| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 
 | //===-- xray_interface.cpp --------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of the API functions.
//
//===----------------------------------------------------------------------===//
#include "xray_interface_internal.h"
#include <cinttypes>
#include <cstdio>
#include <errno.h>
#include <limits>
#include <string.h>
#include <sys/mman.h>
#if SANITIZER_FUCHSIA
#include <zircon/process.h>
#include <zircon/sanitizer.h>
#include <zircon/status.h>
#include <zircon/syscalls.h>
#endif
#include "sanitizer_common/sanitizer_addrhashmap.h"
#include "sanitizer_common/sanitizer_common.h"
#include "xray_defs.h"
#include "xray_flags.h"
extern __sanitizer::SpinMutex XRayInstrMapMutex;
extern __sanitizer::atomic_uint8_t XRayInitialized;
extern __xray::XRaySledMap XRayInstrMap;
namespace __xray {
#if defined(__x86_64__)
static const int16_t cSledLength = 12;
#elif defined(__aarch64__)
static const int16_t cSledLength = 32;
#elif defined(__arm__)
static const int16_t cSledLength = 28;
#elif SANITIZER_LOONGARCH64
static const int16_t cSledLength = 48;
#elif SANITIZER_MIPS32
static const int16_t cSledLength = 48;
#elif SANITIZER_MIPS64
static const int16_t cSledLength = 64;
#elif defined(__powerpc64__)
static const int16_t cSledLength = 8;
#elif defined(__hexagon__)
static const int16_t cSledLength = 20;
#else
#error "Unsupported CPU Architecture"
#endif /* CPU architecture */
// This is the function to call when we encounter the entry or exit sleds.
atomic_uintptr_t XRayPatchedFunction{0};
// This is the function to call from the arg1-enabled sleds/trampolines.
atomic_uintptr_t XRayArgLogger{0};
// This is the function to call when we encounter a custom event log call.
atomic_uintptr_t XRayPatchedCustomEvent{0};
// This is the function to call when we encounter a typed event log call.
atomic_uintptr_t XRayPatchedTypedEvent{0};
// This is the global status to determine whether we are currently
// patching/unpatching.
atomic_uint8_t XRayPatching{0};
struct TypeDescription {
  uint32_t type_id;
  std::size_t description_string_length;
};
using TypeDescriptorMapType = AddrHashMap<TypeDescription, 11>;
// An address map from immutable descriptors to type ids.
TypeDescriptorMapType TypeDescriptorAddressMap{};
atomic_uint32_t TypeEventDescriptorCounter{0};
// MProtectHelper is an RAII wrapper for calls to mprotect(...) that will
// undo any successful mprotect(...) changes. This is used to make a page
// writeable and executable, and upon destruction if it was successful in
// doing so returns the page into a read-only and executable page.
//
// This is only used specifically for runtime-patching of the XRay
// instrumentation points. This assumes that the executable pages are
// originally read-and-execute only.
class MProtectHelper {
  void *PageAlignedAddr;
  std::size_t MProtectLen;
  bool MustCleanup;
public:
  explicit MProtectHelper(void *PageAlignedAddr,
                          std::size_t MProtectLen,
                          std::size_t PageSize) XRAY_NEVER_INSTRUMENT
      : PageAlignedAddr(PageAlignedAddr),
        MProtectLen(MProtectLen),
        MustCleanup(false) {
#if SANITIZER_FUCHSIA
    MProtectLen = RoundUpTo(MProtectLen, PageSize);
#endif
  }
  int MakeWriteable() XRAY_NEVER_INSTRUMENT {
#if SANITIZER_FUCHSIA
    auto R = __sanitizer_change_code_protection(
        reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, true);
    if (R != ZX_OK) {
      Report("XRay: cannot change code protection: %s\n",
             _zx_status_get_string(R));
      return -1;
    }
    MustCleanup = true;
    return 0;
#else
    auto R = mprotect(PageAlignedAddr, MProtectLen,
                      PROT_READ | PROT_WRITE | PROT_EXEC);
    if (R != -1)
      MustCleanup = true;
    return R;
#endif
  }
  ~MProtectHelper() XRAY_NEVER_INSTRUMENT {
    if (MustCleanup) {
#if SANITIZER_FUCHSIA
      auto R = __sanitizer_change_code_protection(
          reinterpret_cast<uintptr_t>(PageAlignedAddr), MProtectLen, false);
      if (R != ZX_OK) {
        Report("XRay: cannot change code protection: %s\n",
               _zx_status_get_string(R));
      }
#else
      mprotect(PageAlignedAddr, MProtectLen, PROT_READ | PROT_EXEC);
#endif
    }
  }
};
namespace {
bool patchSled(const XRaySledEntry &Sled, bool Enable,
               int32_t FuncId) XRAY_NEVER_INSTRUMENT {
  bool Success = false;
  switch (Sled.Kind) {
  case XRayEntryType::ENTRY:
    Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_FunctionEntry);
    break;
  case XRayEntryType::EXIT:
    Success = patchFunctionExit(Enable, FuncId, Sled);
    break;
  case XRayEntryType::TAIL:
    Success = patchFunctionTailExit(Enable, FuncId, Sled);
    break;
  case XRayEntryType::LOG_ARGS_ENTRY:
    Success = patchFunctionEntry(Enable, FuncId, Sled, __xray_ArgLoggerEntry);
    break;
  case XRayEntryType::CUSTOM_EVENT:
    Success = patchCustomEvent(Enable, FuncId, Sled);
    break;
  case XRayEntryType::TYPED_EVENT:
    Success = patchTypedEvent(Enable, FuncId, Sled);
    break;
  default:
    Report("Unsupported sled kind '%" PRIu64 "' @%04x\n", Sled.Address,
           int(Sled.Kind));
    return false;
  }
  return Success;
}
const XRayFunctionSledIndex
findFunctionSleds(int32_t FuncId,
                  const XRaySledMap &InstrMap) XRAY_NEVER_INSTRUMENT {
  int32_t CurFn = 0;
  uint64_t LastFnAddr = 0;
  XRayFunctionSledIndex Index = {nullptr, 0};
  for (std::size_t I = 0; I < InstrMap.Entries && CurFn <= FuncId; I++) {
    const auto &Sled = InstrMap.Sleds[I];
    const auto Function = Sled.function();
    if (Function != LastFnAddr) {
      CurFn++;
      LastFnAddr = Function;
    }
    if (CurFn == FuncId) {
      if (Index.Begin == nullptr)
        Index.Begin = &Sled;
      Index.Size = &Sled - Index.Begin + 1;
    }
  }
  return Index;
}
XRayPatchingStatus patchFunction(int32_t FuncId,
                                 bool Enable) XRAY_NEVER_INSTRUMENT {
  if (!atomic_load(&XRayInitialized,
                                memory_order_acquire))
    return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
  uint8_t NotPatching = false;
  if (!atomic_compare_exchange_strong(
          &XRayPatching, &NotPatching, true, memory_order_acq_rel))
    return XRayPatchingStatus::ONGOING; // Already patching.
  // Next, we look for the function index.
  XRaySledMap InstrMap;
  {
    SpinMutexLock Guard(&XRayInstrMapMutex);
    InstrMap = XRayInstrMap;
  }
  // If we don't have an index, we can't patch individual functions.
  if (InstrMap.Functions == 0)
    return XRayPatchingStatus::NOT_INITIALIZED;
  // FuncId must be a positive number, less than the number of functions
  // instrumented.
  if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
    Report("Invalid function id provided: %d\n", FuncId);
    return XRayPatchingStatus::FAILED;
  }
  // Now we patch ths sleds for this specific function.
  XRayFunctionSledIndex SledRange;
  if (InstrMap.SledsIndex) {
    SledRange = {InstrMap.SledsIndex[FuncId - 1].fromPCRelative(),
                 InstrMap.SledsIndex[FuncId - 1].Size};
  } else {
    SledRange = findFunctionSleds(FuncId, InstrMap);
  }
  auto *f = SledRange.Begin;
  bool SucceedOnce = false;
  for (size_t i = 0; i != SledRange.Size; ++i)
    SucceedOnce |= patchSled(f[i], Enable, FuncId);
  atomic_store(&XRayPatching, false,
                            memory_order_release);
  if (!SucceedOnce) {
    Report("Failed patching any sled for function '%d'.", FuncId);
    return XRayPatchingStatus::FAILED;
  }
  return XRayPatchingStatus::SUCCESS;
}
// controlPatching implements the common internals of the patching/unpatching
// implementation. |Enable| defines whether we're enabling or disabling the
// runtime XRay instrumentation.
XRayPatchingStatus controlPatching(bool Enable) XRAY_NEVER_INSTRUMENT {
  if (!atomic_load(&XRayInitialized,
                                memory_order_acquire))
    return XRayPatchingStatus::NOT_INITIALIZED; // Not initialized.
  uint8_t NotPatching = false;
  if (!atomic_compare_exchange_strong(
          &XRayPatching, &NotPatching, true, memory_order_acq_rel))
    return XRayPatchingStatus::ONGOING; // Already patching.
  uint8_t PatchingSuccess = false;
  auto XRayPatchingStatusResetter =
      at_scope_exit([&PatchingSuccess] {
        if (!PatchingSuccess)
          atomic_store(&XRayPatching, false,
                                    memory_order_release);
      });
  XRaySledMap InstrMap;
  {
    SpinMutexLock Guard(&XRayInstrMapMutex);
    InstrMap = XRayInstrMap;
  }
  if (InstrMap.Entries == 0)
    return XRayPatchingStatus::NOT_INITIALIZED;
  uint32_t FuncId = 1;
  uint64_t CurFun = 0;
  // First we want to find the bounds for which we have instrumentation points,
  // and try to get as few calls to mprotect(...) as possible. We're assuming
  // that all the sleds for the instrumentation map are contiguous as a single
  // set of pages. When we do support dynamic shared object instrumentation,
  // we'll need to do this for each set of page load offsets per DSO loaded. For
  // now we're assuming we can mprotect the whole section of text between the
  // minimum sled address and the maximum sled address (+ the largest sled
  // size).
  auto *MinSled = &InstrMap.Sleds[0];
  auto *MaxSled = &InstrMap.Sleds[InstrMap.Entries - 1];
  for (std::size_t I = 0; I < InstrMap.Entries; I++) {
    const auto &Sled = InstrMap.Sleds[I];
    if (Sled.address() < MinSled->address())
      MinSled = &Sled;
    if (Sled.address() > MaxSled->address())
      MaxSled = &Sled;
  }
  const size_t PageSize = flags()->xray_page_size_override > 0
                              ? flags()->xray_page_size_override
                              : GetPageSizeCached();
  if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
    Report("System page size is not a power of two: %zu\n", PageSize);
    return XRayPatchingStatus::FAILED;
  }
  void *PageAlignedAddr =
      reinterpret_cast<void *>(MinSled->address() & ~(PageSize - 1));
  size_t MProtectLen =
      (MaxSled->address() - reinterpret_cast<uptr>(PageAlignedAddr)) +
      cSledLength;
  MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
  if (Protector.MakeWriteable() == -1) {
    Report("Failed mprotect: %d\n", errno);
    return XRayPatchingStatus::FAILED;
  }
  for (std::size_t I = 0; I < InstrMap.Entries; ++I) {
    auto &Sled = InstrMap.Sleds[I];
    auto F = Sled.function();
    if (CurFun == 0)
      CurFun = F;
    if (F != CurFun) {
      ++FuncId;
      CurFun = F;
    }
    patchSled(Sled, Enable, FuncId);
  }
  atomic_store(&XRayPatching, false,
                            memory_order_release);
  PatchingSuccess = true;
  return XRayPatchingStatus::SUCCESS;
}
XRayPatchingStatus mprotectAndPatchFunction(int32_t FuncId,
                                            bool Enable) XRAY_NEVER_INSTRUMENT {
  XRaySledMap InstrMap;
  {
    SpinMutexLock Guard(&XRayInstrMapMutex);
    InstrMap = XRayInstrMap;
  }
  // FuncId must be a positive number, less than the number of functions
  // instrumented.
  if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions) {
    Report("Invalid function id provided: %d\n", FuncId);
    return XRayPatchingStatus::FAILED;
  }
  const size_t PageSize = flags()->xray_page_size_override > 0
                              ? flags()->xray_page_size_override
                              : GetPageSizeCached();
  if ((PageSize == 0) || ((PageSize & (PageSize - 1)) != 0)) {
    Report("Provided page size is not a power of two: %zu\n", PageSize);
    return XRayPatchingStatus::FAILED;
  }
  // Here we compute the minimum sled and maximum sled associated with a
  // particular function ID.
  XRayFunctionSledIndex SledRange;
  if (InstrMap.SledsIndex) {
    SledRange = {InstrMap.SledsIndex[FuncId - 1].fromPCRelative(),
                 InstrMap.SledsIndex[FuncId - 1].Size};
  } else {
    SledRange = findFunctionSleds(FuncId, InstrMap);
  }
  auto *f = SledRange.Begin;
  auto *e = SledRange.Begin + SledRange.Size;
  auto *MinSled = f;
  auto *MaxSled = e - 1;
  while (f != e) {
    if (f->address() < MinSled->address())
      MinSled = f;
    if (f->address() > MaxSled->address())
      MaxSled = f;
    ++f;
  }
  void *PageAlignedAddr =
      reinterpret_cast<void *>(MinSled->address() & ~(PageSize - 1));
  size_t MProtectLen =
      (MaxSled->address() - reinterpret_cast<uptr>(PageAlignedAddr)) +
      cSledLength;
  MProtectHelper Protector(PageAlignedAddr, MProtectLen, PageSize);
  if (Protector.MakeWriteable() == -1) {
    Report("Failed mprotect: %d\n", errno);
    return XRayPatchingStatus::FAILED;
  }
  return patchFunction(FuncId, Enable);
}
} // namespace
} // namespace __xray
using namespace __xray;
// The following functions are declared `extern "C" {...}` in the header, hence
// they're defined in the global namespace.
int __xray_set_handler(void (*entry)(int32_t,
                                     XRayEntryType)) XRAY_NEVER_INSTRUMENT {
  if (atomic_load(&XRayInitialized,
                               memory_order_acquire)) {
    atomic_store(&__xray::XRayPatchedFunction,
                              reinterpret_cast<uintptr_t>(entry),
                              memory_order_release);
    return 1;
  }
  return 0;
}
int __xray_set_customevent_handler(void (*entry)(void *, size_t))
    XRAY_NEVER_INSTRUMENT {
  if (atomic_load(&XRayInitialized,
                               memory_order_acquire)) {
    atomic_store(&__xray::XRayPatchedCustomEvent,
                              reinterpret_cast<uintptr_t>(entry),
                              memory_order_release);
    return 1;
  }
  return 0;
}
int __xray_set_typedevent_handler(void (*entry)(size_t, const void *,
                                                size_t)) XRAY_NEVER_INSTRUMENT {
  if (atomic_load(&XRayInitialized,
                               memory_order_acquire)) {
    atomic_store(&__xray::XRayPatchedTypedEvent,
                              reinterpret_cast<uintptr_t>(entry),
                              memory_order_release);
    return 1;
  }
  return 0;
}
int __xray_remove_handler() XRAY_NEVER_INSTRUMENT {
  return __xray_set_handler(nullptr);
}
int __xray_remove_customevent_handler() XRAY_NEVER_INSTRUMENT {
  return __xray_set_customevent_handler(nullptr);
}
int __xray_remove_typedevent_handler() XRAY_NEVER_INSTRUMENT {
  return __xray_set_typedevent_handler(nullptr);
}
uint16_t __xray_register_event_type(
    const char *const event_type) XRAY_NEVER_INSTRUMENT {
  TypeDescriptorMapType::Handle h(&TypeDescriptorAddressMap, (uptr)event_type);
  if (h.created()) {
    h->type_id = atomic_fetch_add(
        &TypeEventDescriptorCounter, 1, memory_order_acq_rel);
    h->description_string_length = strnlen(event_type, 1024);
  }
  return h->type_id;
}
XRayPatchingStatus __xray_patch() XRAY_NEVER_INSTRUMENT {
  return controlPatching(true);
}
XRayPatchingStatus __xray_unpatch() XRAY_NEVER_INSTRUMENT {
  return controlPatching(false);
}
XRayPatchingStatus __xray_patch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
  return mprotectAndPatchFunction(FuncId, true);
}
XRayPatchingStatus
__xray_unpatch_function(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
  return mprotectAndPatchFunction(FuncId, false);
}
int __xray_set_handler_arg1(void (*entry)(int32_t, XRayEntryType, uint64_t)) {
  if (!atomic_load(&XRayInitialized,
                                memory_order_acquire))
    return 0;
  // A relaxed write might not be visible even if the current thread gets
  // scheduled on a different CPU/NUMA node.  We need to wait for everyone to
  // have this handler installed for consistency of collected data across CPUs.
  atomic_store(&XRayArgLogger, reinterpret_cast<uint64_t>(entry),
                            memory_order_release);
  return 1;
}
int __xray_remove_handler_arg1() { return __xray_set_handler_arg1(nullptr); }
uintptr_t __xray_function_address(int32_t FuncId) XRAY_NEVER_INSTRUMENT {
  XRaySledMap InstrMap;
  {
    SpinMutexLock Guard(&XRayInstrMapMutex);
    InstrMap = XRayInstrMap;
  }
  if (FuncId <= 0 || static_cast<size_t>(FuncId) > InstrMap.Functions)
    return 0;
  const XRaySledEntry *Sled =
      InstrMap.SledsIndex ? InstrMap.SledsIndex[FuncId - 1].fromPCRelative()
                          : findFunctionSleds(FuncId, InstrMap).Begin;
  return Sled->function()
// On PPC, function entries are always aligned to 16 bytes. The beginning of a
// sled might be a local entry, which is always +8 based on the global entry.
// Always return the global entry.
#ifdef __PPC__
         & ~0xf
#endif
      ;
}
size_t __xray_max_function_id() XRAY_NEVER_INSTRUMENT {
  SpinMutexLock Guard(&XRayInstrMapMutex);
  return XRayInstrMap.Functions;
}
 |