1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
|
//===--- FormatStringConverter.cpp - clang-tidy----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// Implementation of the FormatStringConverter class which is used to convert
/// printf format strings to C++ std::formatter format strings.
///
//===----------------------------------------------------------------------===//
#include "FormatStringConverter.h"
#include "../utils/FixItHintUtils.h"
#include "clang/AST/Expr.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Tooling/FixIt.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
using namespace clang::ast_matchers;
using namespace clang::analyze_printf;
namespace clang::tidy::utils {
using clang::analyze_format_string::ConversionSpecifier;
/// Is the passed type the actual "char" type, whether that be signed or
/// unsigned, rather than explicit signed char or unsigned char types.
static bool isRealCharType(const clang::QualType &Ty) {
using namespace clang;
const Type *DesugaredType = Ty->getUnqualifiedDesugaredType();
if (const auto *BT = llvm::dyn_cast<BuiltinType>(DesugaredType))
return (BT->getKind() == BuiltinType::Char_U ||
BT->getKind() == BuiltinType::Char_S);
return false;
}
/// If possible, return the text name of the signed type that corresponds to the
/// passed integer type. If the passed type is already signed then its name is
/// just returned. Only supports BuiltinTypes.
static std::optional<std::string>
getCorrespondingSignedTypeName(const clang::QualType &QT) {
using namespace clang;
const auto UQT = QT.getUnqualifiedType();
if (const auto *BT = llvm::dyn_cast<BuiltinType>(UQT)) {
switch (BT->getKind()) {
case BuiltinType::UChar:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::Char_S:
return "signed char";
case BuiltinType::UShort:
case BuiltinType::Short:
return "short";
case BuiltinType::UInt:
case BuiltinType::Int:
return "int";
case BuiltinType::ULong:
case BuiltinType::Long:
return "long";
case BuiltinType::ULongLong:
case BuiltinType::LongLong:
return "long long";
default:
llvm::dbgs() << "Unknown corresponding signed type for BuiltinType '"
<< QT.getAsString() << "'\n";
return std::nullopt;
}
}
// Deal with fixed-width integer types from <cstdint>. Use std:: prefix only
// if the argument type does.
const std::string TypeName = UQT.getAsString();
StringRef SimplifiedTypeName{TypeName};
const bool InStd = SimplifiedTypeName.consume_front("std::");
const StringRef Prefix = InStd ? "std::" : "";
if (SimplifiedTypeName.starts_with("uint") &&
SimplifiedTypeName.ends_with("_t"))
return (Twine(Prefix) + SimplifiedTypeName.drop_front()).str();
if (SimplifiedTypeName == "size_t")
return (Twine(Prefix) + "ssize_t").str();
llvm::dbgs() << "Unknown corresponding signed type for non-BuiltinType '"
<< UQT.getAsString() << "'\n";
return std::nullopt;
}
/// If possible, return the text name of the unsigned type that corresponds to
/// the passed integer type. If the passed type is already unsigned then its
/// name is just returned. Only supports BuiltinTypes.
static std::optional<std::string>
getCorrespondingUnsignedTypeName(const clang::QualType &QT) {
using namespace clang;
const auto UQT = QT.getUnqualifiedType();
if (const auto *BT = llvm::dyn_cast<BuiltinType>(UQT)) {
switch (BT->getKind()) {
case BuiltinType::SChar:
case BuiltinType::Char_S:
case BuiltinType::UChar:
case BuiltinType::Char_U:
return "unsigned char";
case BuiltinType::Short:
case BuiltinType::UShort:
return "unsigned short";
case BuiltinType::Int:
case BuiltinType::UInt:
return "unsigned int";
case BuiltinType::Long:
case BuiltinType::ULong:
return "unsigned long";
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return "unsigned long long";
default:
llvm::dbgs() << "Unknown corresponding unsigned type for BuiltinType '"
<< UQT.getAsString() << "'\n";
return std::nullopt;
}
}
// Deal with fixed-width integer types from <cstdint>. Use std:: prefix only
// if the argument type does.
const std::string TypeName = UQT.getAsString();
StringRef SimplifiedTypeName{TypeName};
const bool InStd = SimplifiedTypeName.consume_front("std::");
const StringRef Prefix = InStd ? "std::" : "";
if (SimplifiedTypeName.starts_with("int") &&
SimplifiedTypeName.ends_with("_t"))
return (Twine(Prefix) + "u" + SimplifiedTypeName).str();
if (SimplifiedTypeName == "ssize_t")
return (Twine(Prefix) + "size_t").str();
if (SimplifiedTypeName == "ptrdiff_t")
return (Twine(Prefix) + "size_t").str();
llvm::dbgs() << "Unknown corresponding unsigned type for non-BuiltinType '"
<< UQT.getAsString() << "'\n";
return std::nullopt;
}
static std::optional<std::string>
castTypeForArgument(ConversionSpecifier::Kind ArgKind,
const clang::QualType &QT) {
if (ArgKind == ConversionSpecifier::Kind::uArg)
return getCorrespondingUnsignedTypeName(QT);
return getCorrespondingSignedTypeName(QT);
}
static bool isMatchingSignedness(ConversionSpecifier::Kind ArgKind,
const clang::QualType &ArgType) {
if (const auto *BT = llvm::dyn_cast<BuiltinType>(ArgType)) {
// Unadorned char never matches any expected signedness since it
// could be signed or unsigned.
const auto ArgTypeKind = BT->getKind();
if (ArgTypeKind == BuiltinType::Char_U ||
ArgTypeKind == BuiltinType::Char_S)
return false;
}
if (ArgKind == ConversionSpecifier::Kind::uArg)
return ArgType->isUnsignedIntegerType();
return ArgType->isSignedIntegerType();
}
namespace {
AST_MATCHER(clang::QualType, isRealChar) {
return clang::tidy::utils::isRealCharType(Node);
}
} // namespace
static bool castMismatchedIntegerTypes(const CallExpr *Call, bool StrictMode) {
/// For printf-style functions, the signedness of the type printed is
/// indicated by the corresponding type in the format string.
/// std::print will determine the signedness from the type of the
/// argument. This means that it is necessary to generate a cast in
/// StrictMode to ensure that the exact behaviour is maintained.
/// However, for templated functions like absl::PrintF and
/// fmt::printf, the signedness of the type printed is also taken from
/// the actual argument like std::print, so such casts are never
/// necessary. printf-style functions are variadic, whereas templated
/// ones aren't, so we can use that to distinguish between the two
/// cases.
if (StrictMode) {
const FunctionDecl *FuncDecl = Call->getDirectCallee();
assert(FuncDecl);
return FuncDecl->isVariadic();
}
return false;
}
FormatStringConverter::FormatStringConverter(
ASTContext *ContextIn, const CallExpr *Call, unsigned FormatArgOffset,
const Configuration ConfigIn, const LangOptions &LO, SourceManager &SM,
Preprocessor &PP)
: Context(ContextIn), Config(ConfigIn),
CastMismatchedIntegerTypes(
castMismatchedIntegerTypes(Call, ConfigIn.StrictMode)),
Args(Call->getArgs()), NumArgs(Call->getNumArgs()),
ArgsOffset(FormatArgOffset + 1), LangOpts(LO) {
assert(ArgsOffset <= NumArgs);
FormatExpr = llvm::dyn_cast<StringLiteral>(
Args[FormatArgOffset]->IgnoreImplicitAsWritten());
if (!FormatExpr || !FormatExpr->isOrdinary()) {
// Function must have a narrow string literal as its first argument.
conversionNotPossible("first argument is not a narrow string literal");
return;
}
if (const std::optional<StringRef> MaybeMacroName =
formatStringContainsUnreplaceableMacro(Call, FormatExpr, SM, PP);
MaybeMacroName) {
conversionNotPossible(
("format string contains unreplaceable macro '" + *MaybeMacroName + "'")
.str());
return;
}
PrintfFormatString = FormatExpr->getString();
// Assume that the output will be approximately the same size as the input,
// but perhaps with a few escapes expanded.
const size_t EstimatedGrowth = 8;
StandardFormatString.reserve(PrintfFormatString.size() + EstimatedGrowth);
StandardFormatString.push_back('\"');
const bool IsFreeBsdkPrintf = false;
using clang::analyze_format_string::ParsePrintfString;
ParsePrintfString(*this, PrintfFormatString.data(),
PrintfFormatString.data() + PrintfFormatString.size(),
LangOpts, Context->getTargetInfo(), IsFreeBsdkPrintf);
finalizeFormatText();
}
std::optional<StringRef>
FormatStringConverter::formatStringContainsUnreplaceableMacro(
const CallExpr *Call, const StringLiteral *FormatExpr, SourceManager &SM,
Preprocessor &PP) {
// If a macro invocation surrounds the entire call then we don't want that to
// inhibit conversion. The whole format string will appear to come from that
// macro, as will the function call.
std::optional<StringRef> MaybeSurroundingMacroName;
if (SourceLocation BeginCallLoc = Call->getBeginLoc();
BeginCallLoc.isMacroID())
MaybeSurroundingMacroName =
Lexer::getImmediateMacroName(BeginCallLoc, SM, PP.getLangOpts());
for (auto I = FormatExpr->tokloc_begin(), E = FormatExpr->tokloc_end();
I != E; ++I) {
const SourceLocation &TokenLoc = *I;
if (TokenLoc.isMacroID()) {
const StringRef MacroName =
Lexer::getImmediateMacroName(TokenLoc, SM, PP.getLangOpts());
if (MaybeSurroundingMacroName != MacroName) {
// glibc uses __PRI64_PREFIX and __PRIPTR_PREFIX to define the prefixes
// for types that change size so we must look for multiple prefixes.
if (!MacroName.starts_with("PRI") && !MacroName.starts_with("__PRI"))
return MacroName;
const SourceLocation TokenSpellingLoc = SM.getSpellingLoc(TokenLoc);
const OptionalFileEntryRef MaybeFileEntry =
SM.getFileEntryRefForID(SM.getFileID(TokenSpellingLoc));
if (!MaybeFileEntry)
return MacroName;
HeaderSearch &HS = PP.getHeaderSearchInfo();
// Check if the file is a system header
if (!isSystem(HS.getFileDirFlavor(*MaybeFileEntry)) ||
llvm::sys::path::filename(MaybeFileEntry->getName()) !=
"inttypes.h")
return MacroName;
}
}
}
return std::nullopt;
}
void FormatStringConverter::emitAlignment(const PrintfSpecifier &FS,
std::string &FormatSpec) {
ConversionSpecifier::Kind ArgKind = FS.getConversionSpecifier().getKind();
// We only care about alignment if a field width is specified
if (FS.getFieldWidth().getHowSpecified() != OptionalAmount::NotSpecified) {
if (ArgKind == ConversionSpecifier::sArg) {
// Strings are left-aligned by default with std::format, so we only
// need to emit an alignment if this one needs to be right aligned.
if (!FS.isLeftJustified())
FormatSpec.push_back('>');
} else {
// Numbers are right-aligned by default with std::format, so we only
// need to emit an alignment if this one needs to be left aligned.
if (FS.isLeftJustified())
FormatSpec.push_back('<');
}
}
}
void FormatStringConverter::emitSign(const PrintfSpecifier &FS,
std::string &FormatSpec) {
const ConversionSpecifier Spec = FS.getConversionSpecifier();
// Ignore on something that isn't numeric. For printf it's would be a
// compile-time warning but ignored at runtime, but for std::format it
// ought to be a compile-time error.
if (Spec.isAnyIntArg() || Spec.isDoubleArg()) {
// + is preferred to ' '
if (FS.hasPlusPrefix())
FormatSpec.push_back('+');
else if (FS.hasSpacePrefix())
FormatSpec.push_back(' ');
}
}
void FormatStringConverter::emitAlternativeForm(const PrintfSpecifier &FS,
std::string &FormatSpec) {
if (FS.hasAlternativeForm()) {
switch (FS.getConversionSpecifier().getKind()) {
case ConversionSpecifier::Kind::aArg:
case ConversionSpecifier::Kind::AArg:
case ConversionSpecifier::Kind::eArg:
case ConversionSpecifier::Kind::EArg:
case ConversionSpecifier::Kind::fArg:
case ConversionSpecifier::Kind::FArg:
case ConversionSpecifier::Kind::gArg:
case ConversionSpecifier::Kind::GArg:
case ConversionSpecifier::Kind::xArg:
case ConversionSpecifier::Kind::XArg:
case ConversionSpecifier::Kind::oArg:
FormatSpec.push_back('#');
break;
default:
// Alternative forms don't exist for other argument kinds
break;
}
}
}
void FormatStringConverter::emitFieldWidth(const PrintfSpecifier &FS,
std::string &FormatSpec) {
{
const OptionalAmount FieldWidth = FS.getFieldWidth();
switch (FieldWidth.getHowSpecified()) {
case OptionalAmount::NotSpecified:
break;
case OptionalAmount::Constant:
FormatSpec.append(llvm::utostr(FieldWidth.getConstantAmount()));
break;
case OptionalAmount::Arg:
FormatSpec.push_back('{');
if (FieldWidth.usesPositionalArg()) {
// std::format argument identifiers are zero-based, whereas printf
// ones are one based.
assert(FieldWidth.getPositionalArgIndex() > 0U);
FormatSpec.append(llvm::utostr(FieldWidth.getPositionalArgIndex() - 1));
}
FormatSpec.push_back('}');
break;
case OptionalAmount::Invalid:
break;
}
}
}
void FormatStringConverter::emitPrecision(const PrintfSpecifier &FS,
std::string &FormatSpec) {
const OptionalAmount FieldPrecision = FS.getPrecision();
switch (FieldPrecision.getHowSpecified()) {
case OptionalAmount::NotSpecified:
break;
case OptionalAmount::Constant:
FormatSpec.push_back('.');
FormatSpec.append(llvm::utostr(FieldPrecision.getConstantAmount()));
break;
case OptionalAmount::Arg:
FormatSpec.push_back('.');
FormatSpec.push_back('{');
if (FieldPrecision.usesPositionalArg()) {
// std::format argument identifiers are zero-based, whereas printf
// ones are one based.
assert(FieldPrecision.getPositionalArgIndex() > 0U);
FormatSpec.append(
llvm::utostr(FieldPrecision.getPositionalArgIndex() - 1));
}
FormatSpec.push_back('}');
break;
case OptionalAmount::Invalid:
break;
}
}
void FormatStringConverter::maybeRotateArguments(const PrintfSpecifier &FS) {
unsigned ArgCount = 0;
const OptionalAmount FieldWidth = FS.getFieldWidth();
const OptionalAmount FieldPrecision = FS.getPrecision();
if (FieldWidth.getHowSpecified() == OptionalAmount::Arg &&
!FieldWidth.usesPositionalArg())
++ArgCount;
if (FieldPrecision.getHowSpecified() == OptionalAmount::Arg &&
!FieldPrecision.usesPositionalArg())
++ArgCount;
if (ArgCount)
ArgRotates.emplace_back(FS.getArgIndex() + ArgsOffset, ArgCount);
}
void FormatStringConverter::emitStringArgument(unsigned ArgIndex,
const Expr *Arg) {
// If the argument is the result of a call to std::string::c_str() or
// data() with a return type of char then we can remove that call and
// pass the std::string directly. We don't want to do so if the return
// type is not a char pointer (though it's unlikely that such code would
// compile without warnings anyway.) See RedundantStringCStrCheck.
if (!StringCStrCallExprMatcher) {
// Lazily create the matcher
const auto StringDecl = type(hasUnqualifiedDesugaredType(recordType(
hasDeclaration(cxxRecordDecl(hasName("::std::basic_string"))))));
const auto StringExpr = expr(
anyOf(hasType(StringDecl), hasType(qualType(pointsTo(StringDecl)))));
StringCStrCallExprMatcher =
cxxMemberCallExpr(
on(StringExpr.bind("arg")), callee(memberExpr().bind("member")),
callee(cxxMethodDecl(hasAnyName("c_str", "data"),
returns(pointerType(pointee(isRealChar()))))))
.bind("call");
}
auto CStrMatches = match(*StringCStrCallExprMatcher, *Arg, *Context);
if (CStrMatches.size() == 1)
ArgCStrRemovals.push_back(CStrMatches.front());
else if (Arg->getType()->isPointerType()) {
const QualType Pointee = Arg->getType()->getPointeeType();
// printf is happy to print signed char and unsigned char strings, but
// std::format only likes char strings.
if (Pointee->isCharType() && !isRealCharType(Pointee))
ArgFixes.emplace_back(ArgIndex, "reinterpret_cast<const char *>(");
}
}
bool FormatStringConverter::emitIntegerArgument(
ConversionSpecifier::Kind ArgKind, const Expr *Arg, unsigned ArgIndex,
std::string &FormatSpec) {
const clang::QualType &ArgType = Arg->getType();
if (ArgType->isBooleanType()) {
// std::format will print bool as either "true" or "false" by default,
// but printf prints them as "0" or "1". Be compatible with printf by
// requesting decimal output.
FormatSpec.push_back('d');
} else if (ArgType->isEnumeralType()) {
// std::format will try to find a specialization to print the enum
// (and probably fail), whereas printf would have just expected it to
// be passed as its underlying type. However, printf will have forced
// the signedness based on the format string, so we need to do the
// same.
if (const auto *ET = ArgType->getAs<EnumType>()) {
if (const std::optional<std::string> MaybeCastType =
castTypeForArgument(ArgKind, ET->getDecl()->getIntegerType()))
ArgFixes.emplace_back(
ArgIndex, (Twine("static_cast<") + *MaybeCastType + ">(").str());
else
return conversionNotPossible(
(Twine("argument ") + Twine(ArgIndex) + " has unexpected enum type")
.str());
}
} else if (CastMismatchedIntegerTypes &&
!isMatchingSignedness(ArgKind, ArgType)) {
// printf will happily print an unsigned type as signed if told to.
// Even -Wformat doesn't warn for this. std::format will format as
// unsigned unless we cast it.
if (const std::optional<std::string> MaybeCastType =
castTypeForArgument(ArgKind, ArgType))
ArgFixes.emplace_back(
ArgIndex, (Twine("static_cast<") + *MaybeCastType + ">(").str());
else
return conversionNotPossible(
(Twine("argument ") + Twine(ArgIndex) + " cannot be cast to " +
Twine(ArgKind == ConversionSpecifier::Kind::uArg ? "unsigned"
: "signed") +
" integer type to match format"
" specifier and StrictMode is enabled")
.str());
} else if (isRealCharType(ArgType) || !ArgType->isIntegerType()) {
// Only specify integer if the argument is of a different type
FormatSpec.push_back('d');
}
return true;
}
/// Append the corresponding standard format string type fragment to FormatSpec,
/// and store any argument fixes for later application.
/// @returns true on success, false on failure
bool FormatStringConverter::emitType(const PrintfSpecifier &FS, const Expr *Arg,
std::string &FormatSpec) {
ConversionSpecifier::Kind ArgKind = FS.getConversionSpecifier().getKind();
switch (ArgKind) {
case ConversionSpecifier::Kind::sArg:
emitStringArgument(FS.getArgIndex() + ArgsOffset, Arg);
break;
case ConversionSpecifier::Kind::cArg:
// The type must be "c" to get a character unless the type is exactly
// char (whether that be signed or unsigned for the target.)
if (!isRealCharType(Arg->getType()))
FormatSpec.push_back('c');
break;
case ConversionSpecifier::Kind::dArg:
case ConversionSpecifier::Kind::iArg:
case ConversionSpecifier::Kind::uArg:
if (!emitIntegerArgument(ArgKind, Arg, FS.getArgIndex() + ArgsOffset,
FormatSpec))
return false;
break;
case ConversionSpecifier::Kind::pArg: {
const clang::QualType &ArgType = Arg->getType();
// std::format knows how to format void pointers and nullptrs
if (!ArgType->isNullPtrType() && !ArgType->isVoidPointerType())
ArgFixes.emplace_back(FS.getArgIndex() + ArgsOffset,
"static_cast<const void *>(");
break;
}
case ConversionSpecifier::Kind::xArg:
FormatSpec.push_back('x');
break;
case ConversionSpecifier::Kind::XArg:
FormatSpec.push_back('X');
break;
case ConversionSpecifier::Kind::oArg:
FormatSpec.push_back('o');
break;
case ConversionSpecifier::Kind::aArg:
FormatSpec.push_back('a');
break;
case ConversionSpecifier::Kind::AArg:
FormatSpec.push_back('A');
break;
case ConversionSpecifier::Kind::eArg:
FormatSpec.push_back('e');
break;
case ConversionSpecifier::Kind::EArg:
FormatSpec.push_back('E');
break;
case ConversionSpecifier::Kind::fArg:
FormatSpec.push_back('f');
break;
case ConversionSpecifier::Kind::FArg:
FormatSpec.push_back('F');
break;
case ConversionSpecifier::Kind::gArg:
FormatSpec.push_back('g');
break;
case ConversionSpecifier::Kind::GArg:
FormatSpec.push_back('G');
break;
default:
// Something we don't understand
return conversionNotPossible((Twine("argument ") +
Twine(FS.getArgIndex() + ArgsOffset) +
" has an unsupported format specifier")
.str());
}
return true;
}
/// Append the standard format string equivalent of the passed PrintfSpecifier
/// to StandardFormatString and store any argument fixes for later application.
/// @returns true on success, false on failure
bool FormatStringConverter::convertArgument(const PrintfSpecifier &FS,
const Expr *Arg,
std::string &StandardFormatString) {
// The specifier must have an associated argument
assert(FS.consumesDataArgument());
StandardFormatString.push_back('{');
if (FS.usesPositionalArg()) {
// std::format argument identifiers are zero-based, whereas printf ones
// are one based.
assert(FS.getPositionalArgIndex() > 0U);
StandardFormatString.append(llvm::utostr(FS.getPositionalArgIndex() - 1));
}
// std::format format argument parts to potentially emit:
// [[fill]align][sign]["#"]["0"][width]["."precision][type]
std::string FormatSpec;
// printf doesn't support specifying the fill character - it's always a
// space, so we never need to generate one.
emitAlignment(FS, FormatSpec);
emitSign(FS, FormatSpec);
emitAlternativeForm(FS, FormatSpec);
if (FS.hasLeadingZeros())
FormatSpec.push_back('0');
emitFieldWidth(FS, FormatSpec);
emitPrecision(FS, FormatSpec);
maybeRotateArguments(FS);
if (!emitType(FS, Arg, FormatSpec))
return false;
if (!FormatSpec.empty()) {
StandardFormatString.push_back(':');
StandardFormatString.append(FormatSpec);
}
StandardFormatString.push_back('}');
return true;
}
/// Called for each format specifier by ParsePrintfString.
bool FormatStringConverter::HandlePrintfSpecifier(const PrintfSpecifier &FS,
const char *StartSpecifier,
unsigned SpecifierLen,
const TargetInfo &Target) {
const size_t StartSpecifierPos = StartSpecifier - PrintfFormatString.data();
assert(StartSpecifierPos + SpecifierLen <= PrintfFormatString.size());
// Everything before the specifier needs copying verbatim
assert(StartSpecifierPos >= PrintfFormatStringPos);
appendFormatText(StringRef(PrintfFormatString.begin() + PrintfFormatStringPos,
StartSpecifierPos - PrintfFormatStringPos));
const ConversionSpecifier::Kind ArgKind =
FS.getConversionSpecifier().getKind();
// Skip over specifier
PrintfFormatStringPos = StartSpecifierPos + SpecifierLen;
assert(PrintfFormatStringPos <= PrintfFormatString.size());
FormatStringNeededRewriting = true;
if (ArgKind == ConversionSpecifier::Kind::nArg) {
// std::print doesn't do the equivalent of %n
return conversionNotPossible("'%n' is not supported in format string");
}
if (ArgKind == ConversionSpecifier::Kind::PrintErrno) {
// std::print doesn't support %m. In theory we could insert a
// strerror(errno) parameter (assuming that libc has a thread-safe
// implementation, which glibc does), but that would require keeping track
// of the input and output parameter indices for position arguments too.
return conversionNotPossible("'%m' is not supported in format string");
}
if (ArgKind == ConversionSpecifier::PercentArg) {
StandardFormatString.push_back('%');
return true;
}
const unsigned ArgIndex = FS.getArgIndex() + ArgsOffset;
if (ArgIndex >= NumArgs) {
// Argument index out of range. Give up.
return conversionNotPossible(
(Twine("argument index ") + Twine(ArgIndex) + " is out of range")
.str());
}
return convertArgument(FS, Args[ArgIndex]->IgnoreImplicitAsWritten(),
StandardFormatString);
}
/// Called at the very end just before applying fixes to capture the last part
/// of the format string.
void FormatStringConverter::finalizeFormatText() {
appendFormatText(
StringRef(PrintfFormatString.begin() + PrintfFormatStringPos,
PrintfFormatString.size() - PrintfFormatStringPos));
PrintfFormatStringPos = PrintfFormatString.size();
// It's clearer to convert printf("Hello\r\n"); to std::print("Hello\r\n")
// than to std::println("Hello\r");
// Use StringRef until C++20 std::string::ends_with() is available.
const auto StandardFormatStringRef = StringRef(StandardFormatString);
if (Config.AllowTrailingNewlineRemoval &&
StandardFormatStringRef.ends_with("\\n") &&
!StandardFormatStringRef.ends_with("\\\\n") &&
!StandardFormatStringRef.ends_with("\\r\\n")) {
UsePrintNewlineFunction = true;
FormatStringNeededRewriting = true;
StandardFormatString.erase(StandardFormatString.end() - 2,
StandardFormatString.end());
}
StandardFormatString.push_back('\"');
}
/// Append literal parts of the format text, reinstating escapes as required.
void FormatStringConverter::appendFormatText(const StringRef Text) {
for (const char Ch : Text) {
if (Ch == '\a')
StandardFormatString += "\\a";
else if (Ch == '\b')
StandardFormatString += "\\b";
else if (Ch == '\f')
StandardFormatString += "\\f";
else if (Ch == '\n')
StandardFormatString += "\\n";
else if (Ch == '\r')
StandardFormatString += "\\r";
else if (Ch == '\t')
StandardFormatString += "\\t";
else if (Ch == '\v')
StandardFormatString += "\\v";
else if (Ch == '\"')
StandardFormatString += "\\\"";
else if (Ch == '\\')
StandardFormatString += "\\\\";
else if (Ch == '{') {
StandardFormatString += "{{";
FormatStringNeededRewriting = true;
} else if (Ch == '}') {
StandardFormatString += "}}";
FormatStringNeededRewriting = true;
} else if (Ch < 32) {
StandardFormatString += "\\x";
StandardFormatString += llvm::hexdigit(Ch >> 4, true);
StandardFormatString += llvm::hexdigit(Ch & 0xf, true);
} else
StandardFormatString += Ch;
}
}
static std::string withoutCStrReplacement(const BoundNodes &CStrRemovalMatch,
ASTContext &Context) {
const auto *Arg = CStrRemovalMatch.getNodeAs<Expr>("arg");
const auto *Member = CStrRemovalMatch.getNodeAs<MemberExpr>("member");
const bool Arrow = Member->isArrow();
return Arrow ? utils::fixit::formatDereference(*Arg, Context)
: tooling::fixit::getText(*Arg, Context).str();
}
/// Called by the check when it is ready to apply the fixes.
void FormatStringConverter::applyFixes(DiagnosticBuilder &Diag,
SourceManager &SM) {
if (FormatStringNeededRewriting) {
Diag << FixItHint::CreateReplacement(
CharSourceRange::getTokenRange(FormatExpr->getBeginLoc(),
FormatExpr->getEndLoc()),
StandardFormatString);
}
// ArgCount is one less than the number of arguments to be rotated.
for (auto [ValueArgIndex, ArgCount] : ArgRotates) {
assert(ValueArgIndex < NumArgs);
assert(ValueArgIndex > ArgCount);
// First move the value argument to the right place. But if there's a
// pending c_str() removal then we must do that at the same time.
if (const auto CStrRemovalMatch =
std::find_if(ArgCStrRemovals.cbegin(), ArgCStrRemovals.cend(),
[ArgStartPos = Args[ValueArgIndex]->getBeginLoc()](
const BoundNodes &Match) {
// This c_str() removal corresponds to the argument
// being moved if they start at the same location.
const Expr *CStrArg = Match.getNodeAs<Expr>("arg");
return ArgStartPos == CStrArg->getBeginLoc();
});
CStrRemovalMatch != ArgCStrRemovals.end()) {
const std::string ArgText =
withoutCStrReplacement(*CStrRemovalMatch, *Context);
assert(!ArgText.empty());
Diag << FixItHint::CreateReplacement(
Args[ValueArgIndex - ArgCount]->getSourceRange(), ArgText);
// That c_str() removal is now dealt with, so we don't need to do it again
ArgCStrRemovals.erase(CStrRemovalMatch);
} else
Diag << tooling::fixit::createReplacement(*Args[ValueArgIndex - ArgCount],
*Args[ValueArgIndex], *Context);
// Now shift down the field width and precision (if either are present) to
// accommodate it.
for (size_t Offset = 0; Offset < ArgCount; ++Offset)
Diag << tooling::fixit::createReplacement(
*Args[ValueArgIndex - Offset], *Args[ValueArgIndex - Offset - 1],
*Context);
// Now we need to modify the ArgFix index too so that we fix the right
// argument. We don't need to care about the width and precision indices
// since they never need fixing.
for (auto &ArgFix : ArgFixes) {
if (ArgFix.ArgIndex == ValueArgIndex)
ArgFix.ArgIndex = ValueArgIndex - ArgCount;
}
}
for (const auto &[ArgIndex, Replacement] : ArgFixes) {
SourceLocation AfterOtherSide =
Lexer::findNextToken(Args[ArgIndex]->getEndLoc(), SM, LangOpts)
->getLocation();
Diag << FixItHint::CreateInsertion(Args[ArgIndex]->getBeginLoc(),
Replacement, true)
<< FixItHint::CreateInsertion(AfterOtherSide, ")", true);
}
for (const auto &Match : ArgCStrRemovals) {
const auto *Call = Match.getNodeAs<CallExpr>("call");
const std::string ArgText = withoutCStrReplacement(Match, *Context);
if (!ArgText.empty())
Diag << FixItHint::CreateReplacement(Call->getSourceRange(), ArgText);
}
}
} // namespace clang::tidy::utils
|