tv_sec * NanosecondsPerSecond + TS.tv_nsec;
      });
}
static void TLDDestructor(void *P) XRAY_NEVER_INSTRUMENT {
  ThreadLocalData &TLD = *reinterpret_cast<ThreadLocalData *>(P);
  auto ExitGuard = at_scope_exit([&TLD] {
    // Clean up dynamic resources.
    if (TLD.InMemoryBuffer)
      InternalFree(TLD.InMemoryBuffer);
    if (TLD.ShadowStack)
      InternalFree(TLD.ShadowStack);
    if (Verbosity())
      Report("Cleaned up log for TID: %llu\n", GetTid());
  });
  if (TLD.LogWriter == nullptr || TLD.BufferOffset == 0) {
    if (Verbosity())
      Report("Skipping buffer for TID: %llu; Offset = %zu\n", GetTid(),
             TLD.BufferOffset);
    return;
  }
  {
    SpinMutexLock L(&LogMutex);
    TLD.LogWriter->WriteAll(reinterpret_cast<char *>(TLD.InMemoryBuffer),
                            reinterpret_cast<char *>(TLD.InMemoryBuffer) +
                            (sizeof(XRayRecord) * TLD.BufferOffset));
  }
  // Because this thread's exit could be the last one trying to write to
  // the file and that we're not able to close out the file properly, we
  // sync instead and hope that the pending writes are flushed as the
  // thread exits.
  TLD.LogWriter->Flush();
}
XRayLogInitStatus basicLoggingInit(UNUSED size_t BufferSize,
                                   UNUSED size_t BufferMax, void *Options,
                                   size_t OptionsSize) XRAY_NEVER_INSTRUMENT {
  uint8_t Expected = 0;
  if (!atomic_compare_exchange_strong(&BasicInitialized, &Expected, 1,
                                      memory_order_acq_rel)) {
    if (Verbosity())
      Report("Basic logging already initialized.\n");
    return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
  }
  static pthread_once_t OnceInit = PTHREAD_ONCE_INIT;
  pthread_once(&OnceInit, +[] {
    pthread_key_create(&PThreadKey, TLDDestructor);
    atomic_store(&UseRealTSC, probeRequiredCPUFeatures(), memory_order_release);
    // Initialize the global TicksPerSec value.
    atomic_store(&TicksPerSec,
                 probeRequiredCPUFeatures() ? getTSCFrequency()
                                            : NanosecondsPerSecond,
                 memory_order_release);
    if (!atomic_load(&UseRealTSC, memory_order_relaxed) && Verbosity())
      Report("WARNING: Required CPU features missing for XRay instrumentation, "
             "using emulation instead.\n");
  });
  FlagParser P;
  BasicFlags F;
  F.setDefaults();
  registerXRayBasicFlags(&P, &F);
  P.ParseString(useCompilerDefinedBasicFlags());
  auto *EnvOpts = GetEnv("XRAY_BASIC_OPTIONS");
  if (EnvOpts == nullptr)
    EnvOpts = "";
  P.ParseString(EnvOpts);
  // If XRAY_BASIC_OPTIONS was not defined, then we use the deprecated options
  // set through XRAY_OPTIONS instead.
  if (internal_strlen(EnvOpts) == 0) {
    F.func_duration_threshold_us =
        flags()->xray_naive_log_func_duration_threshold_us;
    F.max_stack_depth = flags()->xray_naive_log_max_stack_depth;
    F.thread_buffer_size = flags()->xray_naive_log_thread_buffer_size;
  }
  P.ParseString(static_cast<const char *>(Options));
  GlobalOptions.ThreadBufferSize = F.thread_buffer_size;
  GlobalOptions.DurationFilterMicros = F.func_duration_threshold_us;
  GlobalOptions.MaxStackDepth = F.max_stack_depth;
  *basicFlags() = F;
  atomic_store(&ThresholdTicks,
               atomic_load(&TicksPerSec, memory_order_acquire) *
                   GlobalOptions.DurationFilterMicros / 1000000,
               memory_order_release);
  __xray_set_handler_arg1(atomic_load(&UseRealTSC, memory_order_acquire)
                              ? basicLoggingHandleArg1RealTSC
                              : basicLoggingHandleArg1EmulateTSC);
  __xray_set_handler(atomic_load(&UseRealTSC, memory_order_acquire)
                         ? basicLoggingHandleArg0RealTSC
                         : basicLoggingHandleArg0EmulateTSC);
  // TODO: Implement custom event and typed event handling support in Basic
  // Mode.
  __xray_remove_customevent_handler();
  __xray_remove_typedevent_handler();
  return XRayLogInitStatus::XRAY_LOG_INITIALIZED;
}
XRayLogInitStatus basicLoggingFinalize() XRAY_NEVER_INSTRUMENT {
  uint8_t Expected = 0;
  if (!atomic_compare_exchange_strong(&BasicInitialized, &Expected, 0,
                                      memory_order_acq_rel) &&
      Verbosity())
    Report("Basic logging already finalized.\n");
  // Nothing really to do aside from marking state of the global to be
  // uninitialized.
  return XRayLogInitStatus::XRAY_LOG_FINALIZED;
}
XRayLogFlushStatus basicLoggingFlush() XRAY_NEVER_INSTRUMENT {
  // This really does nothing, since flushing the logs happen at the end of a
  // thread's lifetime, or when the buffers are full.
  return XRayLogFlushStatus::XRAY_LOG_FLUSHED;
}
// This is a handler that, effectively, does nothing.
void basicLoggingHandleArg0Empty(int32_t, XRayEntryType) XRAY_NEVER_INSTRUMENT {
}
bool basicLogDynamicInitializer() XRAY_NEVER_INSTRUMENT {
  XRayLogImpl Impl{
      basicLoggingInit,
      basicLoggingFinalize,
      basicLoggingHandleArg0Empty,
      basicLoggingFlush,
  };
  auto RegistrationResult = __xray_log_register_mode("xray-basic", Impl);
  if (RegistrationResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK &&
      Verbosity())
    Report("Cannot register XRay Basic Mode to 'xray-basic'; error = %d\n",
           RegistrationResult);
  if (flags()->xray_naive_log ||
      !internal_strcmp(flags()->xray_mode, "xray-basic")) {
    auto SelectResult = __xray_log_select_mode("xray-basic");
    if (SelectResult != XRayLogRegisterStatus::XRAY_REGISTRATION_OK) {
      if (Verbosity())
        Report("Failed selecting XRay Basic Mode; error = %d\n", SelectResult);
      return false;
    }
    // We initialize the implementation using the data we get from the
    // XRAY_BASIC_OPTIONS environment variable, at this point of the
    // implementation.
    auto *Env = GetEnv("XRAY_BASIC_OPTIONS");
    auto InitResult =
        __xray_log_init_mode("xray-basic", Env == nullptr ? "" : Env);
    if (InitResult != XRayLogInitStatus::XRAY_LOG_INITIALIZED) {
      if (Verbosity())
        Report("Failed initializing XRay Basic Mode; error = %d\n", InitResult);
      return false;
    }
    // At this point we know that we've successfully initialized Basic mode
    // tracing, and the only chance we're going to get for the current thread to
    // clean-up may be at thread/program exit. To ensure that we're going to get
    // the cleanup even without calling the finalization routines, we're
    // registering a program exit function that will do the cleanup.
    static pthread_once_t DynamicOnce = PTHREAD_ONCE_INIT;
    pthread_once(&DynamicOnce, +[] {
      static void *FakeTLD = nullptr;
      FakeTLD = &getThreadLocalData();
      Atexit(+[] { TLDDestructor(FakeTLD); });
    });
  }
  return true;
}
} // namespace __xray
static auto UNUSED Unused = __xray::basicLogDynamicInitializer();
 |