1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
|
====================
Standard C++ Modules
====================
.. contents::
:local:
Introduction
============
The term ``module`` is ambiguous, as it is used to mean multiple things in
Clang. For Clang users, a module may refer to an ``Objective-C Module``,
`Clang Module <Modules.html>`_ (also called a ``Clang Header Module``) or a
``C++20 Module`` (or a ``Standard C++ Module``). The implementation of all
these kinds of modules in Clang shares a lot of code, but from the perspective
of users their semantics and command line interfaces are very different. This
document is an introduction to the use of C++20 modules in Clang. In the
remainder of this document, the term ``module`` will refer to Standard C++20
modules and the term ``Clang module`` will refer to the Clang Modules
extension.
In terms of the C++ Standard, modules consist of two components: "Named
Modules" or "Header Units". This document covers both.
Standard C++ Named modules
==========================
In order to better understand the compiler's behavior, it is helpful to
understand some terms and definitions for readers who are not familiar with the
C++ feature. This document is not a tutorial on C++; it only introduces
necessary concepts to better understand use of modules in a project.
Background and terminology
--------------------------
Module and module unit
~~~~~~~~~~~~~~~~~~~~~~
A module consists of one or more module units. A module unit is a special kind
of translation unit. A module unit should almost always start with a module
declaration. The syntax of the module declaration is:
.. code-block:: c++
[export] module module_name[:partition_name];
Terms enclosed in ``[]`` are optional. ``module_name`` and ``partition_name``
follow the rules for a C++ identifier, except that they may contain one or more
period (``.``) characters. Note that a ``.`` in the name has no semantic
meaning and does not imply any hierarchy.
In this document, module units are classified as:
* Primary module interface unit
* Module implementation unit
* Module partition interface unit
* Internal module partition unit
A primary module interface unit is a module unit whose module declaration is
``export module module_name;`` where ``module_name`` denotes the name of the
module. A module should have one and only one primary module interface unit.
A module implementation unit is a module unit whose module declaration is
``module module_name;``. Multiple module implementation units can be declared
in the same module.
A module partition interface unit is a module unit whose module declaration is
``export module module_name:partition_name;``. The ``partition_name`` should be
unique within any given module.
An internal module partition unit is a module unit whose module
declaration is ``module module_name:partition_name;``. The ``partition_name``
should be unique within any given module.
In this document, we use the following terms:
* A ``module interface unit`` refers to either a ``primary module interface unit``
or a ``module partition interface unit``.
* An ``importable module unit`` refers to either a ``module interface unit`` or
an ``internal module partition unit``.
* A ``module partition unit`` refers to either a ``module partition interface unit``
or an ``internal module partition unit``.
Built Module Interface
~~~~~~~~~~~~~~~~~~~~~~
A ``Built Module Interface`` (or ``BMI``) is the precompiled result of an
importable module unit.
Global module fragment
~~~~~~~~~~~~~~~~~~~~~~
The ``global module fragment`` (or ``GMF``) is the code between the ``module;``
and the module declaration within a module unit.
How to build projects using modules
-----------------------------------
Quick Start
~~~~~~~~~~~
Let's see a "hello world" example that uses modules.
.. code-block:: c++
// Hello.cppm
module;
#include <iostream>
export module Hello;
export void hello() {
std::cout << "Hello World!\n";
}
// use.cpp
import Hello;
int main() {
hello();
return 0;
}
Then, on the command line, invoke Clang like:
.. code-block:: console
$ clang++ -std=c++20 Hello.cppm --precompile -o Hello.pcm
$ clang++ -std=c++20 use.cpp -fmodule-file=Hello=Hello.pcm Hello.pcm -o Hello.out
$ ./Hello.out
Hello World!
In this example, we make and use a simple module ``Hello`` which contains only a
primary module interface unit named ``Hello.cppm``.
A more complex "hello world" example which uses the 4 kinds of module units is:
.. code-block:: c++
// M.cppm
export module M;
export import :interface_part;
import :impl_part;
export void Hello();
// interface_part.cppm
export module M:interface_part;
export void World();
// impl_part.cppm
module;
#include <iostream>
#include <string>
module M:impl_part;
import :interface_part;
std::string W = "World.";
void World() {
std::cout << W << std::endl;
}
// Impl.cpp
module;
#include <iostream>
module M;
void Hello() {
std::cout << "Hello ";
}
// User.cpp
import M;
int main() {
Hello();
World();
return 0;
}
Then, back on the command line, invoke Clang with:
.. code-block:: console
# Precompiling the module
$ clang++ -std=c++20 interface_part.cppm --precompile -o M-interface_part.pcm
$ clang++ -std=c++20 impl_part.cppm --precompile -fprebuilt-module-path=. -o M-impl_part.pcm
$ clang++ -std=c++20 M.cppm --precompile -fprebuilt-module-path=. -o M.pcm
$ clang++ -std=c++20 Impl.cpp -fprebuilt-module-path=. -c -o Impl.o
# Compiling the user
$ clang++ -std=c++20 User.cpp -fprebuilt-module-path=. -c -o User.o
# Compiling the module and linking it together
$ clang++ -std=c++20 M-interface_part.pcm -fprebuilt-module-path=. -c -o M-interface_part.o
$ clang++ -std=c++20 M-impl_part.pcm -fprebuilt-module-path=. -c -o M-impl_part.o
$ clang++ -std=c++20 M.pcm -fprebuilt-module-path=. -c -o M.o
$ clang++ User.o M-interface_part.o M-impl_part.o M.o Impl.o -o a.out
We explain the options in the following sections.
How to enable standard C++ modules
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Standard C++ modules are enabled automatically when the language standard mode
is ``-std=c++20`` or newer.
How to produce a BMI
~~~~~~~~~~~~~~~~~~~~
To generate a BMI for an importable module unit, use either the ``--precompile``
or ``-fmodule-output`` command line options.
The ``--precompile`` option generates the BMI as the output of the compilation
with the output path specified using the ``-o`` option.
The ``-fmodule-output`` option generates the BMI as a by-product of the
compilation. If ``-fmodule-output=`` is specified, the BMI will be emitted to
the specified location. If ``-fmodule-output`` and ``-c`` are specified, the
BMI will be emitted in the directory of the output file with the name of the
input file with the extension ``.pcm``. Otherwise, the BMI will be emitted in
the working directory with the name of the input file with the extension
``.pcm``.
Generating BMIs with ``--precompile`` is referred to as two-phase compilation
because it takes two steps to compile a source file to an object file.
Generating BMIs with ``-fmodule-output`` is called one-phase compilation. The
one-phase compilation model is simpler for build systems to implement while the
two-phase compilation has the potential to compile faster due to higher
parallelism. As an example, if there are two module units ``A`` and ``B``, and
``B`` depends on ``A``, the one-phase compilation model needs to compile them
serially, whereas the two-phase compilation model is able to be compiled as
soon as ``A.pcm`` is available, and thus can be compiled simultaneously as the
``A.pcm`` to ``A.o`` compilation step.
File name requirements
~~~~~~~~~~~~~~~~~~~~~~
By convention, ``importable module unit`` files should use ``.cppm`` (or
``.ccm``, ``.cxxm``, or ``.c++m``) as a file extension.
``Module implementation unit`` files should use ``.cpp`` (or ``.cc``, ``.cxx``,
or ``.c++``) as a file extension.
A BMI should use ``.pcm`` as a file extension. The file name of the BMI for a
``primary module interface unit`` should be ``module_name.pcm``. The file name
of a BMI for a ``module partition unit`` should be
``module_name-partition_name.pcm``.
Clang may fail to build the module if different extensions are used. For
example, if the filename of an ``importable module unit`` ends with ``.cpp``
instead of ``.cppm``, then Clang cannot generate a BMI for the
``importable module unit`` with the ``--precompile`` option because the
``--precompile`` option would only run the preprocessor (``-E``). If using a
different extension than the conventional one for an ``importable module unit``
you can specify ``-x c++-module`` before the file. For example,
.. code-block:: c++
// Hello.cpp
module;
#include <iostream>
export module Hello;
export void hello() {
std::cout << "Hello World!\n";
}
// use.cpp
import Hello;
int main() {
hello();
return 0;
}
In this example, the extension used by the ``module interface`` is ``.cpp``
instead of ``.cppm``, so it cannot be compiled like the previous example, but
it can be compiled with:
.. code-block:: console
$ clang++ -std=c++20 -x c++-module Hello.cpp --precompile -o Hello.pcm
$ clang++ -std=c++20 use.cpp -fprebuilt-module-path=. Hello.pcm -o Hello.out
$ ./Hello.out
Hello World!
Module name requirements
~~~~~~~~~~~~~~~~~~~~~~~~
..
[module.unit]p1:
All module-names either beginning with an identifier consisting of std followed by zero
or more digits or containing a reserved identifier ([lex.name]) are reserved and shall not
be specified in a module-declaration; no diagnostic is required. If any identifier in a reserved
module-name is a reserved identifier, the module name is reserved for use by C++ implementations;
otherwise it is reserved for future standardization.
Therefore, none of the following names are valid by default:
.. code-block:: text
std
std1
std.foo
__test
// and so on ...
Using a reserved module name is strongly discouraged, but
``-Wno-reserved-module-identifier`` can be used to suppress the warning.
Specifying dependent BMIs
~~~~~~~~~~~~~~~~~~~~~~~~~
There are 3 ways to specify a dependent BMI:
1. ``-fprebuilt-module-path=<path/to/directory>``.
2. ``-fmodule-file=<path/to/BMI>`` (Deprecated).
3. ``-fmodule-file=<module-name>=<path/to/BMI>``.
The ``-fprebuilt-module-path`` option specifies the path to search for
dependent BMIs. Multiple paths may be specified, similar to using ``-I`` to
specify a search path for header files. When importing a module ``M``, the
compiler looks for ``M.pcm`` in the directories specified by
``-fprebuilt-module-path``. Similarly, when importing a partition module unit
``M:P``, the compiler looks for ``M-P.pcm`` in the directories specified by
``-fprebuilt-module-path``.
The ``-fmodule-file=<path/to/BMI>`` option causes the compiler to load the
specified BMI directly. The ``-fmodule-file=<module-name>=<path/to/BMI>``
option causes the compiler to load the specified BMI for the module specified
by ``<module-name>`` when necessary. The main difference is that
``-fmodule-file=<path/to/BMI>`` will load the BMI eagerly, whereas
``-fmodule-file=<module-name>=<path/to/BMI>`` will only load the BMI lazily,
as will ``-fprebuilt-module-path``. The ``-fmodule-file=<path/to/BMI>`` option
for named modules is deprecated and will be removed in a future version of
Clang.
When these options are specified in the same invocation of the compiler, the
``-fmodule-file=<path/to/BMI>`` option takes precedence over
``-fmodule-file=<module-name>=<path/to/BMI>``, which takes precedence over
``-fprebuilt-module-path=<path/to/directory>``.
Note: all dependant BMIs must be specified explicitly, either directly or
indirectly dependent BMIs explicitly. See
https://github.com/llvm/llvm-project/issues/62707 for details.
When compiling a ``module implementation unit``, the BMI of the corresponding
``primary module interface unit`` must be specified because a module
implementation unit implicitly imports the primary module interface unit.
[module.unit]p8
A module-declaration that contains neither an export-keyword nor a module-partition implicitly
imports the primary module interface unit of the module as if by a module-import-declaration.
The ``-fprebuilt-module-path=<path/to/directory>``, ``-fmodule-file=<path/to/BMI>``,
and ``-fmodule-file=<module-name>=<path/to/BMI>`` options may be specified
multiple times. For example, the command line to compile ``M.cppm`` in
the previous example could be rewritten as:
.. code-block:: console
$ clang++ -std=c++20 M.cppm --precompile -fmodule-file=M:interface_part=M-interface_part.pcm -fmodule-file=M:impl_part=M-impl_part.pcm -o M.pcm
When there are multiple ``-fmodule-file=<module-name>=`` options for the same
``<module-name>``, the last ``-fmodule-file=<module-name>=`` overrides the
previous ``-fmodule-file=<module-name>=`` option.
Remember that module units still have an object counterpart to the BMI
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
While module interfaces resemble traditional header files, they still require
compilation. Module units are translation units, and need to be compiled to
object files, which then need to be linked together as the following examples
show.
For example, the traditional compilation processes for headers are like:
.. code-block:: text
src1.cpp -+> clang++ src1.cpp --> src1.o ---,
hdr1.h --' +-> clang++ src1.o src2.o -> executable
hdr2.h --, |
src2.cpp -+> clang++ src2.cpp --> src2.o ---'
And the compilation process for module units are like:
.. code-block:: text
src1.cpp ----------------------------------------+> clang++ src1.cpp -------> src1.o -,
(header unit) hdr1.h -> clang++ hdr1.h ... -> hdr1.pcm --' +-> clang++ src1.o mod1.o src2.o -> executable
mod1.cppm -> clang++ mod1.cppm ... -> mod1.pcm --,--> clang++ mod1.pcm ... -> mod1.o -+
src2.cpp ----------------------------------------+> clang++ src2.cpp -------> src2.o -'
As the diagrams show, we need to compile the BMI from module units to object
files and then link the object files. (However, this cannot be done for the BMI
from header units. See the section on :ref:`header units <header-units>` for
more details.
BMIs cannot be shipped in an archive to create a module library. Instead, the
BMIs(``*.pcm``) are compiled into object files(``*.o``) and those object files
are added to the archive instead.
clang-cl
~~~~~~~~
``clang-cl`` supports the same options as ``clang++`` for modules as detailed above;
there is no need to prefix these options with ``/clang:``. Note that ``cl.exe``
`options to emit/consume IFC files <https://devblogs.microsoft.com/cppblog/using-cpp-modules-in-msvc-from-the-command-line-part-1/>` are *not* supported.
The resultant precompiled modules are also not compatible for use with ``cl.exe``.
We recommend that build system authors use the above-mentioned ``clang++`` options with ``clang-cl`` to build modules.
Consistency Requirements
~~~~~~~~~~~~~~~~~~~~~~~~
Modules can be viewed as a kind of cache to speed up compilation. Thus, like
other caching techniques, it is important to maintain cache consistency which
is why Clang does very strict checking for consistency.
Options consistency
^^^^^^^^^^^^^^^^^^^
Compiler options related to the language dialect for a module unit and its
non-module-unit uses need to be consistent. Consider the following example:
.. code-block:: c++
// M.cppm
export module M;
// Use.cpp
import M;
.. code-block:: console
$ clang++ -std=c++20 M.cppm --precompile -o M.pcm
$ clang++ -std=c++23 Use.cpp -fprebuilt-module-path=.
Clang rejects the example due to the inconsistent language standard modes. Not
all compiler options are language dialect options, though. For example:
.. code-block:: console
$ clang++ -std=c++20 M.cppm --precompile -o M.pcm
# Inconsistent optimization level.
$ clang++ -std=c++20 -O3 Use.cpp -fprebuilt-module-path=.
# Inconsistent debugging level.
$ clang++ -std=c++20 -g Use.cpp -fprebuilt-module-path=.
Although the optimization and debugging levels are inconsistent, these
compilations are accepted because the compiler options do not impact the
language dialect.
Note that the compiler **currently** doesn't reject inconsistent macro
definitions (this may change in the future). For example:
.. code-block:: console
$ clang++ -std=c++20 M.cppm --precompile -o M.pcm
# Inconsistent optimization level.
$ clang++ -std=c++20 -O3 -DNDEBUG Use.cpp -fprebuilt-module-path=.
Currently, Clang accepts the above example, though it may produce surprising
results if the debugging code depends on consistent use of ``NDEBUG`` in other
translation units.
Source Files Consistency
^^^^^^^^^^^^^^^^^^^^^^^^
Clang may open the input files\ :sup:`1`` of a BMI during the compilation. This implies that
when Clang consumes a BMI, all the input files need to be present in the original path
and with the original contents.
To overcome these requirements and simplify cases like distributed builds and sandboxed
builds, users can use the ``-fmodules-embed-all-files`` flag to embed all input files
into the BMI so that Clang does not need to open the corresponding file on disk.
When the ``-fmodules-embed-all-files`` flag are enabled, Clang explicitly emits the source
code into the BMI file, the contents of the BMI file contain a sufficiently verbose
representation to reproduce the original source file.
:sup:`1`` Input files: The source files which took part in the compilation of the BMI.
For example:
.. code-block:: c++
// M.cppm
module;
#include "foo.h"
export module M;
// foo.h
#pragma once
#include "bar.h"
The ``M.cppm``, ``foo.h`` and ``bar.h`` are input files for the BMI of ``M.cppm``.
Object definition consistency
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The C++ language requires that declarations of the same entity in different
translation units have the same definition, which is known as the One
Definition Rule (ODR). Without modules, the compiler cannot perform strong ODR
violation checking because it only sees one translation unit at a time. With
the use of modules, the compiler can perform checks for ODR violations across
translation units.
However, the current ODR checking mechanisms are not perfect. There are a
significant number of false positive ODR violation diagnostics, where the
compiler incorrectly diagnoses two identical declarations as having different
definitions. Further, true positive ODR violations are not always reported.
To give a better user experience, improve compilation performance, and for
consistency with MSVC, ODR checking of declarations in the global module
fragment is disabled by default. These checks can be enabled by specifying
``-Xclang -fno-skip-odr-check-in-gmf`` when compiling. If the check is enabled
and you encounter incorrect or missing diagnostics, please report them via the
`community issue tracker <https://github.com/llvm/llvm-project/issues/>`_.
Privacy Issue
-------------
BMIs are not and should not be treated as an information hiding mechanism.
They should always be assumed to contain all the information that was used to
create them, in a recoverable form.
ABI Impacts
-----------
This section describes the new ABI changes brought by modules. Only changes to
the Itanium C++ ABI are covered.
Name Mangling
~~~~~~~~~~~~~
The declarations in a module unit which are not in the global module fragment
have new linkage names.
For example,
.. code-block:: c++
export module M;
namespace NS {
export int foo();
}
The linkage name of ``NS::foo()`` is ``_ZN2NSW1M3fooEv``. This couldn't be
demangled by previous versions of the debugger or demangler. As of LLVM 15.x,
``llvm-cxxfilt`` can be used to demangle this:
.. code-block:: console
$ llvm-cxxfilt _ZN2NSW1M3fooEv
NS::foo@M()
The result should be read as ``NS::foo()`` in module ``M``.
The ABI implies that something cannot be declared in a module unit and defined
in a non-module unit (or vice-versa), as this would result in linking errors.
Despite this, it is possible to implement declarations with a compatible ABI in
a module unit by using a language linkage specifier because the declarations in
the language linkage specifier are attached to the global module fragment. For
example:
.. code-block:: c++
export module M;
namespace NS {
export extern "C++" int foo();
}
Now the linkage name of ``NS::foo()`` will be ``_ZN2NS3fooEv``.
Module Initializers
~~~~~~~~~~~~~~~~~~~
All importable module units are required to emit an initializer function to
handle the dynamic initialization of non-inline variables in the module unit.
The importable module unit has to emit the initializer even if there is no
dynamic initialization; otherwise, the importer may call a nonexistent
function. The initializer function emits calls to imported modules first
followed by calls to all to of the dynamic initializers in the current module
unit.
Translation units that explicitly or implicitly import a named module must call
the initializer functions of the imported named module within the sequence of
the dynamic initializers in the translation unit. Initializations of entities
at namespace scope are appearance-ordered. This (recursively) extends to
imported modules at the point of appearance of the import declaration.
If the imported module is known to be empty, the call to its initializer may be
omitted. Additionally, if the imported module is known to have already been
imported, the call to its initializer may be omitted.
Reduced BMI
-----------
To support the two-phase compilation model, Clang puts everything needed to
produce an object into the BMI. However, other consumers of the BMI generally
don't need that information. This makes the BMI larger and may introduce
unnecessary dependencies for the BMI. To mitigate the problem, Clang has a
compiler option to reduce the information contained in the BMI. These two
formats are known as Full BMI and Reduced BMI, respectively.
Users can use the ``-fmodules-reduced-bmi`` option to produce a
Reduced BMI.
For the one-phase compilation model (CMake implements this model), with
``-fmodules-reduced-bmi``, the generated BMI will be a Reduced
BMI automatically. (The output path of the BMI is specified by
``-fmodule-output=`` as usual with the one-phase compilation model).
It is also possible to produce a Reduced BMI with the two-phase compilation
model. When ``-fmodules-reduced-bmi``, ``--precompile``, and
``-fmodule-output=`` are specified, the generated BMI specified by ``-o`` will
be a full BMI and the BMI specified by ``-fmodule-output=`` will be a Reduced
BMI. The dependency graph in this case would look like:
.. code-block:: none
module-unit.cppm --> module-unit.full.pcm -> module-unit.o
|
-> module-unit.reduced.pcm -> consumer1.cpp
-> consumer2.cpp
-> ...
-> consumer_n.cpp
Clang does not emit diagnostics when ``-fmodules-reduced-bmi`` is
used with a non-module unit. This design permits users of the one-phase
compilation model to try using reduced BMIs without needing to modify the build
system. The two-phase compilation module requires build system support.
In a Reduced BMI, Clang does not emit unreachable entities from the global
module fragment, or definitions of non-inline functions and non-inline
variables. This may not be a transparent change.
Consider the following example:
.. code-block:: c++
// foo.h
namespace N {
struct X {};
int d();
int e();
inline int f(X, int = d()) { return e(); }
int g(X);
int h(X);
}
// M.cppm
module;
#include "foo.h"
export module M;
template<typename T> int use_f() {
N::X x; // N::X, N, and :: are decl-reachable from use_f
return f(x, 123); // N::f is decl-reachable from use_f,
// N::e is indirectly decl-reachable from use_f
// because it is decl-reachable from N::f, and
// N::d is decl-reachable from use_f
// because it is decl-reachable from N::f
// even though it is not used in this call
}
template<typename T> int use_g() {
N::X x; // N::X, N, and :: are decl-reachable from use_g
return g((T(), x)); // N::g is not decl-reachable from use_g
}
template<typename T> int use_h() {
N::X x; // N::X, N, and :: are decl-reachable from use_h
return h((T(), x)); // N::h is not decl-reachable from use_h, but
// N::h is decl-reachable from use_h<int>
}
int k = use_h<int>();
// use_h<int> is decl-reachable from k, so
// N::h is decl-reachable from k
// M-impl.cpp
module M;
int a = use_f<int>(); // OK
int b = use_g<int>(); // error: no viable function for call to g;
// g is not decl-reachable from purview of
// module M's interface, so is discarded
int c = use_h<int>(); // OK
In the above example, the function definition of ``N::g`` is elided from the
Reduced BMI of ``M.cppm``. Then the use of ``use_g<int>`` in ``M-impl.cpp``
fails to instantiate. For such issues, users can add references to ``N::g`` in
the `module purview <https://eel.is/c++draft/module.unit#5>`_ of ``M.cppm`` to
ensure it is reachable, e.g. ``using N::g;``.
Support for Reduced BMIs is still experimental, but it may become the default
in the future. The expected roadmap for Reduced BMIs as of Clang 19.x is:
1. ``-fexperimental-modules-reduced-bmi`` was introduced in v19.x
2. For v20.x, ``-fmodules-reduced-bmi`` is introduced as an equivalent non-experimental
option. It is expected to stay opt-in for 1~2 releases, though the period depends
on user feedback and may be extended.
3. Finally, ``-fmodules-reduced-bmi`` will be the default. When that time
comes, the term BMI will refer to the Reduced BMI and the Full BMI will only
be meaningful to build systems which elect to support two-phase compilation.
Experimental Non-Cascading Changes
----------------------------------
This section is primarily for build system vendors. For end compiler users,
if you don't want to read it all, this is helpful to reduce recompilations.
We encourage build system vendors and end users try this out and bring feedback.
Before Clang 19, a change in BMI of any (transitive) dependency would cause the
outputs of the BMI to change. Starting with Clang 19, changes to non-direct
dependencies should not directly affect the output BMI, unless they affect the
results of the compilations. We expect that there are many more opportunities
for this optimization than we currently have realized and would appreaciate
feedback about missed optimization opportunities. For example,
.. code-block:: c++
// m-partA.cppm
export module m:partA;
// m-partB.cppm
export module m:partB;
export int getB() { return 44; }
// m.cppm
export module m;
export import :partA;
export import :partB;
// useBOnly.cppm
export module useBOnly;
import m;
export int B() {
return getB();
}
// Use.cc
import useBOnly;
int get() {
return B();
}
To compile the project (for brevity, some commands are omitted.):
.. code-block:: console
$ clang++ -std=c++20 m-partA.cppm --precompile -o m-partA.pcm
$ clang++ -std=c++20 m-partB.cppm --precompile -o m-partB.pcm
$ clang++ -std=c++20 m.cppm --precompile -o m.pcm -fprebuilt-module-path=.
$ clang++ -std=c++20 useBOnly.cppm --precompile -o useBOnly.pcm -fprebuilt-module-path=.
$ md5sum useBOnly.pcm
07656bf4a6908626795729295f9608da useBOnly.pcm
If the interface of ``m-partA.cppm`` is changed to:
.. code-block:: c++
// m-partA.v1.cppm
export module m:partA;
export int getA() { return 43; }
and the BMI for ``useBOnly`` is recompiled as in:
.. code-block:: console
$ clang++ -std=c++20 m-partA.cppm --precompile -o m-partA.pcm
$ clang++ -std=c++20 m-partB.cppm --precompile -o m-partB.pcm
$ clang++ -std=c++20 m.cppm --precompile -o m.pcm -fprebuilt-module-path=.
$ clang++ -std=c++20 useBOnly.cppm --precompile -o useBOnly.pcm -fprebuilt-module-path=.
$ md5sum useBOnly.pcm
07656bf4a6908626795729295f9608da useBOnly.pcm
then the contents of ``useBOnly.pcm`` remain unchanged.
Consequently, if the build system only bases recompilation decisions on directly imported modules,
it becomes possible to skip the recompilation of ``Use.cc``.
It should be fine because the altered interfaces do not affect ``Use.cc`` in any way;
the changes do not cascade.
When ``Clang`` generates a BMI, it records the hash values of all potentially contributory BMIs
for the BMI being produced. This ensures that build systems are not required to consider
transitively imported modules when deciding whether to recompile.
What is considered to be a potential contributory BMIs is currently unspecified.
However, it is a severe bug for a BMI to remain unchanged following an observable change
that affects its consumers.
Build systems may utilize this optimization by doing an update-if-changed operation to the BMI
that is consumed from the BMI that is output by the compiler.
We encourage build systems to add an experimental mode that
reuses the cached BMI when **direct** dependencies did not change,
even if **transitive** dependencies did change.
Given there are potential compiler bugs, we recommend that build systems
support this feature as a configurable option so that users
can go back to the transitive change mode safely at any time.
Interactions with Reduced BMI
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With reduced BMI, non-cascading changes can be more powerful. For example,
.. code-block:: c++
// A.cppm
export module A;
export int a() { return 44; }
// B.cppm
export module B;
import A;
export int b() { return a(); }
.. code-block:: console
$ clang++ -std=c++20 A.cppm -c -fmodule-output=A.pcm -fmodules-reduced-bmi -o A.o
$ clang++ -std=c++20 B.cppm -c -fmodule-output=B.pcm -fmodules-reduced-bmi -o B.o -fmodule-file=A=A.pcm
$ md5sum B.pcm
6c2bd452ca32ab418bf35cd141b060b9 B.pcm
And let's change the implementation for ``A.cppm`` into:
.. code-block:: c++
export module A;
int a_impl() { return 99; }
export int a() { return a_impl(); }
and recompile the example:
.. code-block:: console
$ clang++ -std=c++20 A.cppm -c -fmodule-output=A.pcm -fmodules-reduced-bmi -o A.o
$ clang++ -std=c++20 B.cppm -c -fmodule-output=B.pcm -fmodules-reduced-bmi -o B.o -fmodule-file=A=A.pcm
$ md5sum B.pcm
6c2bd452ca32ab418bf35cd141b060b9 B.pcm
We should find the contents of ``B.pcm`` remains the same. In this case, the build system is
allowed to skip recompilations of TUs which solely and directly depend on module ``B``.
This only happens with a reduced BMI. With reduced BMIs, we won't record the function body
of ``int b()`` in the BMI for ``B`` so that the module ``A`` doesn't contribute to the BMI of ``B``
and we have less dependencies.
Performance Tips
----------------
Reduce duplications
~~~~~~~~~~~~~~~~~~~
While it is valid to have duplicated declarations in the global module fragments
of different module units, it is not free for Clang to deal with the duplicated
declarations. A translation unit will compile more slowly if there is a lot of
duplicated declarations between the translation unit and modules it imports.
For example:
.. code-block:: c++
// M-partA.cppm
module;
#include "big.header.h"
export module M:partA;
...
// M-partB.cppm
module;
#include "big.header.h"
export module M:partB;
...
// other partitions
...
// M-partZ.cppm
module;
#include "big.header.h"
export module M:partZ;
...
// M.cppm
export module M;
export import :partA;
export import :partB;
...
export import :partZ;
// use.cpp
import M;
... // use declarations from module M.
When ``big.header.h`` is big enough and there are a lot of partitions, the
compilation of ``use.cpp`` may be significantly slower than the following
approach:
.. code-block:: c++
module;
#include "big.header.h"
export module m:big.header.wrapper;
export ... // export the needed declarations
// M-partA.cppm
export module M:partA;
import :big.header.wrapper;
...
// M-partB.cppm
export module M:partB;
import :big.header.wrapper;
...
// other partitions
...
// M-partZ.cppm
export module M:partZ;
import :big.header.wrapper;
...
// M.cppm
export module M;
export import :partA;
export import :partB;
...
export import :partZ;
// use.cpp
import M;
... // use declarations from module M.
Reducing the duplication from textual includes is what improves compile-time
performance.
To help users to identify such issues, we add a warning ``-Wdecls-in-multiple-modules``.
This warning is disabled by default and it needs to be explicitly enabled or by ``-Weverything``.
Transitioning to modules
------------------------
It is best for new code and libraries to use modules from the start if
possible. However, it may be a breaking change for existing code or libraries
to switch to modules. As a result, many existing libraries need to provide
both headers and module interfaces for a while to not break existing users.
This section suggests some suggestions on how to ease the transition process
for existing libraries. **Note that this information is only intended as
guidance, rather than as requirements to use modules in Clang.** It presumes
the project is starting with no module-based dependencies.
ABI non-breaking styles
~~~~~~~~~~~~~~~~~~~~~~~
export-using style
^^^^^^^^^^^^^^^^^^
.. code-block:: c++
module;
#include "header_1.h"
#include "header_2.h"
...
#include "header_n.h"
export module your_library;
export namespace your_namespace {
using decl_1;
using decl_2;
...
using decl_n;
}
This example shows how to include all the headers containing declarations which
need to be exported, and uses `using` declarations in an `export` block to
produce the module interface.
export extern-C++ style
^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: c++
module;
#include "third_party/A/headers.h"
#include "third_party/B/headers.h"
...
#include "third_party/Z/headers.h"
export module your_library;
#define IN_MODULE_INTERFACE
extern "C++" {
#include "header_1.h"
#include "header_2.h"
...
#include "header_n.h"
}
Headers (from ``header_1.h`` to ``header_n.h``) need to define the macro:
.. code-block:: c++
#ifdef IN_MODULE_INTERFACE
#define EXPORT export
#else
#define EXPORT
#endif
and put ``EXPORT`` on the declarations you want to export.
Also, it is recommended to refactor headers to include third-party headers
conditionally:
.. code-block:: c++
#ifndef IN_MODULE_INTERFACE
#include "third_party/A/headers.h"
#endif
#include "header_x.h"
...
This can be helpful because it gives better diagnostic messages if the module
interface unit is not properly updated when modifying code.
This approach works because the declarations with language linkage are attached
to the global module. Thus, the ABI of the modular form of the library does not
change.
While this style is more involved than the export-using style, it makes it
easier to further refactor the library to other styles.
ABI breaking style
~~~~~~~~~~~~~~~~~~
The term ``ABI breaking`` may sound like a bad approach. However, this style
forces consumers of the library use it in a consistent way. e.g., either always
include headers for the library or always import modules. The style prevents
the ability to mix includes and imports for the library.
The pattern for ABI breaking style is similar to the export extern-C++ style.
.. code-block:: c++
module;
#include "third_party/A/headers.h"
#include "third_party/B/headers.h"
...
#include "third_party/Z/headers.h"
export module your_library;
#define IN_MODULE_INTERFACE
#include "header_1.h"
#include "header_2.h"
...
#include "header_n.h"
#if the number of .cpp files in your project are small
module :private;
#include "source_1.cpp"
#include "source_2.cpp"
...
#include "source_n.cpp"
#else // the number of .cpp files in your project are a lot
// Using all the declarations from third-party libraries which are
// used in the .cpp files.
namespace third_party_namespace {
using third_party_decl_used_in_cpp_1;
using third_party_decl_used_in_cpp_2;
...
using third_party_decl_used_in_cpp_n;
}
#endif
(And add `EXPORT` and conditional include to the headers as suggested in the
export extern-C++ style section.)
The ABI with modules is different and thus we need to compile the source files
into the new ABI. This is done by an additional part of the interface unit:
.. code-block:: c++
#if the number of .cpp files in your project are small
module :private;
#include "source_1.cpp"
#include "source_2.cpp"
...
#include "source_n.cpp"
#else // the number of .cpp files in your project are a lot
// Using all the declarations from third-party libraries which are
// used in the .cpp files.
namespace third_party_namespace {
using third_party_decl_used_in_cpp_1;
using third_party_decl_used_in_cpp_2;
...
using third_party_decl_used_in_cpp_n;
}
#endif
If the number of source files is small, everything can be put in the private
module fragment directly (it is recommended to add conditional includes to the
source files as well). However, compile time performance will be bad if there
are a lot of source files to compile.
**Note that the private module fragment can only be in the primary module
interface unit and the primary module interface unit containing the private
module fragment should be the only module unit of the corresponding module.**
In this case, source files (.cpp files) must be converted to module
implementation units:
.. code-block:: c++
#ifndef IN_MODULE_INTERFACE
// List all the includes here.
#include "third_party/A/headers.h"
...
#include "header.h"
#endif
module your_library;
// Following off should be unchanged.
...
The module implementation unit will import the primary module implicitly. Do
not include any headers in the module implementation units as it avoids
duplicated declarations between translation units. This is why non-exported
using declarations should be added from third-party libraries in the primary
module interface unit.
If the library is provided as ``libyour_library.so``, a modular library (e.g.,
``libyour_library_modules.so``) may also need to be provided for ABI
compatibility.
What if there are headers only included by the source files
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The above practice may be problematic if there are headers only included by the
source files. When using a private module fragment, this issue may be solved by
including those headers in the private module fragment. While it is OK to solve
it by including the implementation headers in the module purview when using
implementation module units, it may be suboptimal because the primary module
interface units now contain entities that do not belong to the interface.
This can potentially be improved by introducing a module partition
implementation unit. An internal module partition unit is an importable
module unit which is internal to the module itself.
Providing a header to skip parsing redundant headers
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Many redeclarations shared between translation units causes Clang to have
slower compile-time performance. Further, there are known issues with
`include after import <https://github.com/llvm/llvm-project/issues/61465>`_.
Even when that issue is resolved, users may still get slower compilation speed
and larger BMIs. For these reasons, it is recommended to not include headers
after importing the corresponding module. However, it is not always easy if the
library is included by other dependencies, as in:
.. code-block:: c++
#include "third_party/A.h" // #include "your_library/a_header.h"
import your_library;
or
.. code-block:: c++
import your_library;
#include "third_party/A.h" // #include "your_library/a_header.h"
For such cases, it is best if the library providing both module and header
interfaces also provides a header which skips parsing so that the library can
be imported with the following approach that skips redundant redeclarations:
.. code-block:: c++
import your_library;
#include "your_library_imported.h"
#include "third_party/A.h" // #include "your_library/a_header.h" but got skipped
The implementation of ``your_library_imported.h`` can be a set of controlling
macros or an overall controlling macro if using `#pragma once`. Then headers
can be refactored to:
.. code-block:: c++
#pragma once
#ifndef YOUR_LIBRARY_IMPORTED
...
#endif
If the modules imported by the library provide such headers, remember to add
them to ``your_library_imported.h`` too.
Importing modules
~~~~~~~~~~~~~~~~~
When there are dependent libraries providing modules, they should be imported
in your module as well. Many existing libraries will fall into this category
once the ``std`` module is more widely available.
All dependent libraries providing modules
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Of course, most of the complexity disappears if all the dependent libraries
provide modules.
Headers need to be converted to include third-party headers conditionally. Then,
for the export-using style:
.. code-block:: c++
module;
import modules_from_third_party;
#define IN_MODULE_INTERFACE
#include "header_1.h"
#include "header_2.h"
...
#include "header_n.h"
export module your_library;
export namespace your_namespace {
using decl_1;
using decl_2;
...
using decl_n;
}
or, for the export extern-C++ style:
.. code-block:: c++
export module your_library;
import modules_from_third_party;
#define IN_MODULE_INTERFACE
extern "C++" {
#include "header_1.h"
#include "header_2.h"
...
#include "header_n.h"
}
or, for the ABI-breaking style,
.. code-block:: c++
export module your_library;
import modules_from_third_party;
#define IN_MODULE_INTERFACE
#include "header_1.h"
#include "header_2.h"
...
#include "header_n.h"
#if the number of .cpp files in your project are small
module :private;
#include "source_1.cpp"
#include "source_2.cpp"
...
#include "source_n.cpp"
#endif
Non-exported ``using`` declarations are unnecessary if using implementation
module units. Instead, third-party modules can be imported directly in
implementation module units.
Partial dependent libraries providing modules
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
If the library has to mix the use of ``include`` and ``import`` in its module,
the primary goal is still the removal of duplicated declarations in translation
units as much as possible. If the imported modules provide headers to skip
parsing their headers, those should be included after the import. If the
imported modules don't provide such a header, one can be made manually for
improved compile time performance.
Reachability of internal partition units
----------------------------------------
The internal partition units are sometimes called implementation partition units in other documentation.
However, the name may be confusing since implementation partition units are not implementation
units.
According to `[module.reach]p1 <https://eel.is/c++draft/module.reach#1>`_ and
`[module.reach]p2 <https://eel.is/c++draft/module.reach#2>`_ (from N4986):
A translation unit U is necessarily reachable from a point P if U is a module
interface unit on which the translation unit containing P has an interface
dependency, or the translation unit containing P imports U, in either case
prior to P.
All translation units that are necessarily reachable are reachable. Additional
translation units on which the point within the program has an interface
dependency may be considered reachable, but it is unspecified which are and
under what circumstances.
For example,
.. code-block:: c++
// a.cpp
import B;
int main()
{
g<void>();
}
// b.cppm
export module B;
import :C;
export template <typename T> inline void g() noexcept
{
return f<T>();
}
// c.cppm
module B:C;
template<typename> inline void f() noexcept {}
The internal partition unit ``c.cppm`` is not necessarily reachable by
``a.cpp`` because ``c.cppm`` is not a module interface unit and ``a.cpp``
doesn't import ``c.cppm``. This leaves it up to the compiler to decide if
``c.cppm`` is reachable by ``a.cpp`` or not. Clang's behavior is that
indirectly imported internal partition units are not reachable.
The suggested approach for using an internal partition unit in Clang is
to only import them in the implementation unit.
Known Issues
------------
The following describes issues in the current implementation of modules. Please
see
`the issues list for modules <https://github.com/llvm/llvm-project/labels/clang%3Amodules>`_
for a list of issues or to file a new issue if you don't find an existing one.
When creating a new issue for standard C++ modules, please start the title with
``[C++20] [Modules]`` (or ``[C++23] [Modules]``, etc) and add the label
``clang:modules`` if possible.
A high-level overview of support for standards features, including modules, can
be found on the `C++ Feature Status <https://clang.llvm.org/cxx_status.html>`_
page.
Including headers after import is not well-supported
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The following example is accepted:
.. code-block:: c++
#include <iostream>
import foo; // assume module 'foo' contain the declarations from `<iostream>`
int main(int argc, char *argv[])
{
std::cout << "Test\n";
return 0;
}
but if the order of ``#include <iostream>`` and ``import foo;`` is reversed,
then the code is currently rejected:
.. code-block:: c++
import foo; // assume module 'foo' contain the declarations from `<iostream>`
#include <iostream>
int main(int argc, char *argv[])
{
std::cout << "Test\n";
return 0;
}
Both of the above examples should be accepted.
This is a limitation of the implementation. In the first example, the compiler
will see and parse ``<iostream>`` first then it will see the ``import``. In
this case, ODR checking and declaration merging will happen in the
deserializer. In the second example, the compiler will see the ``import`` first
and the ``#include`` second which results in ODR checking and declarations
merging happening in the semantic analyzer. This is due to a divergence in the
implementation path. This is tracked by
`#61465 <https://github.com/llvm/llvm-project/issues/61465>`_.
Ignored ``preferred_name`` Attribute
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When Clang writes BMIs, it will ignore the ``preferred_name`` attribute on
declarations which use it. Thus, the preferred name will not be displayed in
the debugger as expected. This is tracked by
`#56490 <https://github.com/llvm/llvm-project/issues/56490>`_.
Don't emit macros about module declaration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is covered by `P1857R3 <https://wg21.link/P1857R3>`_. It is mentioned here
because we want users to be aware that we don't yet implement it.
A direct approach to write code that can be compiled by both modules and
non-module builds may look like:
.. code-block:: c++
MODULE
IMPORT header_name
EXPORT_MODULE MODULE_NAME;
IMPORT header_name
EXPORT ...
The intent of this is that this file can be compiled like a module unit or a
non-module unit depending on the definition of some macros. However, this usage
is forbidden by P1857R3 which is not yet implemented in Clang. This means that
is possible to write invalid modules which will no longer be accepted once
P1857R3 is implemented. This is tracked by
`#54047 <https://github.com/llvm/llvm-project/issues/54047>`_.
Until then, it is recommended not to mix macros with module declarations.
In consistent filename suffix requirement for importable module units
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Currently, Clang requires the file name of an ``importable module unit`` to
have ``.cppm`` (or ``.ccm``, ``.cxxm``, ``.c++m``) as the file extension.
However, the behavior is inconsistent with other compilers. This is tracked by
`#57416 <https://github.com/llvm/llvm-project/issues/57416>`_.
Incorrect ODR violation diagnostics
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ODR violations are a common issue when using modules. Clang sometimes produces
false-positive diagnostics or fails to produce true-positive diagnostics of the
One Definition Rule. One often-reported example is:
.. code-block:: c++
// part.cc
module;
typedef long T;
namespace ns {
inline void fun() {
(void)(T)0;
}
}
export module repro:part;
// repro.cc
module;
typedef long T;
namespace ns {
using ::T;
}
namespace ns {
inline void fun() {
(void)(T)0;
}
}
export module repro;
export import :part;
Currently the compiler incorrectly diagnoses the inconsistent definition of
``fun()`` in two module units. Because both definitions of ``fun()`` have the
same spelling and ``T`` refers to the same type entity, there is no ODR
violation. This is tracked by
`#78850 <https://github.com/llvm/llvm-project/issues/78850>`_.
Using TU-local entity in other units
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Module units are translation units, so the entities which should be local to
the module unit itself should never be used by other units.
The C++ standard defines the concept of ``TU-local`` and ``exposure`` in
`basic.link/p14 <https://eel.is/c++draft/basic.link#14>`_,
`basic.link/p15 <https://eel.is/c++draft/basic.link#15>`_,
`basic.link/p16 <https://eel.is/c++draft/basic.link#16>`_,
`basic.link/p17 <https://eel.is/c++draft/basic.link#17>`_, and
`basic.link/p18 <https://eel.is/c++draft/basic.link#18>`_.
However, Clang doesn't formally support these two concepts. This results in
unclear or confusing diagnostic messages. Further, Clang may import
``TU-local`` entities to other units without any diagnostics. This is tracked
by `#78173 <https://github.com/llvm/llvm-project/issues/78173>`_.
.. _header-units:
Header Units
============
How to build projects using header units
----------------------------------------
.. warning::
The support for header units, including related command line options, is
experimental. There are still many unanswered question about how tools
should interact with header units. The details described here may change in
the future.
Quick Start
~~~~~~~~~~~
The following example:
.. code-block:: c++
import <iostream>;
int main() {
std::cout << "Hello World.\n";
}
could be compiled with:
.. code-block:: console
$ clang++ -std=c++20 -xc++-system-header --precompile iostream -o iostream.pcm
$ clang++ -std=c++20 -fmodule-file=iostream.pcm main.cpp
How to produce BMIs
~~~~~~~~~~~~~~~~~~~
Similar to named modules, ``--precompile`` can be used to produce a BMI.
However, that requires specifying that the input file is a header by using
``-xc++-system-header`` or ``-xc++-user-header``.
The ``-fmodule-header={user,system}`` option can also be used to produce a BMI
for header units which have a file extension like `.h` or `.hh`. The argument to
``-fmodule-header`` specifies either the user search path or the system search
path. The default value for ``-fmodule-header`` is ``user``. For example:
.. code-block:: c++
// foo.h
#include <iostream>
void Hello() {
std::cout << "Hello World.\n";
}
// use.cpp
import "foo.h";
int main() {
Hello();
}
could be compiled with:
.. code-block:: console
$ clang++ -std=c++20 -fmodule-header foo.h -o foo.pcm
$ clang++ -std=c++20 -fmodule-file=foo.pcm use.cpp
For headers which do not have a file extension, ``-xc++-header`` (or
``-xc++-system-header``, ``-xc++-user-header``) must be used to specify the
file as a header. For example:
.. code-block:: c++
// use.cpp
import "foo.h";
int main() {
Hello();
}
.. code-block:: console
$ clang++ -std=c++20 -fmodule-header=system -xc++-header iostream -o iostream.pcm
$ clang++ -std=c++20 -fmodule-file=iostream.pcm use.cpp
How to specify dependent BMIs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
``-fmodule-file`` can be used to specify a dependent BMI (or multiple times for
more than one dependent BMI).
With the existing implementation, ``-fprebuilt-module-path`` cannot be used for
header units (because they are nominally anonymous). For header units, use
``-fmodule-file`` to include the relevant PCM file for each header unit.
This is expect to be solved in a future version of Clang either by the compiler
finding and specifying ``-fmodule-file`` automatically, or by the use of a
module-mapper that understands how to map the header name to their PCMs.
Compiling a header unit to an object file
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A header unit cannot be compiled to an object file due to the semantics of
header units. For example:
.. code-block:: console
$ clang++ -std=c++20 -xc++-system-header --precompile iostream -o iostream.pcm
# This is not allowed!
$ clang++ iostream.pcm -c -o iostream.o
Include translation
~~~~~~~~~~~~~~~~~~~
The C++ standard allows vendors to convert ``#include header-name`` to
``import header-name;`` when possible. Currently, Clang does this translation
for the ``#include`` in the global module fragment. For example, the following
example:
.. code-block:: c++
module;
import <iostream>;
export module M;
export void Hello() {
std::cout << "Hello.\n";
}
is the same as this example:
.. code-block:: c++
module;
#include <iostream>
export module M;
export void Hello() {
std::cout << "Hello.\n";
}
.. code-block:: console
$ clang++ -std=c++20 -xc++-system-header --precompile iostream -o iostream.pcm
$ clang++ -std=c++20 -fmodule-file=iostream.pcm --precompile M.cppm -o M.cpp
In the latter example, Clang can find the BMI for ``<iostream>`` and so it
tries to replace the ``#include <iostream>`` with ``import <iostream>;``
automatically.
Differences between Clang modules and header units
--------------------------------------------------
Header units have similar semantics to Clang modules. The semantics of both are
like headers. Therefore, header units can be mimicked by Clang modules as in
the following example:
.. code-block:: c++
module "iostream" {
export *
header "/path/to/libstdcxx/iostream"
}
.. code-block:: console
$ clang++ -std=c++20 -fimplicit-modules -fmodule-map-file=.modulemap main.cpp
This example is simplified when using libc++:
.. code-block:: console
$ clang++ -std=c++20 main.cpp -fimplicit-modules -fimplicit-module-maps
because libc++ already supplies a
`module map <https://github.com/llvm/llvm-project/blob/main/libcxx/include/module.modulemap.in>`_.
This raises the question: why are header units not implemented through Clang
modules?
This is primarily because Clang modules have more hierarchical semantics when
wrapping multiple headers together as one module, which is not supported by
Standard C++ Header units. We want to avoid the impression that these
additional semantics get interpreted as Standard C++ behavior.
Another reason is that there are proposals to introduce module mappers to the
C++ standard (for example, https://wg21.link/p1184r2). Reusing Clang's
``modulemap`` may be more difficult if we need to introduce another module
mapper.
Discovering Dependencies
========================
Without use of modules, all the translation units in a project can be compiled
in parallel. However, the presence of module units requires compiling the
translation units in a topological order.
The ``clang-scan-deps`` tool can extract dependency information and produce a
JSON file conforming to the specification described in
`P1689 <https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1689r5.html>`_.
Only named modules are supported currently.
A compilation database is needed when using ``clang-scan-deps``. See
`JSON Compilation Database Format Specification <JSONCompilationDatabase.html>`_
for more information about compilation databases. Note that the ``output``
JSON attribute is necessary for ``clang-scan-deps`` to scan using the P1689
format. For example:
.. code-block:: c++
//--- M.cppm
export module M;
export import :interface_part;
import :impl_part;
export int Hello();
//--- interface_part.cppm
export module M:interface_part;
export void World();
//--- Impl.cpp
module;
#include <iostream>
module M;
void Hello() {
std::cout << "Hello ";
}
//--- impl_part.cppm
module;
#include <string>
#include <iostream>
module M:impl_part;
import :interface_part;
std::string W = "World.";
void World() {
std::cout << W << std::endl;
}
//--- User.cpp
import M;
import third_party_module;
int main() {
Hello();
World();
return 0;
}
And here is the compilation database:
.. code-block:: text
[
{
"directory": ".",
"command": "<path-to-compiler-executable>/clang++ -std=c++20 M.cppm -c -o M.o",
"file": "M.cppm",
"output": "M.o"
},
{
"directory": ".",
"command": "<path-to-compiler-executable>/clang++ -std=c++20 Impl.cpp -c -o Impl.o",
"file": "Impl.cpp",
"output": "Impl.o"
},
{
"directory": ".",
"command": "<path-to-compiler-executable>/clang++ -std=c++20 impl_part.cppm -c -o impl_part.o",
"file": "impl_part.cppm",
"output": "impl_part.o"
},
{
"directory": ".",
"command": "<path-to-compiler-executable>/clang++ -std=c++20 interface_part.cppm -c -o interface_part.o",
"file": "interface_part.cppm",
"output": "interface_part.o"
},
{
"directory": ".",
"command": "<path-to-compiler-executable>/clang++ -std=c++20 User.cpp -c -o User.o",
"file": "User.cpp",
"output": "User.o"
}
]
To get the dependency information in P1689 format, use:
.. code-block:: console
$ clang-scan-deps -format=p1689 -compilation-database P1689.json
to get:
.. code-block:: text
{
"revision": 0,
"rules": [
{
"primary-output": "Impl.o",
"requires": [
{
"logical-name": "M",
"source-path": "M.cppm"
}
]
},
{
"primary-output": "M.o",
"provides": [
{
"is-interface": true,
"logical-name": "M",
"source-path": "M.cppm"
}
],
"requires": [
{
"logical-name": "M:interface_part",
"source-path": "interface_part.cppm"
},
{
"logical-name": "M:impl_part",
"source-path": "impl_part.cppm"
}
]
},
{
"primary-output": "User.o",
"requires": [
{
"logical-name": "M",
"source-path": "M.cppm"
},
{
"logical-name": "third_party_module"
}
]
},
{
"primary-output": "impl_part.o",
"provides": [
{
"is-interface": false,
"logical-name": "M:impl_part",
"source-path": "impl_part.cppm"
}
],
"requires": [
{
"logical-name": "M:interface_part",
"source-path": "interface_part.cppm"
}
]
},
{
"primary-output": "interface_part.o",
"provides": [
{
"is-interface": true,
"logical-name": "M:interface_part",
"source-path": "interface_part.cppm"
}
]
}
],
"version": 1
}
See the P1689 paper for the meaning of the fields.
Getting dependency information per file with finer-grained control (such as
scanning generated source files) is possible. For example:
.. code-block:: console
$ clang-scan-deps -format=p1689 -- <path-to-compiler-executable>/clang++ -std=c++20 impl_part.cppm -c -o impl_part.o
will produce:
.. code-block:: text
{
"revision": 0,
"rules": [
{
"primary-output": "impl_part.o",
"provides": [
{
"is-interface": false,
"logical-name": "M:impl_part",
"source-path": "impl_part.cppm"
}
],
"requires": [
{
"logical-name": "M:interface_part"
}
]
}
],
"version": 1
}
Individual command line options can be specified after ``--``.
``clang-scan-deps`` will extract the necessary information from the specified
options. Note that the path to the compiler executable needs to be specified
explicitly instead of using ``clang++`` directly.
Users may want the scanner to get the transitional dependency information for
headers. Otherwise, the project has to be scanned twice, once for headers and
once for modules. To address this, ``clang-scan-deps`` will recognize the
specified preprocessor options in the given command line and generate the
corresponding dependency information. For example:
.. code-block:: console
$ clang-scan-deps -format=p1689 -- ../bin/clang++ -std=c++20 impl_part.cppm -c -o impl_part.o -MD -MT impl_part.ddi -MF impl_part.dep
$ cat impl_part.dep
will produce:
.. code-block:: text
impl_part.ddi: \
/usr/include/bits/wchar.h /usr/include/bits/types/wint_t.h \
/usr/include/bits/types/mbstate_t.h \
/usr/include/bits/types/__mbstate_t.h /usr/include/bits/types/__FILE.h \
/usr/include/bits/types/FILE.h /usr/include/bits/types/locale_t.h \
/usr/include/bits/types/__locale_t.h \
...
When ``clang-scan-deps`` detects the ``-MF`` option, it will try to write the
dependency information for headers to the file specified by ``-MF``.
Possible Issues: Failed to find system headers
----------------------------------------------
If encountering an error like ``fatal error: 'stddef.h' file not found``,
the specified ``<path-to-compiler-executable>/clang++`` probably refers to a
symlink instead a real binary. There are four potential solutions to the
problem:
1. Point the specified compiler executable to the real binary instead of the
symlink.
2. Invoke ``<path-to-compiler-executable>/clang++ -print-resource-dir`` to get
the corresponding resource directory for your compiler and add that
directory to the include search paths manually in the build scripts.
3. For build systems that use a compilation database as the input for
``clang-scan-deps``, the build system can add the
``--resource-dir-recipe invoke-compiler`` option when executing
``clang-scan-deps`` to calculate the resource directory dynamically.
The calculation happens only once for a unique ``<path-to-compiler-executable>/clang++``.
4. For build systems that invoke ``clang-scan-deps`` per file, repeatedly
calculating the resource directory may be inefficient. In such cases, the
build system can cache the resource directory and specify
``-resource-dir <resource-dir>`` explicitly, as in:
.. code-block:: console
$ clang-scan-deps -format=p1689 -- <path-to-compiler-executable>/clang++ -std=c++20 -resource-dir <resource-dir> mod.cppm -c -o mod.o
Import modules with clang-repl
==============================
``clang-repl`` supports importing C++20 named modules. For example:
.. code-block:: c++
// M.cppm
export module M;
export const char* Hello() {
return "Hello Interpreter for Modules!";
}
The named module still needs to be compiled ahead of time.
.. code-block:: console
$ clang++ -std=c++20 M.cppm --precompile -o M.pcm
$ clang++ M.pcm -c -o M.o
$ clang++ -shared M.o -o libM.so
Note that the module unit needs to be compiled as a dynamic library so that
``clang-repl`` can load the object files of the module units. Then it is
possible to import module ``M`` in clang-repl.
.. code-block:: console
$ clang-repl -Xcc=-std=c++20 -Xcc=-fprebuilt-module-path=.
# We need to load the dynamic library first before importing the modules.
clang-repl> %lib libM.so
clang-repl> import M;
clang-repl> extern "C" int printf(const char *, ...);
clang-repl> printf("%s\n", Hello());
Hello Interpreter for Modules!
clang-repl> %quit
Possible Questions
==================
How modules speed up compilation
--------------------------------
A classic theory for the reason why modules speed up the compilation is: if
there are ``n`` headers and ``m`` source files and each header is included by
each source file, then the complexity of the compilation is ``O(n*m)``.
However, if there are ``n`` module interfaces and ``m`` source files, the
complexity of the compilation is ``O(n+m)``. Therefore, using modules would be
a significant improvement at scale. More simply, use of modules causes many of
the redundant compilations to no longer be necessary.
While this is accurate at a high level, this depends greatly on the
optimization level, as illustrated below.
First is ``-O0``. The compilation process is described in the following graph.
.. code-block:: none
├-------------frontend----------┼-------------middle end----------------┼----backend----┤
│ │ │ │
└---parsing----sema----codegen--┴----- transformations ---- codegen ----┴---- codegen --┘
├---------------------------------------------------------------------------------------┐
| │
| source file │
| │
└---------------------------------------------------------------------------------------┘
├--------┐
│ │
│imported│
│ │
│ code │
│ │
└--------┘
In this case, the source file (which could be a non-module unit or a module
unit) would get processed by the entire pipeline. However, the imported code
would only get involved in semantic analysis, which, for the most part, is name
lookup, overload resolution, and template instantiation. All of these processes
are fast relative to the whole compilation process. More importantly, the
imported code only needs to be processed once during frontend code generation,
as well as the whole middle end and backend. So we could get a big win for the
compilation time in ``-O0``.
But with optimizations, things are different (the ``code generation`` part for
each end is omitted due to limited space):
.. code-block:: none
├-------- frontend ---------┼--------------- middle end --------------------┼------ backend ----┤
│ │ │ │
└--- parsing ---- sema -----┴--- optimizations --- IPO ---- optimizations---┴--- optimizations -┘
├-----------------------------------------------------------------------------------------------┐
│ │
│ source file │
│ │
└-----------------------------------------------------------------------------------------------┘
├---------------------------------------┐
│ │
│ │
│ imported code │
│ │
│ │
└---------------------------------------┘
It would be very unfortunate if we end up with worse performance when using
modules. The main concern is that when a source file is compiled, the compiler
needs to see the body of imported module units so that it can perform IPO
(InterProcedural Optimization, primarily inlining in practice) to optimize
functions in the current source file with the help of the information provided
by the imported module units. In other words, the imported code would be
processed again and again in importee units by optimizations (including IPO
itself). The optimizations before IPO and IPO itself are the most time-consuming
part in whole compilation process. So from this perspective, it might not be
possible to get the compile time improvements described, but there could be
time savings for optimizations after IPO and the whole backend.
Overall, at ``-O0`` the implementations of functions defined in a module will
not impact module users, but at higher optimization levels the definitions of
such functions are provided to user compilations for the purposes of
optimization (but definitions of these functions are still not included in the
use's object file). This means the build speedup at higher optimization levels
may be lower than expected given ``-O0`` experience, but does provide more
optimization opportunities.
Interoperability with Clang Modules
-----------------------------------
We **wish** to support Clang modules and standard C++ modules at the same time,
but the mixing them together is not well used/tested yet. Please file new
GitHub issues as you find interoperability problems.
|