| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 
 | //===-- Clustering.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Utilities to compute benchmark result clusters.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H
#define LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H
#include "BenchmarkResult.h"
#include "llvm/Support/Error.h"
#include <limits>
#include <vector>
namespace llvm {
namespace exegesis {
class BenchmarkClustering {
public:
  enum ModeE { Dbscan, Naive };
  // Clusters `Points` using DBSCAN with the given parameters. See the cc file
  // for more explanations on the algorithm.
  static Expected<BenchmarkClustering>
  create(const std::vector<Benchmark> &Points, ModeE Mode,
         size_t DbscanMinPts, double AnalysisClusteringEpsilon,
         const MCSubtargetInfo *SubtargetInfo = nullptr,
         const MCInstrInfo *InstrInfo = nullptr);
  class ClusterId {
  public:
    static ClusterId noise() { return ClusterId(kNoise); }
    static ClusterId error() { return ClusterId(kError); }
    static ClusterId makeValid(size_t Id, bool IsUnstable = false) {
      return ClusterId(Id, IsUnstable);
    }
    static ClusterId makeValidUnstable(size_t Id) {
      return makeValid(Id, /*IsUnstable=*/true);
    }
    ClusterId() : Id_(kUndef), IsUnstable_(false) {}
    // Compare id's, ignoring the 'unstability' bit.
    bool operator==(const ClusterId &O) const { return Id_ == O.Id_; }
    bool operator<(const ClusterId &O) const { return Id_ < O.Id_; }
    bool isValid() const { return Id_ <= kMaxValid; }
    bool isUnstable() const { return IsUnstable_; }
    bool isNoise() const { return Id_ == kNoise; }
    bool isError() const { return Id_ == kError; }
    bool isUndef() const { return Id_ == kUndef; }
    // Precondition: isValid().
    size_t getId() const {
      assert(isValid());
      return Id_;
    }
  private:
    ClusterId(size_t Id, bool IsUnstable = false)
        : Id_(Id), IsUnstable_(IsUnstable) {}
    static constexpr const size_t kMaxValid =
        (std::numeric_limits<size_t>::max() >> 1) - 4;
    static constexpr const size_t kNoise = kMaxValid + 1;
    static constexpr const size_t kError = kMaxValid + 2;
    static constexpr const size_t kUndef = kMaxValid + 3;
    size_t Id_ : (std::numeric_limits<size_t>::digits - 1);
    size_t IsUnstable_ : 1;
  };
  static_assert(sizeof(ClusterId) == sizeof(size_t), "should be a bit field.");
  struct Cluster {
    Cluster() = delete;
    explicit Cluster(const ClusterId &Id) : Id(Id) {}
    const ClusterId Id;
    // Indices of benchmarks within the cluster.
    std::vector<int> PointIndices;
  };
  ClusterId getClusterIdForPoint(size_t P) const {
    return ClusterIdForPoint_[P];
  }
  const std::vector<Benchmark> &getPoints() const { return Points_; }
  const Cluster &getCluster(ClusterId Id) const {
    assert(!Id.isUndef() && "unlabeled cluster");
    if (Id.isNoise()) {
      return NoiseCluster_;
    }
    if (Id.isError()) {
      return ErrorCluster_;
    }
    return Clusters_[Id.getId()];
  }
  const std::vector<Cluster> &getValidClusters() const { return Clusters_; }
  // Returns true if the given point is within a distance Epsilon of each other.
  bool isNeighbour(const std::vector<BenchmarkMeasure> &P,
                   const std::vector<BenchmarkMeasure> &Q,
                   const double EpsilonSquared_) const {
    double DistanceSquared = 0.0;
    for (size_t I = 0, E = P.size(); I < E; ++I) {
      const auto Diff = P[I].PerInstructionValue - Q[I].PerInstructionValue;
      DistanceSquared += Diff * Diff;
    }
    return DistanceSquared <= EpsilonSquared_;
  }
private:
  BenchmarkClustering(
      const std::vector<Benchmark> &Points,
      double AnalysisClusteringEpsilonSquared);
  Error validateAndSetup();
  void clusterizeDbScan(size_t MinPts);
  void clusterizeNaive(const MCSubtargetInfo &SubtargetInfo,
                       const MCInstrInfo &InstrInfo);
  // Stabilization is only needed if dbscan was used to clusterize.
  void stabilize(unsigned NumOpcodes);
  void rangeQuery(size_t Q, std::vector<size_t> &Scratchpad) const;
  bool areAllNeighbours(ArrayRef<size_t> Pts) const;
  const std::vector<Benchmark> &Points_;
  const double AnalysisClusteringEpsilonSquared_;
  int NumDimensions_ = 0;
  // ClusterForPoint_[P] is the cluster id for Points[P].
  std::vector<ClusterId> ClusterIdForPoint_;
  std::vector<Cluster> Clusters_;
  Cluster NoiseCluster_;
  Cluster ErrorCluster_;
};
class SchedClassClusterCentroid {
public:
  const std::vector<PerInstructionStats> &getStats() const {
    return Representative;
  }
  std::vector<BenchmarkMeasure> getAsPoint() const;
  void addPoint(ArrayRef<BenchmarkMeasure> Point);
  bool validate(Benchmark::ModeE Mode) const;
private:
  // Measurement stats for the points in the SchedClassCluster.
  std::vector<PerInstructionStats> Representative;
};
} // namespace exegesis
} // namespace llvm
#endif // LLVM_TOOLS_LLVM_EXEGESIS_CLUSTERING_H
 |