1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
|
//===--- Compiler.cpp - Code generator for expressions ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Compiler.h"
#include "ByteCodeEmitter.h"
#include "Context.h"
#include "FixedPoint.h"
#include "Floating.h"
#include "Function.h"
#include "InterpShared.h"
#include "PrimType.h"
#include "Program.h"
#include "clang/AST/Attr.h"
using namespace clang;
using namespace clang::interp;
using APSInt = llvm::APSInt;
namespace clang {
namespace interp {
/// Scope used to handle temporaries in toplevel variable declarations.
template <class Emitter> class DeclScope final : public LocalScope<Emitter> {
public:
DeclScope(Compiler<Emitter> *Ctx, const ValueDecl *VD)
: LocalScope<Emitter>(Ctx, VD), Scope(Ctx->P, VD),
OldInitializingDecl(Ctx->InitializingDecl) {
Ctx->InitializingDecl = VD;
Ctx->InitStack.push_back(InitLink::Decl(VD));
}
void addExtended(const Scope::Local &Local) override {
return this->addLocal(Local);
}
~DeclScope() {
this->Ctx->InitializingDecl = OldInitializingDecl;
this->Ctx->InitStack.pop_back();
}
private:
Program::DeclScope Scope;
const ValueDecl *OldInitializingDecl;
};
/// Scope used to handle initialization methods.
template <class Emitter> class OptionScope final {
public:
/// Root constructor, compiling or discarding primitives.
OptionScope(Compiler<Emitter> *Ctx, bool NewDiscardResult,
bool NewInitializing)
: Ctx(Ctx), OldDiscardResult(Ctx->DiscardResult),
OldInitializing(Ctx->Initializing) {
Ctx->DiscardResult = NewDiscardResult;
Ctx->Initializing = NewInitializing;
}
~OptionScope() {
Ctx->DiscardResult = OldDiscardResult;
Ctx->Initializing = OldInitializing;
}
private:
/// Parent context.
Compiler<Emitter> *Ctx;
/// Old discard flag to restore.
bool OldDiscardResult;
bool OldInitializing;
};
template <class Emitter>
bool InitLink::emit(Compiler<Emitter> *Ctx, const Expr *E) const {
switch (Kind) {
case K_This:
return Ctx->emitThis(E);
case K_Field:
// We're assuming there's a base pointer on the stack already.
return Ctx->emitGetPtrFieldPop(Offset, E);
case K_Temp:
return Ctx->emitGetPtrLocal(Offset, E);
case K_Decl:
return Ctx->visitDeclRef(D, E);
case K_Elem:
if (!Ctx->emitConstUint32(Offset, E))
return false;
return Ctx->emitArrayElemPtrPopUint32(E);
case K_RVO:
return Ctx->emitRVOPtr(E);
case K_InitList:
return true;
default:
llvm_unreachable("Unhandled InitLink kind");
}
return true;
}
/// Scope managing label targets.
template <class Emitter> class LabelScope {
public:
virtual ~LabelScope() {}
protected:
LabelScope(Compiler<Emitter> *Ctx) : Ctx(Ctx) {}
/// Compiler instance.
Compiler<Emitter> *Ctx;
};
/// Sets the context for break/continue statements.
template <class Emitter> class LoopScope final : public LabelScope<Emitter> {
public:
using LabelTy = typename Compiler<Emitter>::LabelTy;
using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
LoopScope(Compiler<Emitter> *Ctx, LabelTy BreakLabel, LabelTy ContinueLabel)
: LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
OldContinueLabel(Ctx->ContinueLabel),
OldBreakVarScope(Ctx->BreakVarScope),
OldContinueVarScope(Ctx->ContinueVarScope) {
this->Ctx->BreakLabel = BreakLabel;
this->Ctx->ContinueLabel = ContinueLabel;
this->Ctx->BreakVarScope = this->Ctx->VarScope;
this->Ctx->ContinueVarScope = this->Ctx->VarScope;
}
~LoopScope() {
this->Ctx->BreakLabel = OldBreakLabel;
this->Ctx->ContinueLabel = OldContinueLabel;
this->Ctx->ContinueVarScope = OldContinueVarScope;
this->Ctx->BreakVarScope = OldBreakVarScope;
}
private:
OptLabelTy OldBreakLabel;
OptLabelTy OldContinueLabel;
VariableScope<Emitter> *OldBreakVarScope;
VariableScope<Emitter> *OldContinueVarScope;
};
// Sets the context for a switch scope, mapping labels.
template <class Emitter> class SwitchScope final : public LabelScope<Emitter> {
public:
using LabelTy = typename Compiler<Emitter>::LabelTy;
using OptLabelTy = typename Compiler<Emitter>::OptLabelTy;
using CaseMap = typename Compiler<Emitter>::CaseMap;
SwitchScope(Compiler<Emitter> *Ctx, CaseMap &&CaseLabels, LabelTy BreakLabel,
OptLabelTy DefaultLabel)
: LabelScope<Emitter>(Ctx), OldBreakLabel(Ctx->BreakLabel),
OldDefaultLabel(this->Ctx->DefaultLabel),
OldCaseLabels(std::move(this->Ctx->CaseLabels)),
OldLabelVarScope(Ctx->BreakVarScope) {
this->Ctx->BreakLabel = BreakLabel;
this->Ctx->DefaultLabel = DefaultLabel;
this->Ctx->CaseLabels = std::move(CaseLabels);
this->Ctx->BreakVarScope = this->Ctx->VarScope;
}
~SwitchScope() {
this->Ctx->BreakLabel = OldBreakLabel;
this->Ctx->DefaultLabel = OldDefaultLabel;
this->Ctx->CaseLabels = std::move(OldCaseLabels);
this->Ctx->BreakVarScope = OldLabelVarScope;
}
private:
OptLabelTy OldBreakLabel;
OptLabelTy OldDefaultLabel;
CaseMap OldCaseLabels;
VariableScope<Emitter> *OldLabelVarScope;
};
template <class Emitter> class StmtExprScope final {
public:
StmtExprScope(Compiler<Emitter> *Ctx) : Ctx(Ctx), OldFlag(Ctx->InStmtExpr) {
Ctx->InStmtExpr = true;
}
~StmtExprScope() { Ctx->InStmtExpr = OldFlag; }
private:
Compiler<Emitter> *Ctx;
bool OldFlag;
};
} // namespace interp
} // namespace clang
template <class Emitter>
bool Compiler<Emitter>::VisitCastExpr(const CastExpr *CE) {
const Expr *SubExpr = CE->getSubExpr();
switch (CE->getCastKind()) {
case CK_LValueToRValue: {
if (DiscardResult)
return this->discard(SubExpr);
std::optional<PrimType> SubExprT = classify(SubExpr->getType());
// Prepare storage for the result.
if (!Initializing && !SubExprT) {
std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, CE))
return false;
}
if (!this->visit(SubExpr))
return false;
if (SubExprT)
return this->emitLoadPop(*SubExprT, CE);
// If the subexpr type is not primitive, we need to perform a copy here.
// This happens for example in C when dereferencing a pointer of struct
// type.
return this->emitMemcpy(CE);
}
case CK_DerivedToBaseMemberPointer: {
assert(classifyPrim(CE->getType()) == PT_MemberPtr);
assert(classifyPrim(SubExpr->getType()) == PT_MemberPtr);
const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
unsigned DerivedOffset = collectBaseOffset(QualType(ToMP->getClass(), 0),
QualType(FromMP->getClass(), 0));
if (!this->delegate(SubExpr))
return false;
return this->emitGetMemberPtrBasePop(DerivedOffset, CE);
}
case CK_BaseToDerivedMemberPointer: {
assert(classifyPrim(CE) == PT_MemberPtr);
assert(classifyPrim(SubExpr) == PT_MemberPtr);
const auto *FromMP = SubExpr->getType()->getAs<MemberPointerType>();
const auto *ToMP = CE->getType()->getAs<MemberPointerType>();
unsigned DerivedOffset = collectBaseOffset(QualType(FromMP->getClass(), 0),
QualType(ToMP->getClass(), 0));
if (!this->delegate(SubExpr))
return false;
return this->emitGetMemberPtrBasePop(-DerivedOffset, CE);
}
case CK_UncheckedDerivedToBase:
case CK_DerivedToBase: {
if (DiscardResult)
return this->discard(SubExpr);
if (!this->delegate(SubExpr))
return false;
const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
if (const auto *PT = dyn_cast<PointerType>(Ty))
return PT->getPointeeType()->getAsCXXRecordDecl();
return Ty->getAsCXXRecordDecl();
};
// FIXME: We can express a series of non-virtual casts as a single
// GetPtrBasePop op.
QualType CurType = SubExpr->getType();
for (const CXXBaseSpecifier *B : CE->path()) {
if (B->isVirtual()) {
if (!this->emitGetPtrVirtBasePop(extractRecordDecl(B->getType()), CE))
return false;
CurType = B->getType();
} else {
unsigned DerivedOffset = collectBaseOffset(B->getType(), CurType);
if (!this->emitGetPtrBasePop(DerivedOffset, CE))
return false;
CurType = B->getType();
}
}
return true;
}
case CK_BaseToDerived: {
if (DiscardResult)
return this->discard(SubExpr);
if (!this->delegate(SubExpr))
return false;
unsigned DerivedOffset =
collectBaseOffset(SubExpr->getType(), CE->getType());
return this->emitGetPtrDerivedPop(DerivedOffset, CE);
}
case CK_FloatingCast: {
// HLSL uses CK_FloatingCast to cast between vectors.
if (!SubExpr->getType()->isFloatingType() ||
!CE->getType()->isFloatingType())
return false;
if (DiscardResult)
return this->discard(SubExpr);
if (!this->visit(SubExpr))
return false;
const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
return this->emitCastFP(TargetSemantics, getRoundingMode(CE), CE);
}
case CK_IntegralToFloating: {
if (DiscardResult)
return this->discard(SubExpr);
std::optional<PrimType> FromT = classify(SubExpr->getType());
if (!FromT)
return false;
if (!this->visit(SubExpr))
return false;
const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
return this->emitCastIntegralFloating(*FromT, TargetSemantics,
getFPOptions(CE), CE);
}
case CK_FloatingToBoolean:
case CK_FloatingToIntegral: {
if (DiscardResult)
return this->discard(SubExpr);
std::optional<PrimType> ToT = classify(CE->getType());
if (!ToT)
return false;
if (!this->visit(SubExpr))
return false;
if (ToT == PT_IntAP)
return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(CE->getType()),
getFPOptions(CE), CE);
if (ToT == PT_IntAPS)
return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(CE->getType()),
getFPOptions(CE), CE);
return this->emitCastFloatingIntegral(*ToT, getFPOptions(CE), CE);
}
case CK_NullToPointer:
case CK_NullToMemberPointer: {
if (!this->discard(SubExpr))
return false;
if (DiscardResult)
return true;
const Descriptor *Desc = nullptr;
const QualType PointeeType = CE->getType()->getPointeeType();
if (!PointeeType.isNull()) {
if (std::optional<PrimType> T = classify(PointeeType))
Desc = P.createDescriptor(SubExpr, *T);
else
Desc = P.createDescriptor(SubExpr, PointeeType.getTypePtr(),
std::nullopt, true, false,
/*IsMutable=*/false, nullptr);
}
uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(CE->getType());
return this->emitNull(classifyPrim(CE->getType()), Val, Desc, CE);
}
case CK_PointerToIntegral: {
if (DiscardResult)
return this->discard(SubExpr);
if (!this->visit(SubExpr))
return false;
// If SubExpr doesn't result in a pointer, make it one.
if (PrimType FromT = classifyPrim(SubExpr->getType()); FromT != PT_Ptr) {
assert(isPtrType(FromT));
if (!this->emitDecayPtr(FromT, PT_Ptr, CE))
return false;
}
PrimType T = classifyPrim(CE->getType());
if (T == PT_IntAP)
return this->emitCastPointerIntegralAP(Ctx.getBitWidth(CE->getType()),
CE);
if (T == PT_IntAPS)
return this->emitCastPointerIntegralAPS(Ctx.getBitWidth(CE->getType()),
CE);
return this->emitCastPointerIntegral(T, CE);
}
case CK_ArrayToPointerDecay: {
if (!this->visit(SubExpr))
return false;
if (!this->emitArrayDecay(CE))
return false;
if (DiscardResult)
return this->emitPopPtr(CE);
return true;
}
case CK_IntegralToPointer: {
QualType IntType = SubExpr->getType();
assert(IntType->isIntegralOrEnumerationType());
if (!this->visit(SubExpr))
return false;
// FIXME: I think the discard is wrong since the int->ptr cast might cause a
// diagnostic.
PrimType T = classifyPrim(IntType);
if (DiscardResult)
return this->emitPop(T, CE);
QualType PtrType = CE->getType();
const Descriptor *Desc;
if (std::optional<PrimType> T = classify(PtrType->getPointeeType()))
Desc = P.createDescriptor(SubExpr, *T);
else if (PtrType->getPointeeType()->isVoidType())
Desc = nullptr;
else
Desc = P.createDescriptor(CE, PtrType->getPointeeType().getTypePtr(),
Descriptor::InlineDescMD, true, false,
/*IsMutable=*/false, nullptr);
if (!this->emitGetIntPtr(T, Desc, CE))
return false;
PrimType DestPtrT = classifyPrim(PtrType);
if (DestPtrT == PT_Ptr)
return true;
// In case we're converting the integer to a non-Pointer.
return this->emitDecayPtr(PT_Ptr, DestPtrT, CE);
}
case CK_AtomicToNonAtomic:
case CK_ConstructorConversion:
case CK_FunctionToPointerDecay:
case CK_NonAtomicToAtomic:
case CK_NoOp:
case CK_UserDefinedConversion:
case CK_AddressSpaceConversion:
case CK_CPointerToObjCPointerCast:
return this->delegate(SubExpr);
case CK_BitCast: {
// Reject bitcasts to atomic types.
if (CE->getType()->isAtomicType()) {
if (!this->discard(SubExpr))
return false;
return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, CE);
}
if (DiscardResult)
return this->discard(SubExpr);
QualType SubExprTy = SubExpr->getType();
std::optional<PrimType> FromT = classify(SubExprTy);
// Casts from integer/vector to vector.
if (CE->getType()->isVectorType())
return this->emitBuiltinBitCast(CE);
std::optional<PrimType> ToT = classify(CE->getType());
if (!FromT || !ToT)
return false;
assert(isPtrType(*FromT));
assert(isPtrType(*ToT));
if (FromT == ToT) {
if (CE->getType()->isVoidPointerType())
return this->delegate(SubExpr);
if (!this->visit(SubExpr))
return false;
if (FromT == PT_Ptr)
return this->emitPtrPtrCast(SubExprTy->isVoidPointerType(), CE);
return true;
}
if (!this->visit(SubExpr))
return false;
return this->emitDecayPtr(*FromT, *ToT, CE);
}
case CK_LValueToRValueBitCast:
return this->emitBuiltinBitCast(CE);
case CK_IntegralToBoolean:
case CK_FixedPointToBoolean:
case CK_BooleanToSignedIntegral:
case CK_IntegralCast: {
if (DiscardResult)
return this->discard(SubExpr);
std::optional<PrimType> FromT = classify(SubExpr->getType());
std::optional<PrimType> ToT = classify(CE->getType());
if (!FromT || !ToT)
return false;
if (!this->visit(SubExpr))
return false;
// Possibly diagnose casts to enum types if the target type does not
// have a fixed size.
if (Ctx.getLangOpts().CPlusPlus && CE->getType()->isEnumeralType()) {
if (const auto *ET = CE->getType().getCanonicalType()->getAs<EnumType>();
ET && !ET->getDecl()->isFixed()) {
if (!this->emitCheckEnumValue(*FromT, ET->getDecl(), CE))
return false;
}
}
auto maybeNegate = [&]() -> bool {
if (CE->getCastKind() == CK_BooleanToSignedIntegral)
return this->emitNeg(*ToT, CE);
return true;
};
if (ToT == PT_IntAP)
return this->emitCastAP(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
maybeNegate();
if (ToT == PT_IntAPS)
return this->emitCastAPS(*FromT, Ctx.getBitWidth(CE->getType()), CE) &&
maybeNegate();
if (FromT == ToT)
return true;
if (!this->emitCast(*FromT, *ToT, CE))
return false;
return maybeNegate();
}
case CK_PointerToBoolean:
case CK_MemberPointerToBoolean: {
PrimType PtrT = classifyPrim(SubExpr->getType());
if (!this->visit(SubExpr))
return false;
return this->emitIsNonNull(PtrT, CE);
}
case CK_IntegralComplexToBoolean:
case CK_FloatingComplexToBoolean: {
if (DiscardResult)
return this->discard(SubExpr);
if (!this->visit(SubExpr))
return false;
return this->emitComplexBoolCast(SubExpr);
}
case CK_IntegralComplexToReal:
case CK_FloatingComplexToReal:
return this->emitComplexReal(SubExpr);
case CK_IntegralRealToComplex:
case CK_FloatingRealToComplex: {
// We're creating a complex value here, so we need to
// allocate storage for it.
if (!Initializing) {
unsigned LocalIndex = allocateTemporary(CE);
if (!this->emitGetPtrLocal(LocalIndex, CE))
return false;
}
// Init the complex value to {SubExpr, 0}.
if (!this->visitArrayElemInit(0, SubExpr))
return false;
// Zero-init the second element.
PrimType T = classifyPrim(SubExpr->getType());
if (!this->visitZeroInitializer(T, SubExpr->getType(), SubExpr))
return false;
return this->emitInitElem(T, 1, SubExpr);
}
case CK_IntegralComplexCast:
case CK_FloatingComplexCast:
case CK_IntegralComplexToFloatingComplex:
case CK_FloatingComplexToIntegralComplex: {
assert(CE->getType()->isAnyComplexType());
assert(SubExpr->getType()->isAnyComplexType());
if (DiscardResult)
return this->discard(SubExpr);
if (!Initializing) {
std::optional<unsigned> LocalIndex = allocateLocal(CE);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, CE))
return false;
}
// Location for the SubExpr.
// Since SubExpr is of complex type, visiting it results in a pointer
// anyway, so we just create a temporary pointer variable.
unsigned SubExprOffset = allocateLocalPrimitive(
SubExpr, PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
if (!this->visit(SubExpr))
return false;
if (!this->emitSetLocal(PT_Ptr, SubExprOffset, CE))
return false;
PrimType SourceElemT = classifyComplexElementType(SubExpr->getType());
QualType DestElemType =
CE->getType()->getAs<ComplexType>()->getElementType();
PrimType DestElemT = classifyPrim(DestElemType);
// Cast both elements individually.
for (unsigned I = 0; I != 2; ++I) {
if (!this->emitGetLocal(PT_Ptr, SubExprOffset, CE))
return false;
if (!this->emitArrayElemPop(SourceElemT, I, CE))
return false;
// Do the cast.
if (!this->emitPrimCast(SourceElemT, DestElemT, DestElemType, CE))
return false;
// Save the value.
if (!this->emitInitElem(DestElemT, I, CE))
return false;
}
return true;
}
case CK_VectorSplat: {
assert(!classify(CE->getType()));
assert(classify(SubExpr->getType()));
assert(CE->getType()->isVectorType());
if (DiscardResult)
return this->discard(SubExpr);
if (!Initializing) {
std::optional<unsigned> LocalIndex = allocateLocal(CE);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, CE))
return false;
}
const auto *VT = CE->getType()->getAs<VectorType>();
PrimType ElemT = classifyPrim(SubExpr->getType());
unsigned ElemOffset = allocateLocalPrimitive(
SubExpr, ElemT, /*IsConst=*/true, /*IsExtended=*/false);
// Prepare a local variable for the scalar value.
if (!this->visit(SubExpr))
return false;
if (classifyPrim(SubExpr) == PT_Ptr && !this->emitLoadPop(ElemT, CE))
return false;
if (!this->emitSetLocal(ElemT, ElemOffset, CE))
return false;
for (unsigned I = 0; I != VT->getNumElements(); ++I) {
if (!this->emitGetLocal(ElemT, ElemOffset, CE))
return false;
if (!this->emitInitElem(ElemT, I, CE))
return false;
}
return true;
}
case CK_HLSLVectorTruncation: {
assert(SubExpr->getType()->isVectorType());
if (std::optional<PrimType> ResultT = classify(CE)) {
assert(!DiscardResult);
// Result must be either a float or integer. Take the first element.
if (!this->visit(SubExpr))
return false;
return this->emitArrayElemPop(*ResultT, 0, CE);
}
// Otherwise, this truncates from one vector type to another.
assert(CE->getType()->isVectorType());
if (!Initializing) {
unsigned LocalIndex = allocateTemporary(CE);
if (!this->emitGetPtrLocal(LocalIndex, CE))
return false;
}
unsigned ToSize = CE->getType()->getAs<VectorType>()->getNumElements();
assert(SubExpr->getType()->getAs<VectorType>()->getNumElements() > ToSize);
if (!this->visit(SubExpr))
return false;
return this->emitCopyArray(classifyVectorElementType(CE->getType()), 0, 0,
ToSize, CE);
};
case CK_IntegralToFixedPoint: {
if (!this->visit(SubExpr))
return false;
auto Sem =
Ctx.getASTContext().getFixedPointSemantics(CE->getType()).toOpaqueInt();
return this->emitCastIntegralFixedPoint(classifyPrim(SubExpr->getType()),
Sem, CE);
}
case CK_FloatingToFixedPoint: {
if (!this->visit(SubExpr))
return false;
auto Sem =
Ctx.getASTContext().getFixedPointSemantics(CE->getType()).toOpaqueInt();
return this->emitCastFloatingFixedPoint(Sem, CE);
}
case CK_FixedPointToFloating: {
if (!this->visit(SubExpr))
return false;
const auto *TargetSemantics = &Ctx.getFloatSemantics(CE->getType());
return this->emitCastFixedPointFloating(TargetSemantics, CE);
}
case CK_FixedPointToIntegral: {
if (!this->visit(SubExpr))
return false;
return this->emitCastFixedPointIntegral(classifyPrim(CE->getType()), CE);
}
case CK_FixedPointCast: {
if (!this->visit(SubExpr))
return false;
auto Sem =
Ctx.getASTContext().getFixedPointSemantics(CE->getType()).toOpaqueInt();
return this->emitCastFixedPoint(Sem, CE);
}
case CK_ToVoid:
return discard(SubExpr);
default:
return this->emitInvalid(CE);
}
llvm_unreachable("Unhandled clang::CastKind enum");
}
template <class Emitter>
bool Compiler<Emitter>::VisitIntegerLiteral(const IntegerLiteral *LE) {
if (DiscardResult)
return true;
return this->emitConst(LE->getValue(), LE);
}
template <class Emitter>
bool Compiler<Emitter>::VisitFloatingLiteral(const FloatingLiteral *E) {
if (DiscardResult)
return true;
return this->emitConstFloat(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
assert(E->getType()->isAnyComplexType());
if (DiscardResult)
return true;
if (!Initializing) {
unsigned LocalIndex = allocateTemporary(E);
if (!this->emitGetPtrLocal(LocalIndex, E))
return false;
}
const Expr *SubExpr = E->getSubExpr();
PrimType SubExprT = classifyPrim(SubExpr->getType());
if (!this->visitZeroInitializer(SubExprT, SubExpr->getType(), SubExpr))
return false;
if (!this->emitInitElem(SubExprT, 0, SubExpr))
return false;
return this->visitArrayElemInit(1, SubExpr);
}
template <class Emitter>
bool Compiler<Emitter>::VisitFixedPointLiteral(const FixedPointLiteral *E) {
assert(E->getType()->isFixedPointType());
assert(classifyPrim(E) == PT_FixedPoint);
if (DiscardResult)
return true;
auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
APInt Value = E->getValue();
return this->emitConstFixedPoint(FixedPoint(Value, Sem), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitParenExpr(const ParenExpr *E) {
return this->delegate(E->getSubExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitBinaryOperator(const BinaryOperator *BO) {
// Need short-circuiting for these.
if (BO->isLogicalOp() && !BO->getType()->isVectorType())
return this->VisitLogicalBinOp(BO);
const Expr *LHS = BO->getLHS();
const Expr *RHS = BO->getRHS();
// Handle comma operators. Just discard the LHS
// and delegate to RHS.
if (BO->isCommaOp()) {
if (!this->discard(LHS))
return false;
if (RHS->getType()->isVoidType())
return this->discard(RHS);
return this->delegate(RHS);
}
if (BO->getType()->isAnyComplexType())
return this->VisitComplexBinOp(BO);
if (BO->getType()->isVectorType())
return this->VisitVectorBinOp(BO);
if ((LHS->getType()->isAnyComplexType() ||
RHS->getType()->isAnyComplexType()) &&
BO->isComparisonOp())
return this->emitComplexComparison(LHS, RHS, BO);
if (LHS->getType()->isFixedPointType() || RHS->getType()->isFixedPointType())
return this->VisitFixedPointBinOp(BO);
if (BO->isPtrMemOp()) {
if (!this->visit(LHS))
return false;
if (!this->visit(RHS))
return false;
if (!this->emitToMemberPtr(BO))
return false;
if (classifyPrim(BO) == PT_MemberPtr)
return true;
if (!this->emitCastMemberPtrPtr(BO))
return false;
return DiscardResult ? this->emitPopPtr(BO) : true;
}
// Typecheck the args.
std::optional<PrimType> LT = classify(LHS);
std::optional<PrimType> RT = classify(RHS);
std::optional<PrimType> T = classify(BO->getType());
// Special case for C++'s three-way/spaceship operator <=>, which
// returns a std::{strong,weak,partial}_ordering (which is a class, so doesn't
// have a PrimType).
if (!T && BO->getOpcode() == BO_Cmp) {
if (DiscardResult)
return true;
const ComparisonCategoryInfo *CmpInfo =
Ctx.getASTContext().CompCategories.lookupInfoForType(BO->getType());
assert(CmpInfo);
// We need a temporary variable holding our return value.
if (!Initializing) {
std::optional<unsigned> ResultIndex = this->allocateLocal(BO);
if (!this->emitGetPtrLocal(*ResultIndex, BO))
return false;
}
if (!visit(LHS) || !visit(RHS))
return false;
return this->emitCMP3(*LT, CmpInfo, BO);
}
if (!LT || !RT || !T)
return false;
// Pointer arithmetic special case.
if (BO->getOpcode() == BO_Add || BO->getOpcode() == BO_Sub) {
if (isPtrType(*T) || (isPtrType(*LT) && isPtrType(*RT)))
return this->VisitPointerArithBinOp(BO);
}
// Assignmentes require us to evalute the RHS first.
if (BO->getOpcode() == BO_Assign) {
if (!visit(RHS) || !visit(LHS))
return false;
if (!this->emitFlip(*LT, *RT, BO))
return false;
} else {
if (!visit(LHS) || !visit(RHS))
return false;
}
// For languages such as C, cast the result of one
// of our comparision opcodes to T (which is usually int).
auto MaybeCastToBool = [this, T, BO](bool Result) {
if (!Result)
return false;
if (DiscardResult)
return this->emitPop(*T, BO);
if (T != PT_Bool)
return this->emitCast(PT_Bool, *T, BO);
return true;
};
auto Discard = [this, T, BO](bool Result) {
if (!Result)
return false;
return DiscardResult ? this->emitPop(*T, BO) : true;
};
switch (BO->getOpcode()) {
case BO_EQ:
return MaybeCastToBool(this->emitEQ(*LT, BO));
case BO_NE:
return MaybeCastToBool(this->emitNE(*LT, BO));
case BO_LT:
return MaybeCastToBool(this->emitLT(*LT, BO));
case BO_LE:
return MaybeCastToBool(this->emitLE(*LT, BO));
case BO_GT:
return MaybeCastToBool(this->emitGT(*LT, BO));
case BO_GE:
return MaybeCastToBool(this->emitGE(*LT, BO));
case BO_Sub:
if (BO->getType()->isFloatingType())
return Discard(this->emitSubf(getFPOptions(BO), BO));
return Discard(this->emitSub(*T, BO));
case BO_Add:
if (BO->getType()->isFloatingType())
return Discard(this->emitAddf(getFPOptions(BO), BO));
return Discard(this->emitAdd(*T, BO));
case BO_Mul:
if (BO->getType()->isFloatingType())
return Discard(this->emitMulf(getFPOptions(BO), BO));
return Discard(this->emitMul(*T, BO));
case BO_Rem:
return Discard(this->emitRem(*T, BO));
case BO_Div:
if (BO->getType()->isFloatingType())
return Discard(this->emitDivf(getFPOptions(BO), BO));
return Discard(this->emitDiv(*T, BO));
case BO_Assign:
if (DiscardResult)
return LHS->refersToBitField() ? this->emitStoreBitFieldPop(*T, BO)
: this->emitStorePop(*T, BO);
if (LHS->refersToBitField()) {
if (!this->emitStoreBitField(*T, BO))
return false;
} else {
if (!this->emitStore(*T, BO))
return false;
}
// Assignments aren't necessarily lvalues in C.
// Load from them in that case.
if (!BO->isLValue())
return this->emitLoadPop(*T, BO);
return true;
case BO_And:
return Discard(this->emitBitAnd(*T, BO));
case BO_Or:
return Discard(this->emitBitOr(*T, BO));
case BO_Shl:
return Discard(this->emitShl(*LT, *RT, BO));
case BO_Shr:
return Discard(this->emitShr(*LT, *RT, BO));
case BO_Xor:
return Discard(this->emitBitXor(*T, BO));
case BO_LOr:
case BO_LAnd:
llvm_unreachable("Already handled earlier");
default:
return false;
}
llvm_unreachable("Unhandled binary op");
}
/// Perform addition/subtraction of a pointer and an integer or
/// subtraction of two pointers.
template <class Emitter>
bool Compiler<Emitter>::VisitPointerArithBinOp(const BinaryOperator *E) {
BinaryOperatorKind Op = E->getOpcode();
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
if ((Op != BO_Add && Op != BO_Sub) ||
(!LHS->getType()->isPointerType() && !RHS->getType()->isPointerType()))
return false;
std::optional<PrimType> LT = classify(LHS);
std::optional<PrimType> RT = classify(RHS);
if (!LT || !RT)
return false;
// Visit the given pointer expression and optionally convert to a PT_Ptr.
auto visitAsPointer = [&](const Expr *E, PrimType T) -> bool {
if (!this->visit(E))
return false;
if (T != PT_Ptr)
return this->emitDecayPtr(T, PT_Ptr, E);
return true;
};
if (LHS->getType()->isPointerType() && RHS->getType()->isPointerType()) {
if (Op != BO_Sub)
return false;
assert(E->getType()->isIntegerType());
if (!visitAsPointer(RHS, *RT) || !visitAsPointer(LHS, *LT))
return false;
PrimType IntT = classifyPrim(E->getType());
if (!this->emitSubPtr(IntT, E))
return false;
return DiscardResult ? this->emitPop(IntT, E) : true;
}
PrimType OffsetType;
if (LHS->getType()->isIntegerType()) {
if (!visitAsPointer(RHS, *RT))
return false;
if (!this->visit(LHS))
return false;
OffsetType = *LT;
} else if (RHS->getType()->isIntegerType()) {
if (!visitAsPointer(LHS, *LT))
return false;
if (!this->visit(RHS))
return false;
OffsetType = *RT;
} else {
return false;
}
// Do the operation and optionally transform to
// result pointer type.
if (Op == BO_Add) {
if (!this->emitAddOffset(OffsetType, E))
return false;
if (classifyPrim(E) != PT_Ptr)
return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
return true;
} else if (Op == BO_Sub) {
if (!this->emitSubOffset(OffsetType, E))
return false;
if (classifyPrim(E) != PT_Ptr)
return this->emitDecayPtr(PT_Ptr, classifyPrim(E), E);
return true;
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitLogicalBinOp(const BinaryOperator *E) {
assert(E->isLogicalOp());
BinaryOperatorKind Op = E->getOpcode();
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
std::optional<PrimType> T = classify(E->getType());
if (Op == BO_LOr) {
// Logical OR. Visit LHS and only evaluate RHS if LHS was FALSE.
LabelTy LabelTrue = this->getLabel();
LabelTy LabelEnd = this->getLabel();
if (!this->visitBool(LHS))
return false;
if (!this->jumpTrue(LabelTrue))
return false;
if (!this->visitBool(RHS))
return false;
if (!this->jump(LabelEnd))
return false;
this->emitLabel(LabelTrue);
this->emitConstBool(true, E);
this->fallthrough(LabelEnd);
this->emitLabel(LabelEnd);
} else {
assert(Op == BO_LAnd);
// Logical AND.
// Visit LHS. Only visit RHS if LHS was TRUE.
LabelTy LabelFalse = this->getLabel();
LabelTy LabelEnd = this->getLabel();
if (!this->visitBool(LHS))
return false;
if (!this->jumpFalse(LabelFalse))
return false;
if (!this->visitBool(RHS))
return false;
if (!this->jump(LabelEnd))
return false;
this->emitLabel(LabelFalse);
this->emitConstBool(false, E);
this->fallthrough(LabelEnd);
this->emitLabel(LabelEnd);
}
if (DiscardResult)
return this->emitPopBool(E);
// For C, cast back to integer type.
assert(T);
if (T != PT_Bool)
return this->emitCast(PT_Bool, *T, E);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitComplexBinOp(const BinaryOperator *E) {
// Prepare storage for result.
if (!Initializing) {
unsigned LocalIndex = allocateTemporary(E);
if (!this->emitGetPtrLocal(LocalIndex, E))
return false;
}
// Both LHS and RHS might _not_ be of complex type, but one of them
// needs to be.
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
PrimType ResultElemT = this->classifyComplexElementType(E->getType());
unsigned ResultOffset = ~0u;
if (!DiscardResult)
ResultOffset = this->allocateLocalPrimitive(E, PT_Ptr, true, false);
// Save result pointer in ResultOffset
if (!this->DiscardResult) {
if (!this->emitDupPtr(E))
return false;
if (!this->emitSetLocal(PT_Ptr, ResultOffset, E))
return false;
}
QualType LHSType = LHS->getType();
if (const auto *AT = LHSType->getAs<AtomicType>())
LHSType = AT->getValueType();
QualType RHSType = RHS->getType();
if (const auto *AT = RHSType->getAs<AtomicType>())
RHSType = AT->getValueType();
bool LHSIsComplex = LHSType->isAnyComplexType();
unsigned LHSOffset;
bool RHSIsComplex = RHSType->isAnyComplexType();
// For ComplexComplex Mul, we have special ops to make their implementation
// easier.
BinaryOperatorKind Op = E->getOpcode();
if (Op == BO_Mul && LHSIsComplex && RHSIsComplex) {
assert(classifyPrim(LHSType->getAs<ComplexType>()->getElementType()) ==
classifyPrim(RHSType->getAs<ComplexType>()->getElementType()));
PrimType ElemT =
classifyPrim(LHSType->getAs<ComplexType>()->getElementType());
if (!this->visit(LHS))
return false;
if (!this->visit(RHS))
return false;
return this->emitMulc(ElemT, E);
}
if (Op == BO_Div && RHSIsComplex) {
QualType ElemQT = RHSType->getAs<ComplexType>()->getElementType();
PrimType ElemT = classifyPrim(ElemQT);
// If the LHS is not complex, we still need to do the full complex
// division, so just stub create a complex value and stub it out with
// the LHS and a zero.
if (!LHSIsComplex) {
// This is using the RHS type for the fake-complex LHS.
LHSOffset = allocateTemporary(RHS);
if (!this->emitGetPtrLocal(LHSOffset, E))
return false;
if (!this->visit(LHS))
return false;
// real is LHS
if (!this->emitInitElem(ElemT, 0, E))
return false;
// imag is zero
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
return false;
if (!this->emitInitElem(ElemT, 1, E))
return false;
} else {
if (!this->visit(LHS))
return false;
}
if (!this->visit(RHS))
return false;
return this->emitDivc(ElemT, E);
}
// Evaluate LHS and save value to LHSOffset.
if (LHSType->isAnyComplexType()) {
LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
if (!this->visit(LHS))
return false;
if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
return false;
} else {
PrimType LHST = classifyPrim(LHSType);
LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
if (!this->visit(LHS))
return false;
if (!this->emitSetLocal(LHST, LHSOffset, E))
return false;
}
// Same with RHS.
unsigned RHSOffset;
if (RHSType->isAnyComplexType()) {
RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
if (!this->visit(RHS))
return false;
if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
return false;
} else {
PrimType RHST = classifyPrim(RHSType);
RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
if (!this->visit(RHS))
return false;
if (!this->emitSetLocal(RHST, RHSOffset, E))
return false;
}
// For both LHS and RHS, either load the value from the complex pointer, or
// directly from the local variable. For index 1 (i.e. the imaginary part),
// just load 0 and do the operation anyway.
auto loadComplexValue = [this](bool IsComplex, bool LoadZero,
unsigned ElemIndex, unsigned Offset,
const Expr *E) -> bool {
if (IsComplex) {
if (!this->emitGetLocal(PT_Ptr, Offset, E))
return false;
return this->emitArrayElemPop(classifyComplexElementType(E->getType()),
ElemIndex, E);
}
if (ElemIndex == 0 || !LoadZero)
return this->emitGetLocal(classifyPrim(E->getType()), Offset, E);
return this->visitZeroInitializer(classifyPrim(E->getType()), E->getType(),
E);
};
// Now we can get pointers to the LHS and RHS from the offsets above.
for (unsigned ElemIndex = 0; ElemIndex != 2; ++ElemIndex) {
// Result pointer for the store later.
if (!this->DiscardResult) {
if (!this->emitGetLocal(PT_Ptr, ResultOffset, E))
return false;
}
// The actual operation.
switch (Op) {
case BO_Add:
if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
return false;
if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
return false;
if (ResultElemT == PT_Float) {
if (!this->emitAddf(getFPOptions(E), E))
return false;
} else {
if (!this->emitAdd(ResultElemT, E))
return false;
}
break;
case BO_Sub:
if (!loadComplexValue(LHSIsComplex, true, ElemIndex, LHSOffset, LHS))
return false;
if (!loadComplexValue(RHSIsComplex, true, ElemIndex, RHSOffset, RHS))
return false;
if (ResultElemT == PT_Float) {
if (!this->emitSubf(getFPOptions(E), E))
return false;
} else {
if (!this->emitSub(ResultElemT, E))
return false;
}
break;
case BO_Mul:
if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
return false;
if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
return false;
if (ResultElemT == PT_Float) {
if (!this->emitMulf(getFPOptions(E), E))
return false;
} else {
if (!this->emitMul(ResultElemT, E))
return false;
}
break;
case BO_Div:
assert(!RHSIsComplex);
if (!loadComplexValue(LHSIsComplex, false, ElemIndex, LHSOffset, LHS))
return false;
if (!loadComplexValue(RHSIsComplex, false, ElemIndex, RHSOffset, RHS))
return false;
if (ResultElemT == PT_Float) {
if (!this->emitDivf(getFPOptions(E), E))
return false;
} else {
if (!this->emitDiv(ResultElemT, E))
return false;
}
break;
default:
return false;
}
if (!this->DiscardResult) {
// Initialize array element with the value we just computed.
if (!this->emitInitElemPop(ResultElemT, ElemIndex, E))
return false;
} else {
if (!this->emitPop(ResultElemT, E))
return false;
}
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitVectorBinOp(const BinaryOperator *E) {
assert(!E->isCommaOp() &&
"Comma op should be handled in VisitBinaryOperator");
assert(E->getType()->isVectorType());
assert(E->getLHS()->getType()->isVectorType());
assert(E->getRHS()->getType()->isVectorType());
// Prepare storage for result.
if (!Initializing && !E->isCompoundAssignmentOp()) {
unsigned LocalIndex = allocateTemporary(E);
if (!this->emitGetPtrLocal(LocalIndex, E))
return false;
}
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
const auto *VecTy = E->getType()->getAs<VectorType>();
auto Op = E->isCompoundAssignmentOp()
? BinaryOperator::getOpForCompoundAssignment(E->getOpcode())
: E->getOpcode();
PrimType ElemT = this->classifyVectorElementType(LHS->getType());
PrimType RHSElemT = this->classifyVectorElementType(RHS->getType());
PrimType ResultElemT = this->classifyVectorElementType(E->getType());
// Evaluate LHS and save value to LHSOffset.
unsigned LHSOffset = this->allocateLocalPrimitive(LHS, PT_Ptr, true, false);
if (!this->visit(LHS))
return false;
if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
return false;
// Evaluate RHS and save value to RHSOffset.
unsigned RHSOffset = this->allocateLocalPrimitive(RHS, PT_Ptr, true, false);
if (!this->visit(RHS))
return false;
if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
return false;
if (E->isCompoundAssignmentOp() && !this->emitGetLocal(PT_Ptr, LHSOffset, E))
return false;
// BitAdd/BitOr/BitXor/Shl/Shr doesn't support bool type, we need perform the
// integer promotion.
bool NeedIntPromot = ElemT == PT_Bool && (E->isBitwiseOp() || E->isShiftOp());
QualType PromotTy =
Ctx.getASTContext().getPromotedIntegerType(Ctx.getASTContext().BoolTy);
PrimType PromotT = classifyPrim(PromotTy);
PrimType OpT = NeedIntPromot ? PromotT : ElemT;
auto getElem = [=](unsigned Offset, PrimType ElemT, unsigned Index) {
if (!this->emitGetLocal(PT_Ptr, Offset, E))
return false;
if (!this->emitArrayElemPop(ElemT, Index, E))
return false;
if (E->isLogicalOp()) {
if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
return false;
if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
return false;
} else if (NeedIntPromot) {
if (!this->emitPrimCast(ElemT, PromotT, PromotTy, E))
return false;
}
return true;
};
#define EMIT_ARITH_OP(OP) \
{ \
if (ElemT == PT_Float) { \
if (!this->emit##OP##f(getFPOptions(E), E)) \
return false; \
} else { \
if (!this->emit##OP(ElemT, E)) \
return false; \
} \
break; \
}
for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
if (!getElem(LHSOffset, ElemT, I))
return false;
if (!getElem(RHSOffset, RHSElemT, I))
return false;
switch (Op) {
case BO_Add:
EMIT_ARITH_OP(Add)
case BO_Sub:
EMIT_ARITH_OP(Sub)
case BO_Mul:
EMIT_ARITH_OP(Mul)
case BO_Div:
EMIT_ARITH_OP(Div)
case BO_Rem:
if (!this->emitRem(ElemT, E))
return false;
break;
case BO_And:
if (!this->emitBitAnd(OpT, E))
return false;
break;
case BO_Or:
if (!this->emitBitOr(OpT, E))
return false;
break;
case BO_Xor:
if (!this->emitBitXor(OpT, E))
return false;
break;
case BO_Shl:
if (!this->emitShl(OpT, RHSElemT, E))
return false;
break;
case BO_Shr:
if (!this->emitShr(OpT, RHSElemT, E))
return false;
break;
case BO_EQ:
if (!this->emitEQ(ElemT, E))
return false;
break;
case BO_NE:
if (!this->emitNE(ElemT, E))
return false;
break;
case BO_LE:
if (!this->emitLE(ElemT, E))
return false;
break;
case BO_LT:
if (!this->emitLT(ElemT, E))
return false;
break;
case BO_GE:
if (!this->emitGE(ElemT, E))
return false;
break;
case BO_GT:
if (!this->emitGT(ElemT, E))
return false;
break;
case BO_LAnd:
// a && b is equivalent to a!=0 & b!=0
if (!this->emitBitAnd(ResultElemT, E))
return false;
break;
case BO_LOr:
// a || b is equivalent to a!=0 | b!=0
if (!this->emitBitOr(ResultElemT, E))
return false;
break;
default:
return this->emitInvalid(E);
}
// The result of the comparison is a vector of the same width and number
// of elements as the comparison operands with a signed integral element
// type.
//
// https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
if (E->isComparisonOp()) {
if (!this->emitPrimCast(PT_Bool, ResultElemT, VecTy->getElementType(), E))
return false;
if (!this->emitNeg(ResultElemT, E))
return false;
}
// If we performed an integer promotion, we need to cast the compute result
// into result vector element type.
if (NeedIntPromot &&
!this->emitPrimCast(PromotT, ResultElemT, VecTy->getElementType(), E))
return false;
// Initialize array element with the value we just computed.
if (!this->emitInitElem(ResultElemT, I, E))
return false;
}
if (DiscardResult && E->isCompoundAssignmentOp() && !this->emitPopPtr(E))
return false;
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitFixedPointBinOp(const BinaryOperator *E) {
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
const ASTContext &ASTCtx = Ctx.getASTContext();
assert(LHS->getType()->isFixedPointType() ||
RHS->getType()->isFixedPointType());
auto LHSSema = ASTCtx.getFixedPointSemantics(LHS->getType());
auto LHSSemaInt = LHSSema.toOpaqueInt();
auto RHSSema = ASTCtx.getFixedPointSemantics(RHS->getType());
auto RHSSemaInt = RHSSema.toOpaqueInt();
if (!this->visit(LHS))
return false;
if (!LHS->getType()->isFixedPointType()) {
if (!this->emitCastIntegralFixedPoint(classifyPrim(LHS->getType()),
LHSSemaInt, E))
return false;
}
if (!this->visit(RHS))
return false;
if (!RHS->getType()->isFixedPointType()) {
if (!this->emitCastIntegralFixedPoint(classifyPrim(RHS->getType()),
RHSSemaInt, E))
return false;
}
// Convert the result to the target semantics.
auto ConvertResult = [&](bool R) -> bool {
if (!R)
return false;
auto ResultSema = ASTCtx.getFixedPointSemantics(E->getType()).toOpaqueInt();
auto CommonSema = LHSSema.getCommonSemantics(RHSSema).toOpaqueInt();
if (ResultSema != CommonSema)
return this->emitCastFixedPoint(ResultSema, E);
return true;
};
auto MaybeCastToBool = [&](bool Result) {
if (!Result)
return false;
PrimType T = classifyPrim(E);
if (DiscardResult)
return this->emitPop(T, E);
if (T != PT_Bool)
return this->emitCast(PT_Bool, T, E);
return true;
};
switch (E->getOpcode()) {
case BO_EQ:
return MaybeCastToBool(this->emitEQFixedPoint(E));
case BO_NE:
return MaybeCastToBool(this->emitNEFixedPoint(E));
case BO_LT:
return MaybeCastToBool(this->emitLTFixedPoint(E));
case BO_LE:
return MaybeCastToBool(this->emitLEFixedPoint(E));
case BO_GT:
return MaybeCastToBool(this->emitGTFixedPoint(E));
case BO_GE:
return MaybeCastToBool(this->emitGEFixedPoint(E));
case BO_Add:
return ConvertResult(this->emitAddFixedPoint(E));
case BO_Sub:
return ConvertResult(this->emitSubFixedPoint(E));
case BO_Mul:
return ConvertResult(this->emitMulFixedPoint(E));
case BO_Div:
return ConvertResult(this->emitDivFixedPoint(E));
case BO_Shl:
return ConvertResult(this->emitShiftFixedPoint(/*Left=*/true, E));
case BO_Shr:
return ConvertResult(this->emitShiftFixedPoint(/*Left=*/false, E));
default:
return this->emitInvalid(E);
}
llvm_unreachable("unhandled binop opcode");
}
template <class Emitter>
bool Compiler<Emitter>::VisitFixedPointUnaryOperator(const UnaryOperator *E) {
const Expr *SubExpr = E->getSubExpr();
assert(SubExpr->getType()->isFixedPointType());
switch (E->getOpcode()) {
case UO_Plus:
return this->delegate(SubExpr);
case UO_Minus:
if (!this->visit(SubExpr))
return false;
return this->emitNegFixedPoint(E);
default:
return false;
}
llvm_unreachable("Unhandled unary opcode");
}
template <class Emitter>
bool Compiler<Emitter>::VisitImplicitValueInitExpr(
const ImplicitValueInitExpr *E) {
QualType QT = E->getType();
if (std::optional<PrimType> T = classify(QT))
return this->visitZeroInitializer(*T, QT, E);
if (QT->isRecordType()) {
const RecordDecl *RD = QT->getAsRecordDecl();
assert(RD);
if (RD->isInvalidDecl())
return false;
if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
CXXRD && CXXRD->getNumVBases() > 0) {
// TODO: Diagnose.
return false;
}
const Record *R = getRecord(QT);
if (!R)
return false;
assert(Initializing);
return this->visitZeroRecordInitializer(R, E);
}
if (QT->isIncompleteArrayType())
return true;
if (QT->isArrayType())
return this->visitZeroArrayInitializer(QT, E);
if (const auto *ComplexTy = E->getType()->getAs<ComplexType>()) {
assert(Initializing);
QualType ElemQT = ComplexTy->getElementType();
PrimType ElemT = classifyPrim(ElemQT);
for (unsigned I = 0; I < 2; ++I) {
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
return true;
}
if (const auto *VecT = E->getType()->getAs<VectorType>()) {
unsigned NumVecElements = VecT->getNumElements();
QualType ElemQT = VecT->getElementType();
PrimType ElemT = classifyPrim(ElemQT);
for (unsigned I = 0; I < NumVecElements; ++I) {
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
return true;
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
const Expr *Index = E->getIdx();
if (DiscardResult)
return this->discard(LHS) && this->discard(RHS);
// C++17's rules require us to evaluate the LHS first, regardless of which
// side is the base.
bool Success = true;
for (const Expr *SubExpr : {LHS, RHS}) {
if (!this->visit(SubExpr))
Success = false;
}
if (!Success)
return false;
PrimType IndexT = classifyPrim(Index->getType());
// If the index is first, we need to change that.
if (LHS == Index) {
if (!this->emitFlip(PT_Ptr, IndexT, E))
return false;
}
return this->emitArrayElemPtrPop(IndexT, E);
}
template <class Emitter>
bool Compiler<Emitter>::visitInitList(ArrayRef<const Expr *> Inits,
const Expr *ArrayFiller, const Expr *E) {
InitLinkScope<Emitter> ILS(this, InitLink::InitList());
QualType QT = E->getType();
if (const auto *AT = QT->getAs<AtomicType>())
QT = AT->getValueType();
if (QT->isVoidType()) {
if (Inits.size() == 0)
return true;
return this->emitInvalid(E);
}
// Handle discarding first.
if (DiscardResult) {
for (const Expr *Init : Inits) {
if (!this->discard(Init))
return false;
}
return true;
}
// Primitive values.
if (std::optional<PrimType> T = classify(QT)) {
assert(!DiscardResult);
if (Inits.size() == 0)
return this->visitZeroInitializer(*T, QT, E);
assert(Inits.size() == 1);
return this->delegate(Inits[0]);
}
if (QT->isRecordType()) {
const Record *R = getRecord(QT);
if (Inits.size() == 1 && E->getType() == Inits[0]->getType())
return this->delegate(Inits[0]);
auto initPrimitiveField = [=](const Record::Field *FieldToInit,
const Expr *Init, PrimType T) -> bool {
InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
if (!this->visit(Init))
return false;
if (FieldToInit->isBitField())
return this->emitInitBitField(T, FieldToInit, E);
return this->emitInitField(T, FieldToInit->Offset, E);
};
auto initCompositeField = [=](const Record::Field *FieldToInit,
const Expr *Init) -> bool {
InitStackScope<Emitter> ISS(this, isa<CXXDefaultInitExpr>(Init));
InitLinkScope<Emitter> ILS(this, InitLink::Field(FieldToInit->Offset));
// Non-primitive case. Get a pointer to the field-to-initialize
// on the stack and recurse into visitInitializer().
if (!this->emitGetPtrField(FieldToInit->Offset, Init))
return false;
if (!this->visitInitializer(Init))
return false;
return this->emitPopPtr(E);
};
if (R->isUnion()) {
if (Inits.size() == 0) {
if (!this->visitZeroRecordInitializer(R, E))
return false;
} else {
const Expr *Init = Inits[0];
const FieldDecl *FToInit = nullptr;
if (const auto *ILE = dyn_cast<InitListExpr>(E))
FToInit = ILE->getInitializedFieldInUnion();
else
FToInit = cast<CXXParenListInitExpr>(E)->getInitializedFieldInUnion();
const Record::Field *FieldToInit = R->getField(FToInit);
if (std::optional<PrimType> T = classify(Init)) {
if (!initPrimitiveField(FieldToInit, Init, *T))
return false;
} else {
if (!initCompositeField(FieldToInit, Init))
return false;
}
}
return this->emitFinishInit(E);
}
assert(!R->isUnion());
unsigned InitIndex = 0;
for (const Expr *Init : Inits) {
// Skip unnamed bitfields.
while (InitIndex < R->getNumFields() &&
R->getField(InitIndex)->Decl->isUnnamedBitField())
++InitIndex;
if (std::optional<PrimType> T = classify(Init)) {
const Record::Field *FieldToInit = R->getField(InitIndex);
if (!initPrimitiveField(FieldToInit, Init, *T))
return false;
++InitIndex;
} else {
// Initializer for a direct base class.
if (const Record::Base *B = R->getBase(Init->getType())) {
if (!this->emitGetPtrBase(B->Offset, Init))
return false;
if (!this->visitInitializer(Init))
return false;
if (!this->emitFinishInitPop(E))
return false;
// Base initializers don't increase InitIndex, since they don't count
// into the Record's fields.
} else {
const Record::Field *FieldToInit = R->getField(InitIndex);
if (!initCompositeField(FieldToInit, Init))
return false;
++InitIndex;
}
}
}
return this->emitFinishInit(E);
}
if (QT->isArrayType()) {
if (Inits.size() == 1 && QT == Inits[0]->getType())
return this->delegate(Inits[0]);
unsigned ElementIndex = 0;
for (const Expr *Init : Inits) {
if (const auto *EmbedS =
dyn_cast<EmbedExpr>(Init->IgnoreParenImpCasts())) {
PrimType TargetT = classifyPrim(Init->getType());
auto Eval = [&](const Expr *Init, unsigned ElemIndex) {
PrimType InitT = classifyPrim(Init->getType());
if (!this->visit(Init))
return false;
if (InitT != TargetT) {
if (!this->emitCast(InitT, TargetT, E))
return false;
}
return this->emitInitElem(TargetT, ElemIndex, Init);
};
if (!EmbedS->doForEachDataElement(Eval, ElementIndex))
return false;
} else {
if (!this->visitArrayElemInit(ElementIndex, Init))
return false;
++ElementIndex;
}
}
// Expand the filler expression.
// FIXME: This should go away.
if (ArrayFiller) {
const ConstantArrayType *CAT =
Ctx.getASTContext().getAsConstantArrayType(QT);
uint64_t NumElems = CAT->getZExtSize();
for (; ElementIndex != NumElems; ++ElementIndex) {
if (!this->visitArrayElemInit(ElementIndex, ArrayFiller))
return false;
}
}
return this->emitFinishInit(E);
}
if (const auto *ComplexTy = QT->getAs<ComplexType>()) {
unsigned NumInits = Inits.size();
if (NumInits == 1)
return this->delegate(Inits[0]);
QualType ElemQT = ComplexTy->getElementType();
PrimType ElemT = classifyPrim(ElemQT);
if (NumInits == 0) {
// Zero-initialize both elements.
for (unsigned I = 0; I < 2; ++I) {
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
} else if (NumInits == 2) {
unsigned InitIndex = 0;
for (const Expr *Init : Inits) {
if (!this->visit(Init))
return false;
if (!this->emitInitElem(ElemT, InitIndex, E))
return false;
++InitIndex;
}
}
return true;
}
if (const auto *VecT = QT->getAs<VectorType>()) {
unsigned NumVecElements = VecT->getNumElements();
assert(NumVecElements >= Inits.size());
QualType ElemQT = VecT->getElementType();
PrimType ElemT = classifyPrim(ElemQT);
// All initializer elements.
unsigned InitIndex = 0;
for (const Expr *Init : Inits) {
if (!this->visit(Init))
return false;
// If the initializer is of vector type itself, we have to deconstruct
// that and initialize all the target fields from the initializer fields.
if (const auto *InitVecT = Init->getType()->getAs<VectorType>()) {
if (!this->emitCopyArray(ElemT, 0, InitIndex,
InitVecT->getNumElements(), E))
return false;
InitIndex += InitVecT->getNumElements();
} else {
if (!this->emitInitElem(ElemT, InitIndex, E))
return false;
++InitIndex;
}
}
assert(InitIndex <= NumVecElements);
// Fill the rest with zeroes.
for (; InitIndex != NumVecElements; ++InitIndex) {
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
return false;
if (!this->emitInitElem(ElemT, InitIndex, E))
return false;
}
return true;
}
return false;
}
/// Pointer to the array(not the element!) must be on the stack when calling
/// this.
template <class Emitter>
bool Compiler<Emitter>::visitArrayElemInit(unsigned ElemIndex,
const Expr *Init) {
if (std::optional<PrimType> T = classify(Init->getType())) {
// Visit the primitive element like normal.
if (!this->visit(Init))
return false;
return this->emitInitElem(*T, ElemIndex, Init);
}
InitLinkScope<Emitter> ILS(this, InitLink::Elem(ElemIndex));
// Advance the pointer currently on the stack to the given
// dimension.
if (!this->emitConstUint32(ElemIndex, Init))
return false;
if (!this->emitArrayElemPtrUint32(Init))
return false;
if (!this->visitInitializer(Init))
return false;
return this->emitFinishInitPop(Init);
}
template <class Emitter>
bool Compiler<Emitter>::VisitInitListExpr(const InitListExpr *E) {
return this->visitInitList(E->inits(), E->getArrayFiller(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXParenListInitExpr(
const CXXParenListInitExpr *E) {
return this->visitInitList(E->getInitExprs(), E->getArrayFiller(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitSubstNonTypeTemplateParmExpr(
const SubstNonTypeTemplateParmExpr *E) {
return this->delegate(E->getReplacement());
}
template <class Emitter>
bool Compiler<Emitter>::VisitConstantExpr(const ConstantExpr *E) {
std::optional<PrimType> T = classify(E->getType());
if (T && E->hasAPValueResult()) {
// Try to emit the APValue directly, without visiting the subexpr.
// This will only fail if we can't emit the APValue, so won't emit any
// diagnostics or any double values.
if (DiscardResult)
return true;
if (this->visitAPValue(E->getAPValueResult(), *T, E))
return true;
}
return this->delegate(E->getSubExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitEmbedExpr(const EmbedExpr *E) {
auto It = E->begin();
return this->visit(*It);
}
static CharUnits AlignOfType(QualType T, const ASTContext &ASTCtx,
UnaryExprOrTypeTrait Kind) {
bool AlignOfReturnsPreferred =
ASTCtx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7;
// C++ [expr.alignof]p3:
// When alignof is applied to a reference type, the result is the
// alignment of the referenced type.
if (const auto *Ref = T->getAs<ReferenceType>())
T = Ref->getPointeeType();
if (T.getQualifiers().hasUnaligned())
return CharUnits::One();
// __alignof is defined to return the preferred alignment.
// Before 8, clang returned the preferred alignment for alignof and
// _Alignof as well.
if (Kind == UETT_PreferredAlignOf || AlignOfReturnsPreferred)
return ASTCtx.toCharUnitsFromBits(ASTCtx.getPreferredTypeAlign(T));
return ASTCtx.getTypeAlignInChars(T);
}
template <class Emitter>
bool Compiler<Emitter>::VisitUnaryExprOrTypeTraitExpr(
const UnaryExprOrTypeTraitExpr *E) {
UnaryExprOrTypeTrait Kind = E->getKind();
const ASTContext &ASTCtx = Ctx.getASTContext();
if (Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) {
QualType ArgType = E->getTypeOfArgument();
// C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
// the result is the size of the referenced type."
if (const auto *Ref = ArgType->getAs<ReferenceType>())
ArgType = Ref->getPointeeType();
CharUnits Size;
if (ArgType->isVoidType() || ArgType->isFunctionType())
Size = CharUnits::One();
else {
if (ArgType->isDependentType() || !ArgType->isConstantSizeType())
return this->emitInvalid(E);
if (Kind == UETT_SizeOf)
Size = ASTCtx.getTypeSizeInChars(ArgType);
else
Size = ASTCtx.getTypeInfoDataSizeInChars(ArgType).Width;
}
if (DiscardResult)
return true;
return this->emitConst(Size.getQuantity(), E);
}
if (Kind == UETT_AlignOf || Kind == UETT_PreferredAlignOf) {
CharUnits Size;
if (E->isArgumentType()) {
QualType ArgType = E->getTypeOfArgument();
Size = AlignOfType(ArgType, ASTCtx, Kind);
} else {
// Argument is an expression, not a type.
const Expr *Arg = E->getArgumentExpr()->IgnoreParens();
// The kinds of expressions that we have special-case logic here for
// should be kept up to date with the special checks for those
// expressions in Sema.
// alignof decl is always accepted, even if it doesn't make sense: we
// default to 1 in those cases.
if (const auto *DRE = dyn_cast<DeclRefExpr>(Arg))
Size = ASTCtx.getDeclAlign(DRE->getDecl(),
/*RefAsPointee*/ true);
else if (const auto *ME = dyn_cast<MemberExpr>(Arg))
Size = ASTCtx.getDeclAlign(ME->getMemberDecl(),
/*RefAsPointee*/ true);
else
Size = AlignOfType(Arg->getType(), ASTCtx, Kind);
}
if (DiscardResult)
return true;
return this->emitConst(Size.getQuantity(), E);
}
if (Kind == UETT_VectorElements) {
if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>())
return this->emitConst(VT->getNumElements(), E);
assert(E->getTypeOfArgument()->isSizelessVectorType());
return this->emitSizelessVectorElementSize(E);
}
if (Kind == UETT_VecStep) {
if (const auto *VT = E->getTypeOfArgument()->getAs<VectorType>()) {
unsigned N = VT->getNumElements();
// The vec_step built-in functions that take a 3-component
// vector return 4. (OpenCL 1.1 spec 6.11.12)
if (N == 3)
N = 4;
return this->emitConst(N, E);
}
return this->emitConst(1, E);
}
if (Kind == UETT_OpenMPRequiredSimdAlign) {
assert(E->isArgumentType());
unsigned Bits = ASTCtx.getOpenMPDefaultSimdAlign(E->getArgumentType());
return this->emitConst(ASTCtx.toCharUnitsFromBits(Bits).getQuantity(), E);
}
if (Kind == UETT_PtrAuthTypeDiscriminator) {
if (E->getArgumentType()->isDependentType())
return this->emitInvalid(E);
return this->emitConst(
const_cast<ASTContext &>(ASTCtx).getPointerAuthTypeDiscriminator(
E->getArgumentType()),
E);
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitMemberExpr(const MemberExpr *E) {
// 'Base.Member'
const Expr *Base = E->getBase();
const ValueDecl *Member = E->getMemberDecl();
if (DiscardResult)
return this->discard(Base);
// MemberExprs are almost always lvalues, in which case we don't need to
// do the load. But sometimes they aren't.
const auto maybeLoadValue = [&]() -> bool {
if (E->isGLValue())
return true;
if (std::optional<PrimType> T = classify(E))
return this->emitLoadPop(*T, E);
return false;
};
if (const auto *VD = dyn_cast<VarDecl>(Member)) {
// I am almost confident in saying that a var decl must be static
// and therefore registered as a global variable. But this will probably
// turn out to be wrong some time in the future, as always.
if (auto GlobalIndex = P.getGlobal(VD))
return this->emitGetPtrGlobal(*GlobalIndex, E) && maybeLoadValue();
return false;
}
if (!isa<FieldDecl>(Member)) {
if (!this->discard(Base) && !this->emitSideEffect(E))
return false;
return this->visitDeclRef(Member, E);
}
if (Initializing) {
if (!this->delegate(Base))
return false;
} else {
if (!this->visit(Base))
return false;
}
// Base above gives us a pointer on the stack.
const auto *FD = cast<FieldDecl>(Member);
const RecordDecl *RD = FD->getParent();
const Record *R = getRecord(RD);
if (!R)
return false;
const Record::Field *F = R->getField(FD);
// Leave a pointer to the field on the stack.
if (F->Decl->getType()->isReferenceType())
return this->emitGetFieldPop(PT_Ptr, F->Offset, E) && maybeLoadValue();
return this->emitGetPtrFieldPop(F->Offset, E) && maybeLoadValue();
}
template <class Emitter>
bool Compiler<Emitter>::VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) {
// ArrayIndex might not be set if a ArrayInitIndexExpr is being evaluated
// stand-alone, e.g. via EvaluateAsInt().
if (!ArrayIndex)
return false;
return this->emitConst(*ArrayIndex, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) {
assert(Initializing);
assert(!DiscardResult);
// We visit the common opaque expression here once so we have its value
// cached.
if (!this->discard(E->getCommonExpr()))
return false;
// TODO: This compiles to quite a lot of bytecode if the array is larger.
// Investigate compiling this to a loop.
const Expr *SubExpr = E->getSubExpr();
size_t Size = E->getArraySize().getZExtValue();
// So, every iteration, we execute an assignment here
// where the LHS is on the stack (the target array)
// and the RHS is our SubExpr.
for (size_t I = 0; I != Size; ++I) {
ArrayIndexScope<Emitter> IndexScope(this, I);
BlockScope<Emitter> BS(this);
if (!this->visitArrayElemInit(I, SubExpr))
return false;
if (!BS.destroyLocals())
return false;
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
const Expr *SourceExpr = E->getSourceExpr();
if (!SourceExpr)
return false;
if (Initializing)
return this->visitInitializer(SourceExpr);
PrimType SubExprT = classify(SourceExpr).value_or(PT_Ptr);
if (auto It = OpaqueExprs.find(E); It != OpaqueExprs.end())
return this->emitGetLocal(SubExprT, It->second, E);
if (!this->visit(SourceExpr))
return false;
// At this point we either have the evaluated source expression or a pointer
// to an object on the stack. We want to create a local variable that stores
// this value.
unsigned LocalIndex = allocateLocalPrimitive(E, SubExprT, /*IsConst=*/true);
if (!this->emitSetLocal(SubExprT, LocalIndex, E))
return false;
// Here the local variable is created but the value is removed from the stack,
// so we put it back if the caller needs it.
if (!DiscardResult) {
if (!this->emitGetLocal(SubExprT, LocalIndex, E))
return false;
}
// This is cleaned up when the local variable is destroyed.
OpaqueExprs.insert({E, LocalIndex});
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitAbstractConditionalOperator(
const AbstractConditionalOperator *E) {
const Expr *Condition = E->getCond();
const Expr *TrueExpr = E->getTrueExpr();
const Expr *FalseExpr = E->getFalseExpr();
LabelTy LabelEnd = this->getLabel(); // Label after the operator.
LabelTy LabelFalse = this->getLabel(); // Label for the false expr.
if (!this->visitBool(Condition))
return false;
if (!this->jumpFalse(LabelFalse))
return false;
{
LocalScope<Emitter> S(this);
if (!this->delegate(TrueExpr))
return false;
if (!S.destroyLocals())
return false;
}
if (!this->jump(LabelEnd))
return false;
this->emitLabel(LabelFalse);
{
LocalScope<Emitter> S(this);
if (!this->delegate(FalseExpr))
return false;
if (!S.destroyLocals())
return false;
}
this->fallthrough(LabelEnd);
this->emitLabel(LabelEnd);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitStringLiteral(const StringLiteral *E) {
if (DiscardResult)
return true;
if (!Initializing) {
unsigned StringIndex = P.createGlobalString(E);
return this->emitGetPtrGlobal(StringIndex, E);
}
// We are initializing an array on the stack.
const ConstantArrayType *CAT =
Ctx.getASTContext().getAsConstantArrayType(E->getType());
assert(CAT && "a string literal that's not a constant array?");
// If the initializer string is too long, a diagnostic has already been
// emitted. Read only the array length from the string literal.
unsigned ArraySize = CAT->getZExtSize();
unsigned N = std::min(ArraySize, E->getLength());
size_t CharWidth = E->getCharByteWidth();
for (unsigned I = 0; I != N; ++I) {
uint32_t CodeUnit = E->getCodeUnit(I);
if (CharWidth == 1) {
this->emitConstSint8(CodeUnit, E);
this->emitInitElemSint8(I, E);
} else if (CharWidth == 2) {
this->emitConstUint16(CodeUnit, E);
this->emitInitElemUint16(I, E);
} else if (CharWidth == 4) {
this->emitConstUint32(CodeUnit, E);
this->emitInitElemUint32(I, E);
} else {
llvm_unreachable("unsupported character width");
}
}
// Fill up the rest of the char array with NUL bytes.
for (unsigned I = N; I != ArraySize; ++I) {
if (CharWidth == 1) {
this->emitConstSint8(0, E);
this->emitInitElemSint8(I, E);
} else if (CharWidth == 2) {
this->emitConstUint16(0, E);
this->emitInitElemUint16(I, E);
} else if (CharWidth == 4) {
this->emitConstUint32(0, E);
this->emitInitElemUint32(I, E);
} else {
llvm_unreachable("unsupported character width");
}
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
if (DiscardResult)
return true;
return this->emitDummyPtr(E, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
auto &A = Ctx.getASTContext();
std::string Str;
A.getObjCEncodingForType(E->getEncodedType(), Str);
StringLiteral *SL =
StringLiteral::Create(A, Str, StringLiteralKind::Ordinary,
/*Pascal=*/false, E->getType(), E->getAtLoc());
return this->delegate(SL);
}
template <class Emitter>
bool Compiler<Emitter>::VisitSYCLUniqueStableNameExpr(
const SYCLUniqueStableNameExpr *E) {
if (DiscardResult)
return true;
assert(!Initializing);
auto &A = Ctx.getASTContext();
std::string ResultStr = E->ComputeName(A);
QualType CharTy = A.CharTy.withConst();
APInt Size(A.getTypeSize(A.getSizeType()), ResultStr.size() + 1);
QualType ArrayTy = A.getConstantArrayType(CharTy, Size, nullptr,
ArraySizeModifier::Normal, 0);
StringLiteral *SL =
StringLiteral::Create(A, ResultStr, StringLiteralKind::Ordinary,
/*Pascal=*/false, ArrayTy, E->getLocation());
unsigned StringIndex = P.createGlobalString(SL);
return this->emitGetPtrGlobal(StringIndex, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCharacterLiteral(const CharacterLiteral *E) {
if (DiscardResult)
return true;
return this->emitConst(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitFloatCompoundAssignOperator(
const CompoundAssignOperator *E) {
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
QualType LHSType = LHS->getType();
QualType LHSComputationType = E->getComputationLHSType();
QualType ResultType = E->getComputationResultType();
std::optional<PrimType> LT = classify(LHSComputationType);
std::optional<PrimType> RT = classify(ResultType);
assert(ResultType->isFloatingType());
if (!LT || !RT)
return false;
PrimType LHST = classifyPrim(LHSType);
// C++17 onwards require that we evaluate the RHS first.
// Compute RHS and save it in a temporary variable so we can
// load it again later.
if (!visit(RHS))
return false;
unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
if (!this->emitSetLocal(*RT, TempOffset, E))
return false;
// First, visit LHS.
if (!visit(LHS))
return false;
if (!this->emitLoad(LHST, E))
return false;
// If necessary, convert LHS to its computation type.
if (!this->emitPrimCast(LHST, classifyPrim(LHSComputationType),
LHSComputationType, E))
return false;
// Now load RHS.
if (!this->emitGetLocal(*RT, TempOffset, E))
return false;
switch (E->getOpcode()) {
case BO_AddAssign:
if (!this->emitAddf(getFPOptions(E), E))
return false;
break;
case BO_SubAssign:
if (!this->emitSubf(getFPOptions(E), E))
return false;
break;
case BO_MulAssign:
if (!this->emitMulf(getFPOptions(E), E))
return false;
break;
case BO_DivAssign:
if (!this->emitDivf(getFPOptions(E), E))
return false;
break;
default:
return false;
}
if (!this->emitPrimCast(classifyPrim(ResultType), LHST, LHS->getType(), E))
return false;
if (DiscardResult)
return this->emitStorePop(LHST, E);
return this->emitStore(LHST, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitPointerCompoundAssignOperator(
const CompoundAssignOperator *E) {
BinaryOperatorKind Op = E->getOpcode();
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
std::optional<PrimType> LT = classify(LHS->getType());
std::optional<PrimType> RT = classify(RHS->getType());
if (Op != BO_AddAssign && Op != BO_SubAssign)
return false;
if (!LT || !RT)
return false;
if (!visit(LHS))
return false;
if (!this->emitLoad(*LT, LHS))
return false;
if (!visit(RHS))
return false;
if (Op == BO_AddAssign) {
if (!this->emitAddOffset(*RT, E))
return false;
} else {
if (!this->emitSubOffset(*RT, E))
return false;
}
if (DiscardResult)
return this->emitStorePopPtr(E);
return this->emitStorePtr(E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCompoundAssignOperator(
const CompoundAssignOperator *E) {
if (E->getType()->isVectorType())
return VisitVectorBinOp(E);
const Expr *LHS = E->getLHS();
const Expr *RHS = E->getRHS();
std::optional<PrimType> LHSComputationT =
classify(E->getComputationLHSType());
std::optional<PrimType> LT = classify(LHS->getType());
std::optional<PrimType> RT = classify(RHS->getType());
std::optional<PrimType> ResultT = classify(E->getType());
if (!Ctx.getLangOpts().CPlusPlus14)
return this->visit(RHS) && this->visit(LHS) && this->emitError(E);
if (!LT || !RT || !ResultT || !LHSComputationT)
return false;
// Handle floating point operations separately here, since they
// require special care.
if (ResultT == PT_Float || RT == PT_Float)
return VisitFloatCompoundAssignOperator(E);
if (E->getType()->isPointerType())
return VisitPointerCompoundAssignOperator(E);
assert(!E->getType()->isPointerType() && "Handled above");
assert(!E->getType()->isFloatingType() && "Handled above");
// C++17 onwards require that we evaluate the RHS first.
// Compute RHS and save it in a temporary variable so we can
// load it again later.
// FIXME: Compound assignments are unsequenced in C, so we might
// have to figure out how to reject them.
if (!visit(RHS))
return false;
unsigned TempOffset = this->allocateLocalPrimitive(E, *RT, /*IsConst=*/true);
if (!this->emitSetLocal(*RT, TempOffset, E))
return false;
// Get LHS pointer, load its value and cast it to the
// computation type if necessary.
if (!visit(LHS))
return false;
if (!this->emitLoad(*LT, E))
return false;
if (LT != LHSComputationT) {
if (!this->emitCast(*LT, *LHSComputationT, E))
return false;
}
// Get the RHS value on the stack.
if (!this->emitGetLocal(*RT, TempOffset, E))
return false;
// Perform operation.
switch (E->getOpcode()) {
case BO_AddAssign:
if (!this->emitAdd(*LHSComputationT, E))
return false;
break;
case BO_SubAssign:
if (!this->emitSub(*LHSComputationT, E))
return false;
break;
case BO_MulAssign:
if (!this->emitMul(*LHSComputationT, E))
return false;
break;
case BO_DivAssign:
if (!this->emitDiv(*LHSComputationT, E))
return false;
break;
case BO_RemAssign:
if (!this->emitRem(*LHSComputationT, E))
return false;
break;
case BO_ShlAssign:
if (!this->emitShl(*LHSComputationT, *RT, E))
return false;
break;
case BO_ShrAssign:
if (!this->emitShr(*LHSComputationT, *RT, E))
return false;
break;
case BO_AndAssign:
if (!this->emitBitAnd(*LHSComputationT, E))
return false;
break;
case BO_XorAssign:
if (!this->emitBitXor(*LHSComputationT, E))
return false;
break;
case BO_OrAssign:
if (!this->emitBitOr(*LHSComputationT, E))
return false;
break;
default:
llvm_unreachable("Unimplemented compound assign operator");
}
// And now cast from LHSComputationT to ResultT.
if (ResultT != LHSComputationT) {
if (!this->emitCast(*LHSComputationT, *ResultT, E))
return false;
}
// And store the result in LHS.
if (DiscardResult) {
if (LHS->refersToBitField())
return this->emitStoreBitFieldPop(*ResultT, E);
return this->emitStorePop(*ResultT, E);
}
if (LHS->refersToBitField())
return this->emitStoreBitField(*ResultT, E);
return this->emitStore(*ResultT, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitExprWithCleanups(const ExprWithCleanups *E) {
LocalScope<Emitter> ES(this);
const Expr *SubExpr = E->getSubExpr();
return this->delegate(SubExpr) && ES.destroyLocals(E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitMaterializeTemporaryExpr(
const MaterializeTemporaryExpr *E) {
const Expr *SubExpr = E->getSubExpr();
if (Initializing) {
// We already have a value, just initialize that.
return this->delegate(SubExpr);
}
// If we don't end up using the materialized temporary anyway, don't
// bother creating it.
if (DiscardResult)
return this->discard(SubExpr);
// When we're initializing a global variable *or* the storage duration of
// the temporary is explicitly static, create a global variable.
std::optional<PrimType> SubExprT = classify(SubExpr);
bool IsStatic = E->getStorageDuration() == SD_Static;
if (IsStatic) {
std::optional<unsigned> GlobalIndex = P.createGlobal(E);
if (!GlobalIndex)
return false;
const LifetimeExtendedTemporaryDecl *TempDecl =
E->getLifetimeExtendedTemporaryDecl();
if (IsStatic)
assert(TempDecl);
if (SubExprT) {
if (!this->visit(SubExpr))
return false;
if (IsStatic) {
if (!this->emitInitGlobalTemp(*SubExprT, *GlobalIndex, TempDecl, E))
return false;
} else {
if (!this->emitInitGlobal(*SubExprT, *GlobalIndex, E))
return false;
}
return this->emitGetPtrGlobal(*GlobalIndex, E);
}
if (!this->checkLiteralType(SubExpr))
return false;
// Non-primitive values.
if (!this->emitGetPtrGlobal(*GlobalIndex, E))
return false;
if (!this->visitInitializer(SubExpr))
return false;
if (IsStatic)
return this->emitInitGlobalTempComp(TempDecl, E);
return true;
}
// For everyhing else, use local variables.
if (SubExprT) {
unsigned LocalIndex = allocateLocalPrimitive(E, *SubExprT, /*IsConst=*/true,
/*IsExtended=*/true);
if (!this->visit(SubExpr))
return false;
if (!this->emitSetLocal(*SubExprT, LocalIndex, E))
return false;
return this->emitGetPtrLocal(LocalIndex, E);
} else {
if (!this->checkLiteralType(SubExpr))
return false;
const Expr *Inner = E->getSubExpr()->skipRValueSubobjectAdjustments();
if (std::optional<unsigned> LocalIndex =
allocateLocal(E, Inner->getType(), E->getExtendingDecl())) {
InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
return this->visitInitializer(SubExpr) && this->emitFinishInit(E);
}
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXBindTemporaryExpr(
const CXXBindTemporaryExpr *E) {
return this->delegate(E->getSubExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
const Expr *Init = E->getInitializer();
if (DiscardResult)
return this->discard(Init);
if (Initializing) {
// We already have a value, just initialize that.
return this->visitInitializer(Init) && this->emitFinishInit(E);
}
std::optional<PrimType> T = classify(E->getType());
if (E->isFileScope()) {
// Avoid creating a variable if this is a primitive RValue anyway.
if (T && !E->isLValue())
return this->delegate(Init);
if (std::optional<unsigned> GlobalIndex = P.createGlobal(E)) {
if (!this->emitGetPtrGlobal(*GlobalIndex, E))
return false;
if (T) {
if (!this->visit(Init))
return false;
return this->emitInitGlobal(*T, *GlobalIndex, E);
}
return this->visitInitializer(Init) && this->emitFinishInit(E);
}
return false;
}
// Otherwise, use a local variable.
if (T && !E->isLValue()) {
// For primitive types, we just visit the initializer.
return this->delegate(Init);
} else {
unsigned LocalIndex;
if (T)
LocalIndex = this->allocateLocalPrimitive(Init, *T, false, false);
else if (std::optional<unsigned> MaybeIndex = this->allocateLocal(Init))
LocalIndex = *MaybeIndex;
else
return false;
if (!this->emitGetPtrLocal(LocalIndex, E))
return false;
if (T) {
if (!this->visit(Init)) {
return false;
}
return this->emitInit(*T, E);
} else {
if (!this->visitInitializer(Init) || !this->emitFinishInit(E))
return false;
}
return true;
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitTypeTraitExpr(const TypeTraitExpr *E) {
if (DiscardResult)
return true;
if (E->getType()->isBooleanType())
return this->emitConstBool(E->getValue(), E);
return this->emitConst(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
if (DiscardResult)
return true;
return this->emitConst(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitLambdaExpr(const LambdaExpr *E) {
if (DiscardResult)
return true;
assert(Initializing);
const Record *R = P.getOrCreateRecord(E->getLambdaClass());
auto *CaptureInitIt = E->capture_init_begin();
// Initialize all fields (which represent lambda captures) of the
// record with their initializers.
for (const Record::Field &F : R->fields()) {
const Expr *Init = *CaptureInitIt;
++CaptureInitIt;
if (!Init)
continue;
if (std::optional<PrimType> T = classify(Init)) {
if (!this->visit(Init))
return false;
if (!this->emitInitField(*T, F.Offset, E))
return false;
} else {
if (!this->emitGetPtrField(F.Offset, E))
return false;
if (!this->visitInitializer(Init))
return false;
if (!this->emitPopPtr(E))
return false;
}
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitPredefinedExpr(const PredefinedExpr *E) {
if (DiscardResult)
return true;
if (!Initializing) {
unsigned StringIndex = P.createGlobalString(E->getFunctionName(), E);
return this->emitGetPtrGlobal(StringIndex, E);
}
return this->delegate(E->getFunctionName());
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXThrowExpr(const CXXThrowExpr *E) {
if (E->getSubExpr() && !this->discard(E->getSubExpr()))
return false;
return this->emitInvalid(E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXReinterpretCastExpr(
const CXXReinterpretCastExpr *E) {
const Expr *SubExpr = E->getSubExpr();
std::optional<PrimType> FromT = classify(SubExpr);
std::optional<PrimType> ToT = classify(E);
if (!FromT || !ToT)
return this->emitInvalidCast(CastKind::Reinterpret, /*Fatal=*/true, E);
if (FromT == PT_Ptr || ToT == PT_Ptr) {
// Both types could be PT_Ptr because their expressions are glvalues.
std::optional<PrimType> PointeeFromT;
if (SubExpr->getType()->isPointerOrReferenceType())
PointeeFromT = classify(SubExpr->getType()->getPointeeType());
else
PointeeFromT = classify(SubExpr->getType());
std::optional<PrimType> PointeeToT;
if (E->getType()->isPointerOrReferenceType())
PointeeToT = classify(E->getType()->getPointeeType());
else
PointeeToT = classify(E->getType());
bool Fatal = true;
if (PointeeToT && PointeeFromT) {
if (isIntegralType(*PointeeFromT) && isIntegralType(*PointeeToT))
Fatal = false;
}
if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
return false;
if (E->getCastKind() == CK_LValueBitCast)
return this->delegate(SubExpr);
return this->VisitCastExpr(E);
}
// Try to actually do the cast.
bool Fatal = (ToT != FromT);
if (!this->emitInvalidCast(CastKind::Reinterpret, Fatal, E))
return false;
return this->VisitCastExpr(E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
assert(E->getType()->isBooleanType());
if (DiscardResult)
return true;
return this->emitConstBool(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXConstructExpr(const CXXConstructExpr *E) {
QualType T = E->getType();
assert(!classify(T));
if (T->isRecordType()) {
const CXXConstructorDecl *Ctor = E->getConstructor();
// Trivial copy/move constructor. Avoid copy.
if (Ctor->isDefaulted() && Ctor->isCopyOrMoveConstructor() &&
Ctor->isTrivial() &&
E->getArg(0)->isTemporaryObject(Ctx.getASTContext(),
T->getAsCXXRecordDecl()))
return this->visitInitializer(E->getArg(0));
// If we're discarding a construct expression, we still need
// to allocate a variable and call the constructor and destructor.
if (DiscardResult) {
if (Ctor->isTrivial())
return true;
assert(!Initializing);
std::optional<unsigned> LocalIndex = allocateLocal(E);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
// Zero initialization.
if (E->requiresZeroInitialization()) {
const Record *R = getRecord(E->getType());
if (!this->visitZeroRecordInitializer(R, E))
return false;
// If the constructor is trivial anyway, we're done.
if (Ctor->isTrivial())
return true;
}
const Function *Func = getFunction(Ctor);
if (!Func)
return false;
assert(Func->hasThisPointer());
assert(!Func->hasRVO());
// The This pointer is already on the stack because this is an initializer,
// but we need to dup() so the call() below has its own copy.
if (!this->emitDupPtr(E))
return false;
// Constructor arguments.
for (const auto *Arg : E->arguments()) {
if (!this->visit(Arg))
return false;
}
if (Func->isVariadic()) {
uint32_t VarArgSize = 0;
unsigned NumParams = Func->getNumWrittenParams();
for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I) {
VarArgSize +=
align(primSize(classify(E->getArg(I)->getType()).value_or(PT_Ptr)));
}
if (!this->emitCallVar(Func, VarArgSize, E))
return false;
} else {
if (!this->emitCall(Func, 0, E)) {
// When discarding, we don't need the result anyway, so clean up
// the instance dup we did earlier in case surrounding code wants
// to keep evaluating.
if (DiscardResult)
(void)this->emitPopPtr(E);
return false;
}
}
if (DiscardResult)
return this->emitPopPtr(E);
return this->emitFinishInit(E);
}
if (T->isArrayType()) {
const ConstantArrayType *CAT =
Ctx.getASTContext().getAsConstantArrayType(E->getType());
if (!CAT)
return false;
size_t NumElems = CAT->getZExtSize();
const Function *Func = getFunction(E->getConstructor());
if (!Func || !Func->isConstexpr())
return false;
// FIXME(perf): We're calling the constructor once per array element here,
// in the old intepreter we had a special-case for trivial constructors.
for (size_t I = 0; I != NumElems; ++I) {
if (!this->emitConstUint64(I, E))
return false;
if (!this->emitArrayElemPtrUint64(E))
return false;
// Constructor arguments.
for (const auto *Arg : E->arguments()) {
if (!this->visit(Arg))
return false;
}
if (!this->emitCall(Func, 0, E))
return false;
}
return true;
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitSourceLocExpr(const SourceLocExpr *E) {
if (DiscardResult)
return true;
const APValue Val =
E->EvaluateInContext(Ctx.getASTContext(), SourceLocDefaultExpr);
// Things like __builtin_LINE().
if (E->getType()->isIntegerType()) {
assert(Val.isInt());
const APSInt &I = Val.getInt();
return this->emitConst(I, E);
}
// Otherwise, the APValue is an LValue, with only one element.
// Theoretically, we don't need the APValue at all of course.
assert(E->getType()->isPointerType());
assert(Val.isLValue());
const APValue::LValueBase &Base = Val.getLValueBase();
if (const Expr *LValueExpr = Base.dyn_cast<const Expr *>())
return this->visit(LValueExpr);
// Otherwise, we have a decl (which is the case for
// __builtin_source_location).
assert(Base.is<const ValueDecl *>());
assert(Val.getLValuePath().size() == 0);
const auto *BaseDecl = Base.dyn_cast<const ValueDecl *>();
assert(BaseDecl);
auto *UGCD = cast<UnnamedGlobalConstantDecl>(BaseDecl);
std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(UGCD);
if (!GlobalIndex)
return false;
if (!this->emitGetPtrGlobal(*GlobalIndex, E))
return false;
const Record *R = getRecord(E->getType());
const APValue &V = UGCD->getValue();
for (unsigned I = 0, N = R->getNumFields(); I != N; ++I) {
const Record::Field *F = R->getField(I);
const APValue &FieldValue = V.getStructField(I);
PrimType FieldT = classifyPrim(F->Decl->getType());
if (!this->visitAPValue(FieldValue, FieldT, E))
return false;
if (!this->emitInitField(FieldT, F->Offset, E))
return false;
}
// Leave the pointer to the global on the stack.
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitOffsetOfExpr(const OffsetOfExpr *E) {
unsigned N = E->getNumComponents();
if (N == 0)
return false;
for (unsigned I = 0; I != N; ++I) {
const OffsetOfNode &Node = E->getComponent(I);
if (Node.getKind() == OffsetOfNode::Array) {
const Expr *ArrayIndexExpr = E->getIndexExpr(Node.getArrayExprIndex());
PrimType IndexT = classifyPrim(ArrayIndexExpr->getType());
if (DiscardResult) {
if (!this->discard(ArrayIndexExpr))
return false;
continue;
}
if (!this->visit(ArrayIndexExpr))
return false;
// Cast to Sint64.
if (IndexT != PT_Sint64) {
if (!this->emitCast(IndexT, PT_Sint64, E))
return false;
}
}
}
if (DiscardResult)
return true;
PrimType T = classifyPrim(E->getType());
return this->emitOffsetOf(T, E, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXScalarValueInitExpr(
const CXXScalarValueInitExpr *E) {
QualType Ty = E->getType();
if (DiscardResult || Ty->isVoidType())
return true;
if (std::optional<PrimType> T = classify(Ty))
return this->visitZeroInitializer(*T, Ty, E);
if (const auto *CT = Ty->getAs<ComplexType>()) {
if (!Initializing) {
std::optional<unsigned> LocalIndex = allocateLocal(E);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
// Initialize both fields to 0.
QualType ElemQT = CT->getElementType();
PrimType ElemT = classifyPrim(ElemQT);
for (unsigned I = 0; I != 2; ++I) {
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
return true;
}
if (const auto *VT = Ty->getAs<VectorType>()) {
// FIXME: Code duplication with the _Complex case above.
if (!Initializing) {
std::optional<unsigned> LocalIndex = allocateLocal(E);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
// Initialize all fields to 0.
QualType ElemQT = VT->getElementType();
PrimType ElemT = classifyPrim(ElemQT);
for (unsigned I = 0, N = VT->getNumElements(); I != N; ++I) {
if (!this->visitZeroInitializer(ElemT, ElemQT, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
return true;
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
return this->emitConst(E->getPackLength(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitGenericSelectionExpr(
const GenericSelectionExpr *E) {
return this->delegate(E->getResultExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitChooseExpr(const ChooseExpr *E) {
return this->delegate(E->getChosenSubExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
if (DiscardResult)
return true;
return this->emitConst(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXInheritedCtorInitExpr(
const CXXInheritedCtorInitExpr *E) {
const CXXConstructorDecl *Ctor = E->getConstructor();
assert(!Ctor->isTrivial() &&
"Trivial CXXInheritedCtorInitExpr, implement. (possible?)");
const Function *F = this->getFunction(Ctor);
assert(F);
assert(!F->hasRVO());
assert(F->hasThisPointer());
if (!this->emitDupPtr(SourceInfo{}))
return false;
// Forward all arguments of the current function (which should be a
// constructor itself) to the inherited ctor.
// This is necessary because the calling code has pushed the pointer
// of the correct base for us already, but the arguments need
// to come after.
unsigned Offset = align(primSize(PT_Ptr)); // instance pointer.
for (const ParmVarDecl *PD : Ctor->parameters()) {
PrimType PT = this->classify(PD->getType()).value_or(PT_Ptr);
if (!this->emitGetParam(PT, Offset, E))
return false;
Offset += align(primSize(PT));
}
return this->emitCall(F, 0, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXNewExpr(const CXXNewExpr *E) {
assert(classifyPrim(E->getType()) == PT_Ptr);
const Expr *Init = E->getInitializer();
QualType ElementType = E->getAllocatedType();
std::optional<PrimType> ElemT = classify(ElementType);
unsigned PlacementArgs = E->getNumPlacementArgs();
const FunctionDecl *OperatorNew = E->getOperatorNew();
const Expr *PlacementDest = nullptr;
bool IsNoThrow = false;
if (PlacementArgs != 0) {
// FIXME: There is no restriction on this, but it's not clear that any
// other form makes any sense. We get here for cases such as:
//
// new (std::align_val_t{N}) X(int)
//
// (which should presumably be valid only if N is a multiple of
// alignof(int), and in any case can't be deallocated unless N is
// alignof(X) and X has new-extended alignment).
if (PlacementArgs == 1) {
const Expr *Arg1 = E->getPlacementArg(0);
if (Arg1->getType()->isNothrowT()) {
if (!this->discard(Arg1))
return false;
IsNoThrow = true;
} else {
// Invalid unless we have C++26 or are in a std:: function.
if (!this->emitInvalidNewDeleteExpr(E, E))
return false;
// If we have a placement-new destination, we'll later use that instead
// of allocating.
if (OperatorNew->isReservedGlobalPlacementOperator())
PlacementDest = Arg1;
}
} else {
// Always invalid.
return this->emitInvalid(E);
}
} else if (!OperatorNew->isReplaceableGlobalAllocationFunction())
return this->emitInvalidNewDeleteExpr(E, E);
const Descriptor *Desc;
if (!PlacementDest) {
if (ElemT) {
if (E->isArray())
Desc = nullptr; // We're not going to use it in this case.
else
Desc = P.createDescriptor(E, *ElemT, Descriptor::InlineDescMD,
/*IsConst=*/false, /*IsTemporary=*/false,
/*IsMutable=*/false);
} else {
Desc = P.createDescriptor(
E, ElementType.getTypePtr(),
E->isArray() ? std::nullopt : Descriptor::InlineDescMD,
/*IsConst=*/false, /*IsTemporary=*/false, /*IsMutable=*/false, Init);
}
}
if (E->isArray()) {
std::optional<const Expr *> ArraySizeExpr = E->getArraySize();
if (!ArraySizeExpr)
return false;
const Expr *Stripped = *ArraySizeExpr;
for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped);
Stripped = ICE->getSubExpr())
if (ICE->getCastKind() != CK_NoOp &&
ICE->getCastKind() != CK_IntegralCast)
break;
PrimType SizeT = classifyPrim(Stripped->getType());
if (PlacementDest) {
if (!this->visit(PlacementDest))
return false;
if (!this->visit(Stripped))
return false;
if (!this->emitCheckNewTypeMismatchArray(SizeT, E, E))
return false;
} else {
if (!this->visit(Stripped))
return false;
if (ElemT) {
// N primitive elements.
if (!this->emitAllocN(SizeT, *ElemT, E, IsNoThrow, E))
return false;
} else {
// N Composite elements.
if (!this->emitAllocCN(SizeT, Desc, IsNoThrow, E))
return false;
}
}
if (Init && !this->visitInitializer(Init))
return false;
} else {
if (PlacementDest) {
if (!this->visit(PlacementDest))
return false;
if (!this->emitCheckNewTypeMismatch(E, E))
return false;
} else {
// Allocate just one element.
if (!this->emitAlloc(Desc, E))
return false;
}
if (Init) {
if (ElemT) {
if (!this->visit(Init))
return false;
if (!this->emitInit(*ElemT, E))
return false;
} else {
// Composite.
if (!this->visitInitializer(Init))
return false;
}
}
}
if (DiscardResult)
return this->emitPopPtr(E);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
const Expr *Arg = E->getArgument();
const FunctionDecl *OperatorDelete = E->getOperatorDelete();
if (!OperatorDelete->isReplaceableGlobalAllocationFunction())
return this->emitInvalidNewDeleteExpr(E, E);
// Arg must be an lvalue.
if (!this->visit(Arg))
return false;
return this->emitFree(E->isArrayForm(), E->isGlobalDelete(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitBlockExpr(const BlockExpr *E) {
if (DiscardResult)
return true;
const Function *Func = nullptr;
if (auto F = Compiler<ByteCodeEmitter>(Ctx, P).compileObjCBlock(E))
Func = F;
if (!Func)
return false;
return this->emitGetFnPtr(Func, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
const Type *TypeInfoType = E->getType().getTypePtr();
if (!E->isPotentiallyEvaluated()) {
if (DiscardResult)
return true;
if (E->isTypeOperand())
return this->emitGetTypeid(
E->getTypeOperand(Ctx.getASTContext()).getTypePtr(), TypeInfoType, E);
return this->emitGetTypeid(E->getExprOperand()->getType().getTypePtr(),
TypeInfoType, E);
}
// Otherwise, we need to evaluate the expression operand.
assert(E->getExprOperand());
assert(E->getExprOperand()->isLValue());
if (!Ctx.getLangOpts().CPlusPlus20 && !this->emitDiagTypeid(E))
return false;
if (!this->visit(E->getExprOperand()))
return false;
if (!this->emitGetTypeidPtr(TypeInfoType, E))
return false;
if (DiscardResult)
return this->emitPopPtr(E);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
assert(Ctx.getLangOpts().CPlusPlus);
return this->emitConstBool(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
if (DiscardResult)
return true;
assert(!Initializing);
const MSGuidDecl *GuidDecl = E->getGuidDecl();
const RecordDecl *RD = GuidDecl->getType()->getAsRecordDecl();
assert(RD);
// If the definiton of the result type is incomplete, just return a dummy.
// If (and when) that is read from, we will fail, but not now.
if (!RD->isCompleteDefinition())
return this->emitDummyPtr(GuidDecl, E);
std::optional<unsigned> GlobalIndex = P.getOrCreateGlobal(GuidDecl);
if (!GlobalIndex)
return false;
if (!this->emitGetPtrGlobal(*GlobalIndex, E))
return false;
assert(this->getRecord(E->getType()));
const APValue &V = GuidDecl->getAsAPValue();
if (V.getKind() == APValue::None)
return true;
assert(V.isStruct());
assert(V.getStructNumBases() == 0);
if (!this->visitAPValueInitializer(V, E))
return false;
return this->emitFinishInit(E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitRequiresExpr(const RequiresExpr *E) {
assert(classifyPrim(E->getType()) == PT_Bool);
if (DiscardResult)
return true;
return this->emitConstBool(E->isSatisfied(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitConceptSpecializationExpr(
const ConceptSpecializationExpr *E) {
assert(classifyPrim(E->getType()) == PT_Bool);
if (DiscardResult)
return true;
return this->emitConstBool(E->isSatisfied(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXRewrittenBinaryOperator(
const CXXRewrittenBinaryOperator *E) {
return this->delegate(E->getSemanticForm());
}
template <class Emitter>
bool Compiler<Emitter>::VisitPseudoObjectExpr(const PseudoObjectExpr *E) {
for (const Expr *SemE : E->semantics()) {
if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) {
if (SemE == E->getResultExpr())
return false;
if (OVE->isUnique())
continue;
if (!this->discard(OVE))
return false;
} else if (SemE == E->getResultExpr()) {
if (!this->delegate(SemE))
return false;
} else {
if (!this->discard(SemE))
return false;
}
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitPackIndexingExpr(const PackIndexingExpr *E) {
return this->delegate(E->getSelectedExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitRecoveryExpr(const RecoveryExpr *E) {
return this->emitError(E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitAddrLabelExpr(const AddrLabelExpr *E) {
assert(E->getType()->isVoidPointerType());
unsigned Offset = allocateLocalPrimitive(
E->getLabel(), PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
return this->emitGetLocal(PT_Ptr, Offset, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitConvertVectorExpr(const ConvertVectorExpr *E) {
assert(Initializing);
const auto *VT = E->getType()->castAs<VectorType>();
QualType ElemType = VT->getElementType();
PrimType ElemT = classifyPrim(ElemType);
const Expr *Src = E->getSrcExpr();
QualType SrcType = Src->getType();
PrimType SrcElemT = classifyVectorElementType(SrcType);
unsigned SrcOffset = this->allocateLocalPrimitive(Src, PT_Ptr, true, false);
if (!this->visit(Src))
return false;
if (!this->emitSetLocal(PT_Ptr, SrcOffset, E))
return false;
for (unsigned I = 0; I != VT->getNumElements(); ++I) {
if (!this->emitGetLocal(PT_Ptr, SrcOffset, E))
return false;
if (!this->emitArrayElemPop(SrcElemT, I, E))
return false;
// Cast to the desired result element type.
if (SrcElemT != ElemT) {
if (!this->emitPrimCast(SrcElemT, ElemT, ElemType, E))
return false;
} else if (ElemType->isFloatingType() && SrcType != ElemType) {
const auto *TargetSemantics = &Ctx.getFloatSemantics(ElemType);
if (!this->emitCastFP(TargetSemantics, getRoundingMode(E), E))
return false;
}
if (!this->emitInitElem(ElemT, I, E))
return false;
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitShuffleVectorExpr(const ShuffleVectorExpr *E) {
assert(Initializing);
assert(E->getNumSubExprs() > 2);
const Expr *Vecs[] = {E->getExpr(0), E->getExpr(1)};
const VectorType *VT = Vecs[0]->getType()->castAs<VectorType>();
PrimType ElemT = classifyPrim(VT->getElementType());
unsigned NumInputElems = VT->getNumElements();
unsigned NumOutputElems = E->getNumSubExprs() - 2;
assert(NumOutputElems > 0);
// Save both input vectors to a local variable.
unsigned VectorOffsets[2];
for (unsigned I = 0; I != 2; ++I) {
VectorOffsets[I] = this->allocateLocalPrimitive(
Vecs[I], PT_Ptr, /*IsConst=*/true, /*IsExtended=*/false);
if (!this->visit(Vecs[I]))
return false;
if (!this->emitSetLocal(PT_Ptr, VectorOffsets[I], E))
return false;
}
for (unsigned I = 0; I != NumOutputElems; ++I) {
APSInt ShuffleIndex = E->getShuffleMaskIdx(Ctx.getASTContext(), I);
assert(ShuffleIndex >= -1);
if (ShuffleIndex == -1)
return this->emitInvalidShuffleVectorIndex(I, E);
assert(ShuffleIndex < (NumInputElems * 2));
if (!this->emitGetLocal(PT_Ptr,
VectorOffsets[ShuffleIndex >= NumInputElems], E))
return false;
unsigned InputVectorIndex = ShuffleIndex.getZExtValue() % NumInputElems;
if (!this->emitArrayElemPop(ElemT, InputVectorIndex, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitExtVectorElementExpr(
const ExtVectorElementExpr *E) {
const Expr *Base = E->getBase();
assert(
Base->getType()->isVectorType() ||
Base->getType()->getAs<PointerType>()->getPointeeType()->isVectorType());
SmallVector<uint32_t, 4> Indices;
E->getEncodedElementAccess(Indices);
if (Indices.size() == 1) {
if (!this->visit(Base))
return false;
if (E->isGLValue()) {
if (!this->emitConstUint32(Indices[0], E))
return false;
return this->emitArrayElemPtrPop(PT_Uint32, E);
}
// Else, also load the value.
return this->emitArrayElemPop(classifyPrim(E->getType()), Indices[0], E);
}
// Create a local variable for the base.
unsigned BaseOffset = allocateLocalPrimitive(Base, PT_Ptr, /*IsConst=*/true,
/*IsExtended=*/false);
if (!this->visit(Base))
return false;
if (!this->emitSetLocal(PT_Ptr, BaseOffset, E))
return false;
// Now the vector variable for the return value.
if (!Initializing) {
std::optional<unsigned> ResultIndex;
ResultIndex = allocateLocal(E);
if (!ResultIndex)
return false;
if (!this->emitGetPtrLocal(*ResultIndex, E))
return false;
}
assert(Indices.size() == E->getType()->getAs<VectorType>()->getNumElements());
PrimType ElemT =
classifyPrim(E->getType()->getAs<VectorType>()->getElementType());
uint32_t DstIndex = 0;
for (uint32_t I : Indices) {
if (!this->emitGetLocal(PT_Ptr, BaseOffset, E))
return false;
if (!this->emitArrayElemPop(ElemT, I, E))
return false;
if (!this->emitInitElem(ElemT, DstIndex, E))
return false;
++DstIndex;
}
// Leave the result pointer on the stack.
assert(!DiscardResult);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
const Expr *SubExpr = E->getSubExpr();
if (!E->isExpressibleAsConstantInitializer())
return this->discard(SubExpr) && this->emitInvalid(E);
if (DiscardResult)
return true;
assert(classifyPrim(E) == PT_Ptr);
return this->emitDummyPtr(E, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXStdInitializerListExpr(
const CXXStdInitializerListExpr *E) {
const Expr *SubExpr = E->getSubExpr();
const ConstantArrayType *ArrayType =
Ctx.getASTContext().getAsConstantArrayType(SubExpr->getType());
const Record *R = getRecord(E->getType());
assert(Initializing);
assert(SubExpr->isGLValue());
if (!this->visit(SubExpr))
return false;
if (!this->emitConstUint8(0, E))
return false;
if (!this->emitArrayElemPtrPopUint8(E))
return false;
if (!this->emitInitFieldPtr(R->getField(0u)->Offset, E))
return false;
PrimType SecondFieldT = classifyPrim(R->getField(1u)->Decl->getType());
if (isIntegralType(SecondFieldT)) {
if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()),
SecondFieldT, E))
return false;
return this->emitInitField(SecondFieldT, R->getField(1u)->Offset, E);
}
assert(SecondFieldT == PT_Ptr);
if (!this->emitGetFieldPtr(R->getField(0u)->Offset, E))
return false;
if (!this->emitExpandPtr(E))
return false;
if (!this->emitConst(static_cast<APSInt>(ArrayType->getSize()), PT_Uint64, E))
return false;
if (!this->emitArrayElemPtrPop(PT_Uint64, E))
return false;
return this->emitInitFieldPtr(R->getField(1u)->Offset, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitStmtExpr(const StmtExpr *E) {
BlockScope<Emitter> BS(this);
StmtExprScope<Emitter> SS(this);
const CompoundStmt *CS = E->getSubStmt();
const Stmt *Result = CS->getStmtExprResult();
for (const Stmt *S : CS->body()) {
if (S != Result) {
if (!this->visitStmt(S))
return false;
continue;
}
assert(S == Result);
if (const Expr *ResultExpr = dyn_cast<Expr>(S))
return this->delegate(ResultExpr);
return this->emitUnsupported(E);
}
return BS.destroyLocals();
}
template <class Emitter> bool Compiler<Emitter>::discard(const Expr *E) {
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/true,
/*NewInitializing=*/false);
return this->Visit(E);
}
template <class Emitter> bool Compiler<Emitter>::delegate(const Expr *E) {
// We're basically doing:
// OptionScope<Emitter> Scope(this, DicardResult, Initializing);
// but that's unnecessary of course.
return this->Visit(E);
}
template <class Emitter> bool Compiler<Emitter>::visit(const Expr *E) {
if (E->getType().isNull())
return false;
if (E->getType()->isVoidType())
return this->discard(E);
// Create local variable to hold the return value.
if (!E->isGLValue() && !E->getType()->isAnyComplexType() &&
!classify(E->getType())) {
std::optional<unsigned> LocalIndex = allocateLocal(E);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalIndex));
return this->visitInitializer(E);
}
// Otherwise,we have a primitive return value, produce the value directly
// and push it on the stack.
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
/*NewInitializing=*/false);
return this->Visit(E);
}
template <class Emitter>
bool Compiler<Emitter>::visitInitializer(const Expr *E) {
assert(!classify(E->getType()));
OptionScope<Emitter> Scope(this, /*NewDiscardResult=*/false,
/*NewInitializing=*/true);
return this->Visit(E);
}
template <class Emitter> bool Compiler<Emitter>::visitBool(const Expr *E) {
std::optional<PrimType> T = classify(E->getType());
if (!T) {
// Convert complex values to bool.
if (E->getType()->isAnyComplexType()) {
if (!this->visit(E))
return false;
return this->emitComplexBoolCast(E);
}
return false;
}
if (!this->visit(E))
return false;
if (T == PT_Bool)
return true;
// Convert pointers to bool.
if (T == PT_Ptr || T == PT_FnPtr) {
if (!this->emitNull(*T, 0, nullptr, E))
return false;
return this->emitNE(*T, E);
}
// Or Floats.
if (T == PT_Float)
return this->emitCastFloatingIntegralBool(getFPOptions(E), E);
// Or anything else we can.
return this->emitCast(*T, PT_Bool, E);
}
template <class Emitter>
bool Compiler<Emitter>::visitZeroInitializer(PrimType T, QualType QT,
const Expr *E) {
switch (T) {
case PT_Bool:
return this->emitZeroBool(E);
case PT_Sint8:
return this->emitZeroSint8(E);
case PT_Uint8:
return this->emitZeroUint8(E);
case PT_Sint16:
return this->emitZeroSint16(E);
case PT_Uint16:
return this->emitZeroUint16(E);
case PT_Sint32:
return this->emitZeroSint32(E);
case PT_Uint32:
return this->emitZeroUint32(E);
case PT_Sint64:
return this->emitZeroSint64(E);
case PT_Uint64:
return this->emitZeroUint64(E);
case PT_IntAP:
return this->emitZeroIntAP(Ctx.getBitWidth(QT), E);
case PT_IntAPS:
return this->emitZeroIntAPS(Ctx.getBitWidth(QT), E);
case PT_Ptr:
return this->emitNullPtr(Ctx.getASTContext().getTargetNullPointerValue(QT),
nullptr, E);
case PT_FnPtr:
return this->emitNullFnPtr(0, nullptr, E);
case PT_MemberPtr:
return this->emitNullMemberPtr(0, nullptr, E);
case PT_Float:
return this->emitConstFloat(APFloat::getZero(Ctx.getFloatSemantics(QT)), E);
case PT_FixedPoint: {
auto Sem = Ctx.getASTContext().getFixedPointSemantics(E->getType());
return this->emitConstFixedPoint(FixedPoint::zero(Sem), E);
}
llvm_unreachable("Implement");
}
llvm_unreachable("unknown primitive type");
}
template <class Emitter>
bool Compiler<Emitter>::visitZeroRecordInitializer(const Record *R,
const Expr *E) {
assert(E);
assert(R);
// Fields
for (const Record::Field &Field : R->fields()) {
if (Field.Decl->isUnnamedBitField())
continue;
const Descriptor *D = Field.Desc;
if (D->isPrimitive()) {
QualType QT = D->getType();
PrimType T = classifyPrim(D->getType());
if (!this->visitZeroInitializer(T, QT, E))
return false;
if (!this->emitInitField(T, Field.Offset, E))
return false;
if (R->isUnion())
break;
continue;
}
if (!this->emitGetPtrField(Field.Offset, E))
return false;
if (D->isPrimitiveArray()) {
QualType ET = D->getElemQualType();
PrimType T = classifyPrim(ET);
for (uint32_t I = 0, N = D->getNumElems(); I != N; ++I) {
if (!this->visitZeroInitializer(T, ET, E))
return false;
if (!this->emitInitElem(T, I, E))
return false;
}
} else if (D->isCompositeArray()) {
// Can't be a vector or complex field.
if (!this->visitZeroArrayInitializer(D->getType(), E))
return false;
} else if (D->isRecord()) {
if (!this->visitZeroRecordInitializer(D->ElemRecord, E))
return false;
} else {
assert(false);
}
if (!this->emitFinishInitPop(E))
return false;
// C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
// object's first non-static named data member is zero-initialized
if (R->isUnion())
break;
}
for (const Record::Base &B : R->bases()) {
if (!this->emitGetPtrBase(B.Offset, E))
return false;
if (!this->visitZeroRecordInitializer(B.R, E))
return false;
if (!this->emitFinishInitPop(E))
return false;
}
// FIXME: Virtual bases.
return true;
}
template <class Emitter>
bool Compiler<Emitter>::visitZeroArrayInitializer(QualType T, const Expr *E) {
assert(T->isArrayType() || T->isAnyComplexType() || T->isVectorType());
const ArrayType *AT = T->getAsArrayTypeUnsafe();
QualType ElemType = AT->getElementType();
size_t NumElems = cast<ConstantArrayType>(AT)->getZExtSize();
if (std::optional<PrimType> ElemT = classify(ElemType)) {
for (size_t I = 0; I != NumElems; ++I) {
if (!this->visitZeroInitializer(*ElemT, ElemType, E))
return false;
if (!this->emitInitElem(*ElemT, I, E))
return false;
}
return true;
} else if (ElemType->isRecordType()) {
const Record *R = getRecord(ElemType);
for (size_t I = 0; I != NumElems; ++I) {
if (!this->emitConstUint32(I, E))
return false;
if (!this->emitArrayElemPtr(PT_Uint32, E))
return false;
if (!this->visitZeroRecordInitializer(R, E))
return false;
if (!this->emitPopPtr(E))
return false;
}
return true;
} else if (ElemType->isArrayType()) {
for (size_t I = 0; I != NumElems; ++I) {
if (!this->emitConstUint32(I, E))
return false;
if (!this->emitArrayElemPtr(PT_Uint32, E))
return false;
if (!this->visitZeroArrayInitializer(ElemType, E))
return false;
if (!this->emitPopPtr(E))
return false;
}
return true;
}
return false;
}
template <class Emitter>
template <typename T>
bool Compiler<Emitter>::emitConst(T Value, PrimType Ty, const Expr *E) {
switch (Ty) {
case PT_Sint8:
return this->emitConstSint8(Value, E);
case PT_Uint8:
return this->emitConstUint8(Value, E);
case PT_Sint16:
return this->emitConstSint16(Value, E);
case PT_Uint16:
return this->emitConstUint16(Value, E);
case PT_Sint32:
return this->emitConstSint32(Value, E);
case PT_Uint32:
return this->emitConstUint32(Value, E);
case PT_Sint64:
return this->emitConstSint64(Value, E);
case PT_Uint64:
return this->emitConstUint64(Value, E);
case PT_Bool:
return this->emitConstBool(Value, E);
case PT_Ptr:
case PT_FnPtr:
case PT_MemberPtr:
case PT_Float:
case PT_IntAP:
case PT_IntAPS:
case PT_FixedPoint:
llvm_unreachable("Invalid integral type");
break;
}
llvm_unreachable("unknown primitive type");
}
template <class Emitter>
template <typename T>
bool Compiler<Emitter>::emitConst(T Value, const Expr *E) {
return this->emitConst(Value, classifyPrim(E->getType()), E);
}
template <class Emitter>
bool Compiler<Emitter>::emitConst(const APSInt &Value, PrimType Ty,
const Expr *E) {
if (Ty == PT_IntAPS)
return this->emitConstIntAPS(Value, E);
if (Ty == PT_IntAP)
return this->emitConstIntAP(Value, E);
if (Value.isSigned())
return this->emitConst(Value.getSExtValue(), Ty, E);
return this->emitConst(Value.getZExtValue(), Ty, E);
}
template <class Emitter>
bool Compiler<Emitter>::emitConst(const APSInt &Value, const Expr *E) {
return this->emitConst(Value, classifyPrim(E->getType()), E);
}
template <class Emitter>
unsigned Compiler<Emitter>::allocateLocalPrimitive(DeclTy &&Src, PrimType Ty,
bool IsConst,
bool IsExtended) {
// Make sure we don't accidentally register the same decl twice.
if (const auto *VD =
dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
assert(!P.getGlobal(VD));
assert(!Locals.contains(VD));
(void)VD;
}
// FIXME: There are cases where Src.is<Expr*>() is wrong, e.g.
// (int){12} in C. Consider using Expr::isTemporaryObject() instead
// or isa<MaterializeTemporaryExpr>().
Descriptor *D = P.createDescriptor(Src, Ty, Descriptor::InlineDescMD, IsConst,
isa<const Expr *>(Src));
Scope::Local Local = this->createLocal(D);
if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>()))
Locals.insert({VD, Local});
VarScope->add(Local, IsExtended);
return Local.Offset;
}
template <class Emitter>
std::optional<unsigned>
Compiler<Emitter>::allocateLocal(DeclTy &&Src, QualType Ty,
const ValueDecl *ExtendingDecl) {
// Make sure we don't accidentally register the same decl twice.
if ([[maybe_unused]] const auto *VD =
dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
assert(!P.getGlobal(VD));
assert(!Locals.contains(VD));
}
const ValueDecl *Key = nullptr;
const Expr *Init = nullptr;
bool IsTemporary = false;
if (auto *VD = dyn_cast_if_present<ValueDecl>(Src.dyn_cast<const Decl *>())) {
Key = VD;
Ty = VD->getType();
if (const auto *VarD = dyn_cast<VarDecl>(VD))
Init = VarD->getInit();
}
if (auto *E = Src.dyn_cast<const Expr *>()) {
IsTemporary = true;
if (Ty.isNull())
Ty = E->getType();
}
Descriptor *D = P.createDescriptor(
Src, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
IsTemporary, /*IsMutable=*/false, Init);
if (!D)
return std::nullopt;
Scope::Local Local = this->createLocal(D);
if (Key)
Locals.insert({Key, Local});
if (ExtendingDecl)
VarScope->addExtended(Local, ExtendingDecl);
else
VarScope->add(Local, false);
return Local.Offset;
}
template <class Emitter>
unsigned Compiler<Emitter>::allocateTemporary(const Expr *E) {
QualType Ty = E->getType();
assert(!Ty->isRecordType());
Descriptor *D = P.createDescriptor(
E, Ty.getTypePtr(), Descriptor::InlineDescMD, Ty.isConstQualified(),
/*IsTemporary=*/true, /*IsMutable=*/false, /*Init=*/nullptr);
assert(D);
Scope::Local Local = this->createLocal(D);
VariableScope<Emitter> *S = VarScope;
assert(S);
// Attach to topmost scope.
while (S->getParent())
S = S->getParent();
assert(S && !S->getParent());
S->addLocal(Local);
return Local.Offset;
}
template <class Emitter>
const RecordType *Compiler<Emitter>::getRecordTy(QualType Ty) {
if (const PointerType *PT = dyn_cast<PointerType>(Ty))
return PT->getPointeeType()->getAs<RecordType>();
return Ty->getAs<RecordType>();
}
template <class Emitter> Record *Compiler<Emitter>::getRecord(QualType Ty) {
if (const auto *RecordTy = getRecordTy(Ty))
return getRecord(RecordTy->getDecl());
return nullptr;
}
template <class Emitter>
Record *Compiler<Emitter>::getRecord(const RecordDecl *RD) {
return P.getOrCreateRecord(RD);
}
template <class Emitter>
const Function *Compiler<Emitter>::getFunction(const FunctionDecl *FD) {
return Ctx.getOrCreateFunction(FD);
}
template <class Emitter>
bool Compiler<Emitter>::visitExpr(const Expr *E, bool DestroyToplevelScope) {
LocalScope<Emitter> RootScope(this);
// If we won't destroy the toplevel scope, check for memory leaks first.
if (!DestroyToplevelScope) {
if (!this->emitCheckAllocations(E))
return false;
}
auto maybeDestroyLocals = [&]() -> bool {
if (DestroyToplevelScope)
return RootScope.destroyLocals() && this->emitCheckAllocations(E);
return this->emitCheckAllocations(E);
};
// Void expressions.
if (E->getType()->isVoidType()) {
if (!visit(E))
return false;
return this->emitRetVoid(E) && maybeDestroyLocals();
}
// Expressions with a primitive return type.
if (std::optional<PrimType> T = classify(E)) {
if (!visit(E))
return false;
return this->emitRet(*T, E) && maybeDestroyLocals();
}
// Expressions with a composite return type.
// For us, that means everything we don't
// have a PrimType for.
if (std::optional<unsigned> LocalOffset = this->allocateLocal(E)) {
InitLinkScope<Emitter> ILS(this, InitLink::Temp(*LocalOffset));
if (!this->emitGetPtrLocal(*LocalOffset, E))
return false;
if (!visitInitializer(E))
return false;
if (!this->emitFinishInit(E))
return false;
// We are destroying the locals AFTER the Ret op.
// The Ret op needs to copy the (alive) values, but the
// destructors may still turn the entire expression invalid.
return this->emitRetValue(E) && maybeDestroyLocals();
}
return maybeDestroyLocals() && this->emitCheckAllocations(E) && false;
}
template <class Emitter>
VarCreationState Compiler<Emitter>::visitDecl(const VarDecl *VD) {
auto R = this->visitVarDecl(VD, /*Toplevel=*/true);
if (R.notCreated())
return R;
if (R)
return true;
if (!R && Context::shouldBeGloballyIndexed(VD)) {
if (auto GlobalIndex = P.getGlobal(VD)) {
Block *GlobalBlock = P.getGlobal(*GlobalIndex);
GlobalInlineDescriptor &GD =
*reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
GD.InitState = GlobalInitState::InitializerFailed;
GlobalBlock->invokeDtor();
}
}
return R;
}
/// Toplevel visitDeclAndReturn().
/// We get here from evaluateAsInitializer().
/// We need to evaluate the initializer and return its value.
template <class Emitter>
bool Compiler<Emitter>::visitDeclAndReturn(const VarDecl *VD,
bool ConstantContext) {
std::optional<PrimType> VarT = classify(VD->getType());
// We only create variables if we're evaluating in a constant context.
// Otherwise, just evaluate the initializer and return it.
if (!ConstantContext) {
DeclScope<Emitter> LS(this, VD);
if (!this->visit(VD->getAnyInitializer()))
return false;
return this->emitRet(VarT.value_or(PT_Ptr), VD) && LS.destroyLocals() &&
this->emitCheckAllocations(VD);
}
LocalScope<Emitter> VDScope(this, VD);
if (!this->visitVarDecl(VD, /*Toplevel=*/true))
return false;
if (Context::shouldBeGloballyIndexed(VD)) {
auto GlobalIndex = P.getGlobal(VD);
assert(GlobalIndex); // visitVarDecl() didn't return false.
if (VarT) {
if (!this->emitGetGlobalUnchecked(*VarT, *GlobalIndex, VD))
return false;
} else {
if (!this->emitGetPtrGlobal(*GlobalIndex, VD))
return false;
}
} else {
auto Local = Locals.find(VD);
assert(Local != Locals.end()); // Same here.
if (VarT) {
if (!this->emitGetLocal(*VarT, Local->second.Offset, VD))
return false;
} else {
if (!this->emitGetPtrLocal(Local->second.Offset, VD))
return false;
}
}
// Return the value.
if (!this->emitRet(VarT.value_or(PT_Ptr), VD)) {
// If the Ret above failed and this is a global variable, mark it as
// uninitialized, even everything else succeeded.
if (Context::shouldBeGloballyIndexed(VD)) {
auto GlobalIndex = P.getGlobal(VD);
assert(GlobalIndex);
Block *GlobalBlock = P.getGlobal(*GlobalIndex);
GlobalInlineDescriptor &GD =
*reinterpret_cast<GlobalInlineDescriptor *>(GlobalBlock->rawData());
GD.InitState = GlobalInitState::InitializerFailed;
GlobalBlock->invokeDtor();
}
return false;
}
return VDScope.destroyLocals() && this->emitCheckAllocations(VD);
}
template <class Emitter>
VarCreationState Compiler<Emitter>::visitVarDecl(const VarDecl *VD,
bool Toplevel) {
// We don't know what to do with these, so just return false.
if (VD->getType().isNull())
return false;
// This case is EvalEmitter-only. If we won't create any instructions for the
// initializer anyway, don't bother creating the variable in the first place.
if (!this->isActive())
return VarCreationState::NotCreated();
const Expr *Init = VD->getInit();
std::optional<PrimType> VarT = classify(VD->getType());
if (Init && Init->isValueDependent())
return false;
if (Context::shouldBeGloballyIndexed(VD)) {
auto checkDecl = [&]() -> bool {
bool NeedsOp = !Toplevel && VD->isLocalVarDecl() && VD->isStaticLocal();
return !NeedsOp || this->emitCheckDecl(VD, VD);
};
auto initGlobal = [&](unsigned GlobalIndex) -> bool {
assert(Init);
if (VarT) {
if (!this->visit(Init))
return checkDecl() && false;
return checkDecl() && this->emitInitGlobal(*VarT, GlobalIndex, VD);
}
if (!checkDecl())
return false;
if (!this->emitGetPtrGlobal(GlobalIndex, Init))
return false;
if (!visitInitializer(Init))
return false;
if (!this->emitFinishInit(Init))
return false;
return this->emitPopPtr(Init);
};
DeclScope<Emitter> LocalScope(this, VD);
// We've already seen and initialized this global.
if (std::optional<unsigned> GlobalIndex = P.getGlobal(VD)) {
if (P.getPtrGlobal(*GlobalIndex).isInitialized())
return checkDecl();
// The previous attempt at initialization might've been unsuccessful,
// so let's try this one.
return Init && checkDecl() && initGlobal(*GlobalIndex);
}
std::optional<unsigned> GlobalIndex = P.createGlobal(VD, Init);
if (!GlobalIndex)
return false;
return !Init || (checkDecl() && initGlobal(*GlobalIndex));
} else {
InitLinkScope<Emitter> ILS(this, InitLink::Decl(VD));
if (VarT) {
unsigned Offset = this->allocateLocalPrimitive(
VD, *VarT, VD->getType().isConstQualified());
if (Init) {
// If this is a toplevel declaration, create a scope for the
// initializer.
if (Toplevel) {
LocalScope<Emitter> Scope(this);
if (!this->visit(Init))
return false;
return this->emitSetLocal(*VarT, Offset, VD) && Scope.destroyLocals();
} else {
if (!this->visit(Init))
return false;
return this->emitSetLocal(*VarT, Offset, VD);
}
}
} else {
if (std::optional<unsigned> Offset = this->allocateLocal(VD)) {
if (!Init)
return true;
if (!this->emitGetPtrLocal(*Offset, Init))
return false;
if (!visitInitializer(Init))
return false;
if (!this->emitFinishInit(Init))
return false;
return this->emitPopPtr(Init);
}
return false;
}
return true;
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::visitAPValue(const APValue &Val, PrimType ValType,
const Expr *E) {
assert(!DiscardResult);
if (Val.isInt())
return this->emitConst(Val.getInt(), ValType, E);
else if (Val.isFloat())
return this->emitConstFloat(Val.getFloat(), E);
if (Val.isLValue()) {
if (Val.isNullPointer())
return this->emitNull(ValType, 0, nullptr, E);
APValue::LValueBase Base = Val.getLValueBase();
if (const Expr *BaseExpr = Base.dyn_cast<const Expr *>())
return this->visit(BaseExpr);
else if (const auto *VD = Base.dyn_cast<const ValueDecl *>()) {
return this->visitDeclRef(VD, E);
}
} else if (Val.isMemberPointer()) {
if (const ValueDecl *MemberDecl = Val.getMemberPointerDecl())
return this->emitGetMemberPtr(MemberDecl, E);
return this->emitNullMemberPtr(0, nullptr, E);
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::visitAPValueInitializer(const APValue &Val,
const Expr *E) {
if (Val.isStruct()) {
const Record *R = this->getRecord(E->getType());
assert(R);
for (unsigned I = 0, N = Val.getStructNumFields(); I != N; ++I) {
const APValue &F = Val.getStructField(I);
const Record::Field *RF = R->getField(I);
if (F.isInt() || F.isFloat() || F.isLValue() || F.isMemberPointer()) {
PrimType T = classifyPrim(RF->Decl->getType());
if (!this->visitAPValue(F, T, E))
return false;
if (!this->emitInitField(T, RF->Offset, E))
return false;
} else if (F.isArray()) {
assert(RF->Desc->isPrimitiveArray());
const auto *ArrType = RF->Decl->getType()->getAsArrayTypeUnsafe();
PrimType ElemT = classifyPrim(ArrType->getElementType());
assert(ArrType);
if (!this->emitGetPtrField(RF->Offset, E))
return false;
for (unsigned A = 0, AN = F.getArraySize(); A != AN; ++A) {
if (!this->visitAPValue(F.getArrayInitializedElt(A), ElemT, E))
return false;
if (!this->emitInitElem(ElemT, A, E))
return false;
}
if (!this->emitPopPtr(E))
return false;
} else if (F.isStruct() || F.isUnion()) {
if (!this->emitGetPtrField(RF->Offset, E))
return false;
if (!this->visitAPValueInitializer(F, E))
return false;
if (!this->emitPopPtr(E))
return false;
} else {
assert(false && "I don't think this should be possible");
}
}
return true;
} else if (Val.isUnion()) {
const FieldDecl *UnionField = Val.getUnionField();
const Record *R = this->getRecord(UnionField->getParent());
assert(R);
const APValue &F = Val.getUnionValue();
const Record::Field *RF = R->getField(UnionField);
PrimType T = classifyPrim(RF->Decl->getType());
if (!this->visitAPValue(F, T, E))
return false;
return this->emitInitField(T, RF->Offset, E);
}
// TODO: Other types.
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitBuiltinCallExpr(const CallExpr *E,
unsigned BuiltinID) {
const Function *Func = getFunction(E->getDirectCallee());
if (!Func)
return false;
// For these, we're expected to ultimately return an APValue pointing
// to the CallExpr. This is needed to get the correct codegen.
if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString ||
BuiltinID == Builtin::BI__builtin_ptrauth_sign_constant ||
BuiltinID == Builtin::BI__builtin_function_start) {
if (DiscardResult)
return true;
return this->emitDummyPtr(E, E);
}
QualType ReturnType = E->getType();
std::optional<PrimType> ReturnT = classify(E);
// Non-primitive return type. Prepare storage.
if (!Initializing && !ReturnT && !ReturnType->isVoidType()) {
std::optional<unsigned> LocalIndex = allocateLocal(E);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
if (!Func->isUnevaluatedBuiltin()) {
// Put arguments on the stack.
for (const auto *Arg : E->arguments()) {
if (!this->visit(Arg))
return false;
}
}
if (!this->emitCallBI(Func, E, BuiltinID, E))
return false;
if (DiscardResult && !ReturnType->isVoidType()) {
assert(ReturnT);
return this->emitPop(*ReturnT, E);
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitCallExpr(const CallExpr *E) {
if (unsigned BuiltinID = E->getBuiltinCallee())
return VisitBuiltinCallExpr(E, BuiltinID);
const FunctionDecl *FuncDecl = E->getDirectCallee();
// Calls to replaceable operator new/operator delete.
if (FuncDecl && FuncDecl->isReplaceableGlobalAllocationFunction()) {
if (FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_New ||
FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Array_New) {
return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_new);
} else {
assert(FuncDecl->getDeclName().getCXXOverloadedOperator() == OO_Delete);
return VisitBuiltinCallExpr(E, Builtin::BI__builtin_operator_delete);
}
}
// Explicit calls to trivial destructors
if (const auto *DD = dyn_cast_if_present<CXXDestructorDecl>(FuncDecl);
DD && DD->isTrivial())
return true;
QualType ReturnType = E->getCallReturnType(Ctx.getASTContext());
std::optional<PrimType> T = classify(ReturnType);
bool HasRVO = !ReturnType->isVoidType() && !T;
if (HasRVO) {
if (DiscardResult) {
// If we need to discard the return value but the function returns its
// value via an RVO pointer, we need to create one such pointer just
// for this call.
if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
} else {
// We need the result. Prepare a pointer to return or
// dup the current one.
if (!Initializing) {
if (std::optional<unsigned> LocalIndex = allocateLocal(E)) {
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
}
if (!this->emitDupPtr(E))
return false;
}
}
SmallVector<const Expr *, 8> Args(
llvm::ArrayRef(E->getArgs(), E->getNumArgs()));
bool IsAssignmentOperatorCall = false;
if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
OCE && OCE->isAssignmentOp()) {
// Just like with regular assignments, we need to special-case assignment
// operators here and evaluate the RHS (the second arg) before the LHS (the
// first arg. We fix this by using a Flip op later.
assert(Args.size() == 2);
IsAssignmentOperatorCall = true;
std::reverse(Args.begin(), Args.end());
}
// Calling a static operator will still
// pass the instance, but we don't need it.
// Discard it here.
if (isa<CXXOperatorCallExpr>(E)) {
if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FuncDecl);
MD && MD->isStatic()) {
if (!this->discard(E->getArg(0)))
return false;
// Drop first arg.
Args.erase(Args.begin());
}
}
std::optional<unsigned> CalleeOffset;
// Add the (optional, implicit) This pointer.
if (const auto *MC = dyn_cast<CXXMemberCallExpr>(E)) {
if (!FuncDecl && classifyPrim(E->getCallee()) == PT_MemberPtr) {
// If we end up creating a CallPtr op for this, we need the base of the
// member pointer as the instance pointer, and later extract the function
// decl as the function pointer.
const Expr *Callee = E->getCallee();
CalleeOffset =
this->allocateLocalPrimitive(Callee, PT_MemberPtr, true, false);
if (!this->visit(Callee))
return false;
if (!this->emitSetLocal(PT_MemberPtr, *CalleeOffset, E))
return false;
if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
return false;
if (!this->emitGetMemberPtrBase(E))
return false;
} else if (!this->visit(MC->getImplicitObjectArgument())) {
return false;
}
} else if (!FuncDecl) {
const Expr *Callee = E->getCallee();
CalleeOffset = this->allocateLocalPrimitive(Callee, PT_FnPtr, true, false);
if (!this->visit(Callee))
return false;
if (!this->emitSetLocal(PT_FnPtr, *CalleeOffset, E))
return false;
}
llvm::BitVector NonNullArgs = collectNonNullArgs(FuncDecl, Args);
// Put arguments on the stack.
unsigned ArgIndex = 0;
for (const auto *Arg : Args) {
if (!this->visit(Arg))
return false;
// If we know the callee already, check the known parametrs for nullability.
if (FuncDecl && NonNullArgs[ArgIndex]) {
PrimType ArgT = classify(Arg).value_or(PT_Ptr);
if (ArgT == PT_Ptr || ArgT == PT_FnPtr) {
if (!this->emitCheckNonNullArg(ArgT, Arg))
return false;
}
}
++ArgIndex;
}
// Undo the argument reversal we did earlier.
if (IsAssignmentOperatorCall) {
assert(Args.size() == 2);
PrimType Arg1T = classify(Args[0]).value_or(PT_Ptr);
PrimType Arg2T = classify(Args[1]).value_or(PT_Ptr);
if (!this->emitFlip(Arg2T, Arg1T, E))
return false;
}
if (FuncDecl) {
const Function *Func = getFunction(FuncDecl);
if (!Func)
return false;
assert(HasRVO == Func->hasRVO());
bool HasQualifier = false;
if (const auto *ME = dyn_cast<MemberExpr>(E->getCallee()))
HasQualifier = ME->hasQualifier();
bool IsVirtual = false;
if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl))
IsVirtual = MD->isVirtual();
// In any case call the function. The return value will end up on the stack
// and if the function has RVO, we already have the pointer on the stack to
// write the result into.
if (IsVirtual && !HasQualifier) {
uint32_t VarArgSize = 0;
unsigned NumParams =
Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
if (!this->emitCallVirt(Func, VarArgSize, E))
return false;
} else if (Func->isVariadic()) {
uint32_t VarArgSize = 0;
unsigned NumParams =
Func->getNumWrittenParams() + isa<CXXOperatorCallExpr>(E);
for (unsigned I = NumParams, N = E->getNumArgs(); I != N; ++I)
VarArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
if (!this->emitCallVar(Func, VarArgSize, E))
return false;
} else {
if (!this->emitCall(Func, 0, E))
return false;
}
} else {
// Indirect call. Visit the callee, which will leave a FunctionPointer on
// the stack. Cleanup of the returned value if necessary will be done after
// the function call completed.
// Sum the size of all args from the call expr.
uint32_t ArgSize = 0;
for (unsigned I = 0, N = E->getNumArgs(); I != N; ++I)
ArgSize += align(primSize(classify(E->getArg(I)).value_or(PT_Ptr)));
// Get the callee, either from a member pointer or function pointer saved in
// CalleeOffset.
if (isa<CXXMemberCallExpr>(E) && CalleeOffset) {
if (!this->emitGetLocal(PT_MemberPtr, *CalleeOffset, E))
return false;
if (!this->emitGetMemberPtrDecl(E))
return false;
} else {
if (!this->emitGetLocal(PT_FnPtr, *CalleeOffset, E))
return false;
}
if (!this->emitCallPtr(ArgSize, E, E))
return false;
}
// Cleanup for discarded return values.
if (DiscardResult && !ReturnType->isVoidType() && T)
return this->emitPop(*T, E);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
SourceLocScope<Emitter> SLS(this, E);
return this->delegate(E->getExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) {
SourceLocScope<Emitter> SLS(this, E);
return this->delegate(E->getExpr());
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
if (DiscardResult)
return true;
return this->emitConstBool(E->getValue(), E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXNullPtrLiteralExpr(
const CXXNullPtrLiteralExpr *E) {
if (DiscardResult)
return true;
uint64_t Val = Ctx.getASTContext().getTargetNullPointerValue(E->getType());
return this->emitNullPtr(Val, nullptr, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitGNUNullExpr(const GNUNullExpr *E) {
if (DiscardResult)
return true;
assert(E->getType()->isIntegerType());
PrimType T = classifyPrim(E->getType());
return this->emitZero(T, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitCXXThisExpr(const CXXThisExpr *E) {
if (DiscardResult)
return true;
if (this->LambdaThisCapture.Offset > 0) {
if (this->LambdaThisCapture.IsPtr)
return this->emitGetThisFieldPtr(this->LambdaThisCapture.Offset, E);
return this->emitGetPtrThisField(this->LambdaThisCapture.Offset, E);
}
// In some circumstances, the 'this' pointer does not actually refer to the
// instance pointer of the current function frame, but e.g. to the declaration
// currently being initialized. Here we emit the necessary instruction(s) for
// this scenario.
if (!InitStackActive)
return this->emitThis(E);
if (!InitStack.empty()) {
// If our init stack is, for example:
// 0 Stack: 3 (decl)
// 1 Stack: 6 (init list)
// 2 Stack: 1 (field)
// 3 Stack: 6 (init list)
// 4 Stack: 1 (field)
//
// We want to find the LAST element in it that's an init list,
// which is marked with the K_InitList marker. The index right
// before that points to an init list. We need to find the
// elements before the K_InitList element that point to a base
// (e.g. a decl or This), optionally followed by field, elem, etc.
// In the example above, we want to emit elements [0..2].
unsigned StartIndex = 0;
unsigned EndIndex = 0;
// Find the init list.
for (StartIndex = InitStack.size() - 1; StartIndex > 0; --StartIndex) {
if (InitStack[StartIndex].Kind == InitLink::K_InitList ||
InitStack[StartIndex].Kind == InitLink::K_This) {
EndIndex = StartIndex;
--StartIndex;
break;
}
}
// Walk backwards to find the base.
for (; StartIndex > 0; --StartIndex) {
if (InitStack[StartIndex].Kind == InitLink::K_InitList)
continue;
if (InitStack[StartIndex].Kind != InitLink::K_Field &&
InitStack[StartIndex].Kind != InitLink::K_Elem)
break;
}
// Emit the instructions.
for (unsigned I = StartIndex; I != EndIndex; ++I) {
if (InitStack[I].Kind == InitLink::K_InitList)
continue;
if (!InitStack[I].template emit<Emitter>(this, E))
return false;
}
return true;
}
return this->emitThis(E);
}
template <class Emitter> bool Compiler<Emitter>::visitStmt(const Stmt *S) {
switch (S->getStmtClass()) {
case Stmt::CompoundStmtClass:
return visitCompoundStmt(cast<CompoundStmt>(S));
case Stmt::DeclStmtClass:
return visitDeclStmt(cast<DeclStmt>(S));
case Stmt::ReturnStmtClass:
return visitReturnStmt(cast<ReturnStmt>(S));
case Stmt::IfStmtClass:
return visitIfStmt(cast<IfStmt>(S));
case Stmt::WhileStmtClass:
return visitWhileStmt(cast<WhileStmt>(S));
case Stmt::DoStmtClass:
return visitDoStmt(cast<DoStmt>(S));
case Stmt::ForStmtClass:
return visitForStmt(cast<ForStmt>(S));
case Stmt::CXXForRangeStmtClass:
return visitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
case Stmt::BreakStmtClass:
return visitBreakStmt(cast<BreakStmt>(S));
case Stmt::ContinueStmtClass:
return visitContinueStmt(cast<ContinueStmt>(S));
case Stmt::SwitchStmtClass:
return visitSwitchStmt(cast<SwitchStmt>(S));
case Stmt::CaseStmtClass:
return visitCaseStmt(cast<CaseStmt>(S));
case Stmt::DefaultStmtClass:
return visitDefaultStmt(cast<DefaultStmt>(S));
case Stmt::AttributedStmtClass:
return visitAttributedStmt(cast<AttributedStmt>(S));
case Stmt::CXXTryStmtClass:
return visitCXXTryStmt(cast<CXXTryStmt>(S));
case Stmt::NullStmtClass:
return true;
// Always invalid statements.
case Stmt::GCCAsmStmtClass:
case Stmt::MSAsmStmtClass:
case Stmt::GotoStmtClass:
return this->emitInvalid(S);
case Stmt::LabelStmtClass:
return this->visitStmt(cast<LabelStmt>(S)->getSubStmt());
default: {
if (const auto *E = dyn_cast<Expr>(S))
return this->discard(E);
return false;
}
}
}
template <class Emitter>
bool Compiler<Emitter>::visitCompoundStmt(const CompoundStmt *S) {
BlockScope<Emitter> Scope(this);
for (const auto *InnerStmt : S->body())
if (!visitStmt(InnerStmt))
return false;
return Scope.destroyLocals();
}
template <class Emitter>
bool Compiler<Emitter>::visitDeclStmt(const DeclStmt *DS) {
for (const auto *D : DS->decls()) {
if (isa<StaticAssertDecl, TagDecl, TypedefNameDecl, UsingEnumDecl,
FunctionDecl>(D))
continue;
const auto *VD = dyn_cast<VarDecl>(D);
if (!VD)
return false;
if (!this->visitVarDecl(VD))
return false;
// Register decomposition decl holding vars.
if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) {
for (auto *BD : DD->bindings())
if (auto *KD = BD->getHoldingVar()) {
if (!this->visitVarDecl(KD))
return false;
}
}
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::visitReturnStmt(const ReturnStmt *RS) {
if (this->InStmtExpr)
return this->emitUnsupported(RS);
if (const Expr *RE = RS->getRetValue()) {
LocalScope<Emitter> RetScope(this);
if (ReturnType) {
// Primitive types are simply returned.
if (!this->visit(RE))
return false;
this->emitCleanup();
return this->emitRet(*ReturnType, RS);
} else if (RE->getType()->isVoidType()) {
if (!this->visit(RE))
return false;
} else {
InitLinkScope<Emitter> ILS(this, InitLink::RVO());
// RVO - construct the value in the return location.
if (!this->emitRVOPtr(RE))
return false;
if (!this->visitInitializer(RE))
return false;
if (!this->emitPopPtr(RE))
return false;
this->emitCleanup();
return this->emitRetVoid(RS);
}
}
// Void return.
this->emitCleanup();
return this->emitRetVoid(RS);
}
template <class Emitter> bool Compiler<Emitter>::visitIfStmt(const IfStmt *IS) {
if (auto *CondInit = IS->getInit())
if (!visitStmt(CondInit))
return false;
if (const DeclStmt *CondDecl = IS->getConditionVariableDeclStmt())
if (!visitDeclStmt(CondDecl))
return false;
// Compile condition.
if (IS->isNonNegatedConsteval()) {
if (!this->emitIsConstantContext(IS))
return false;
} else if (IS->isNegatedConsteval()) {
if (!this->emitIsConstantContext(IS))
return false;
if (!this->emitInv(IS))
return false;
} else {
if (!this->visitBool(IS->getCond()))
return false;
}
if (const Stmt *Else = IS->getElse()) {
LabelTy LabelElse = this->getLabel();
LabelTy LabelEnd = this->getLabel();
if (!this->jumpFalse(LabelElse))
return false;
{
LocalScope<Emitter> ThenScope(this);
if (!visitStmt(IS->getThen()))
return false;
if (!ThenScope.destroyLocals())
return false;
}
if (!this->jump(LabelEnd))
return false;
this->emitLabel(LabelElse);
{
LocalScope<Emitter> ElseScope(this);
if (!visitStmt(Else))
return false;
if (!ElseScope.destroyLocals())
return false;
}
this->emitLabel(LabelEnd);
} else {
LabelTy LabelEnd = this->getLabel();
if (!this->jumpFalse(LabelEnd))
return false;
{
LocalScope<Emitter> ThenScope(this);
if (!visitStmt(IS->getThen()))
return false;
if (!ThenScope.destroyLocals())
return false;
}
this->emitLabel(LabelEnd);
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::visitWhileStmt(const WhileStmt *S) {
const Expr *Cond = S->getCond();
const Stmt *Body = S->getBody();
LabelTy CondLabel = this->getLabel(); // Label before the condition.
LabelTy EndLabel = this->getLabel(); // Label after the loop.
LoopScope<Emitter> LS(this, EndLabel, CondLabel);
this->fallthrough(CondLabel);
this->emitLabel(CondLabel);
{
LocalScope<Emitter> CondScope(this);
if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
if (!visitDeclStmt(CondDecl))
return false;
if (!this->visitBool(Cond))
return false;
if (!this->jumpFalse(EndLabel))
return false;
if (!this->visitStmt(Body))
return false;
if (!CondScope.destroyLocals())
return false;
}
if (!this->jump(CondLabel))
return false;
this->fallthrough(EndLabel);
this->emitLabel(EndLabel);
return true;
}
template <class Emitter> bool Compiler<Emitter>::visitDoStmt(const DoStmt *S) {
const Expr *Cond = S->getCond();
const Stmt *Body = S->getBody();
LabelTy StartLabel = this->getLabel();
LabelTy EndLabel = this->getLabel();
LabelTy CondLabel = this->getLabel();
LoopScope<Emitter> LS(this, EndLabel, CondLabel);
this->fallthrough(StartLabel);
this->emitLabel(StartLabel);
{
LocalScope<Emitter> CondScope(this);
if (!this->visitStmt(Body))
return false;
this->fallthrough(CondLabel);
this->emitLabel(CondLabel);
if (!this->visitBool(Cond))
return false;
if (!CondScope.destroyLocals())
return false;
}
if (!this->jumpTrue(StartLabel))
return false;
this->fallthrough(EndLabel);
this->emitLabel(EndLabel);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::visitForStmt(const ForStmt *S) {
// for (Init; Cond; Inc) { Body }
const Stmt *Init = S->getInit();
const Expr *Cond = S->getCond();
const Expr *Inc = S->getInc();
const Stmt *Body = S->getBody();
LabelTy EndLabel = this->getLabel();
LabelTy CondLabel = this->getLabel();
LabelTy IncLabel = this->getLabel();
LoopScope<Emitter> LS(this, EndLabel, IncLabel);
if (Init && !this->visitStmt(Init))
return false;
this->fallthrough(CondLabel);
this->emitLabel(CondLabel);
{
LocalScope<Emitter> CondScope(this);
if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
if (!visitDeclStmt(CondDecl))
return false;
if (Cond) {
if (!this->visitBool(Cond))
return false;
if (!this->jumpFalse(EndLabel))
return false;
}
if (Body && !this->visitStmt(Body))
return false;
this->fallthrough(IncLabel);
this->emitLabel(IncLabel);
if (Inc && !this->discard(Inc))
return false;
if (!CondScope.destroyLocals())
return false;
}
if (!this->jump(CondLabel))
return false;
this->fallthrough(EndLabel);
this->emitLabel(EndLabel);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::visitCXXForRangeStmt(const CXXForRangeStmt *S) {
const Stmt *Init = S->getInit();
const Expr *Cond = S->getCond();
const Expr *Inc = S->getInc();
const Stmt *Body = S->getBody();
const Stmt *BeginStmt = S->getBeginStmt();
const Stmt *RangeStmt = S->getRangeStmt();
const Stmt *EndStmt = S->getEndStmt();
const VarDecl *LoopVar = S->getLoopVariable();
LabelTy EndLabel = this->getLabel();
LabelTy CondLabel = this->getLabel();
LabelTy IncLabel = this->getLabel();
LoopScope<Emitter> LS(this, EndLabel, IncLabel);
// Emit declarations needed in the loop.
if (Init && !this->visitStmt(Init))
return false;
if (!this->visitStmt(RangeStmt))
return false;
if (!this->visitStmt(BeginStmt))
return false;
if (!this->visitStmt(EndStmt))
return false;
// Now the condition as well as the loop variable assignment.
this->fallthrough(CondLabel);
this->emitLabel(CondLabel);
if (!this->visitBool(Cond))
return false;
if (!this->jumpFalse(EndLabel))
return false;
if (!this->visitVarDecl(LoopVar))
return false;
// Body.
{
if (!this->visitStmt(Body))
return false;
this->fallthrough(IncLabel);
this->emitLabel(IncLabel);
if (!this->discard(Inc))
return false;
}
if (!this->jump(CondLabel))
return false;
this->fallthrough(EndLabel);
this->emitLabel(EndLabel);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::visitBreakStmt(const BreakStmt *S) {
if (!BreakLabel)
return false;
for (VariableScope<Emitter> *C = VarScope; C != BreakVarScope;
C = C->getParent())
C->emitDestruction();
return this->jump(*BreakLabel);
}
template <class Emitter>
bool Compiler<Emitter>::visitContinueStmt(const ContinueStmt *S) {
if (!ContinueLabel)
return false;
for (VariableScope<Emitter> *C = VarScope;
C && C->getParent() != ContinueVarScope; C = C->getParent())
C->emitDestruction();
return this->jump(*ContinueLabel);
}
template <class Emitter>
bool Compiler<Emitter>::visitSwitchStmt(const SwitchStmt *S) {
const Expr *Cond = S->getCond();
PrimType CondT = this->classifyPrim(Cond->getType());
LocalScope<Emitter> LS(this);
LabelTy EndLabel = this->getLabel();
OptLabelTy DefaultLabel = std::nullopt;
unsigned CondVar = this->allocateLocalPrimitive(Cond, CondT, true, false);
if (const auto *CondInit = S->getInit())
if (!visitStmt(CondInit))
return false;
if (const DeclStmt *CondDecl = S->getConditionVariableDeclStmt())
if (!visitDeclStmt(CondDecl))
return false;
// Initialize condition variable.
if (!this->visit(Cond))
return false;
if (!this->emitSetLocal(CondT, CondVar, S))
return false;
CaseMap CaseLabels;
// Create labels and comparison ops for all case statements.
for (const SwitchCase *SC = S->getSwitchCaseList(); SC;
SC = SC->getNextSwitchCase()) {
if (const auto *CS = dyn_cast<CaseStmt>(SC)) {
// FIXME: Implement ranges.
if (CS->caseStmtIsGNURange())
return false;
CaseLabels[SC] = this->getLabel();
const Expr *Value = CS->getLHS();
PrimType ValueT = this->classifyPrim(Value->getType());
// Compare the case statement's value to the switch condition.
if (!this->emitGetLocal(CondT, CondVar, CS))
return false;
if (!this->visit(Value))
return false;
// Compare and jump to the case label.
if (!this->emitEQ(ValueT, S))
return false;
if (!this->jumpTrue(CaseLabels[CS]))
return false;
} else {
assert(!DefaultLabel);
DefaultLabel = this->getLabel();
}
}
// If none of the conditions above were true, fall through to the default
// statement or jump after the switch statement.
if (DefaultLabel) {
if (!this->jump(*DefaultLabel))
return false;
} else {
if (!this->jump(EndLabel))
return false;
}
SwitchScope<Emitter> SS(this, std::move(CaseLabels), EndLabel, DefaultLabel);
if (!this->visitStmt(S->getBody()))
return false;
this->emitLabel(EndLabel);
return LS.destroyLocals();
}
template <class Emitter>
bool Compiler<Emitter>::visitCaseStmt(const CaseStmt *S) {
this->emitLabel(CaseLabels[S]);
return this->visitStmt(S->getSubStmt());
}
template <class Emitter>
bool Compiler<Emitter>::visitDefaultStmt(const DefaultStmt *S) {
this->emitLabel(*DefaultLabel);
return this->visitStmt(S->getSubStmt());
}
template <class Emitter>
bool Compiler<Emitter>::visitAttributedStmt(const AttributedStmt *S) {
if (this->Ctx.getLangOpts().CXXAssumptions &&
!this->Ctx.getLangOpts().MSVCCompat) {
for (const Attr *A : S->getAttrs()) {
auto *AA = dyn_cast<CXXAssumeAttr>(A);
if (!AA)
continue;
assert(isa<NullStmt>(S->getSubStmt()));
const Expr *Assumption = AA->getAssumption();
if (Assumption->isValueDependent())
return false;
if (Assumption->HasSideEffects(this->Ctx.getASTContext()))
continue;
// Evaluate assumption.
if (!this->visitBool(Assumption))
return false;
if (!this->emitAssume(Assumption))
return false;
}
}
// Ignore other attributes.
return this->visitStmt(S->getSubStmt());
}
template <class Emitter>
bool Compiler<Emitter>::visitCXXTryStmt(const CXXTryStmt *S) {
// Ignore all handlers.
return this->visitStmt(S->getTryBlock());
}
template <class Emitter>
bool Compiler<Emitter>::emitLambdaStaticInvokerBody(const CXXMethodDecl *MD) {
assert(MD->isLambdaStaticInvoker());
assert(MD->hasBody());
assert(cast<CompoundStmt>(MD->getBody())->body_empty());
const CXXRecordDecl *ClosureClass = MD->getParent();
const CXXMethodDecl *LambdaCallOp = ClosureClass->getLambdaCallOperator();
assert(ClosureClass->captures_begin() == ClosureClass->captures_end());
const Function *Func = this->getFunction(LambdaCallOp);
if (!Func)
return false;
assert(Func->hasThisPointer());
assert(Func->getNumParams() == (MD->getNumParams() + 1 + Func->hasRVO()));
if (Func->hasRVO()) {
if (!this->emitRVOPtr(MD))
return false;
}
// The lambda call operator needs an instance pointer, but we don't have
// one here, and we don't need one either because the lambda cannot have
// any captures, as verified above. Emit a null pointer. This is then
// special-cased when interpreting to not emit any misleading diagnostics.
if (!this->emitNullPtr(0, nullptr, MD))
return false;
// Forward all arguments from the static invoker to the lambda call operator.
for (const ParmVarDecl *PVD : MD->parameters()) {
auto It = this->Params.find(PVD);
assert(It != this->Params.end());
// We do the lvalue-to-rvalue conversion manually here, so no need
// to care about references.
PrimType ParamType = this->classify(PVD->getType()).value_or(PT_Ptr);
if (!this->emitGetParam(ParamType, It->second.Offset, MD))
return false;
}
if (!this->emitCall(Func, 0, LambdaCallOp))
return false;
this->emitCleanup();
if (ReturnType)
return this->emitRet(*ReturnType, MD);
// Nothing to do, since we emitted the RVO pointer above.
return this->emitRetVoid(MD);
}
template <class Emitter>
bool Compiler<Emitter>::checkLiteralType(const Expr *E) {
if (Ctx.getLangOpts().CPlusPlus23)
return true;
if (!E->isPRValue() || E->getType()->isLiteralType(Ctx.getASTContext()))
return true;
return this->emitCheckLiteralType(E->getType().getTypePtr(), E);
}
template <class Emitter>
bool Compiler<Emitter>::compileConstructor(const CXXConstructorDecl *Ctor) {
assert(!ReturnType);
auto emitFieldInitializer = [&](const Record::Field *F, unsigned FieldOffset,
const Expr *InitExpr) -> bool {
// We don't know what to do with these, so just return false.
if (InitExpr->getType().isNull())
return false;
if (std::optional<PrimType> T = this->classify(InitExpr)) {
if (!this->visit(InitExpr))
return false;
if (F->isBitField())
return this->emitInitThisBitField(*T, F, FieldOffset, InitExpr);
return this->emitInitThisField(*T, FieldOffset, InitExpr);
}
// Non-primitive case. Get a pointer to the field-to-initialize
// on the stack and call visitInitialzer() for it.
InitLinkScope<Emitter> FieldScope(this, InitLink::Field(F->Offset));
if (!this->emitGetPtrThisField(FieldOffset, InitExpr))
return false;
if (!this->visitInitializer(InitExpr))
return false;
return this->emitFinishInitPop(InitExpr);
};
const RecordDecl *RD = Ctor->getParent();
const Record *R = this->getRecord(RD);
if (!R)
return false;
if (R->isUnion() && Ctor->isCopyOrMoveConstructor()) {
// union copy and move ctors are special.
assert(cast<CompoundStmt>(Ctor->getBody())->body_empty());
if (!this->emitThis(Ctor))
return false;
auto PVD = Ctor->getParamDecl(0);
ParamOffset PO = this->Params[PVD]; // Must exist.
if (!this->emitGetParam(PT_Ptr, PO.Offset, Ctor))
return false;
return this->emitMemcpy(Ctor) && this->emitPopPtr(Ctor) &&
this->emitRetVoid(Ctor);
}
InitLinkScope<Emitter> InitScope(this, InitLink::This());
for (const auto *Init : Ctor->inits()) {
// Scope needed for the initializers.
BlockScope<Emitter> Scope(this);
const Expr *InitExpr = Init->getInit();
if (const FieldDecl *Member = Init->getMember()) {
const Record::Field *F = R->getField(Member);
if (!emitFieldInitializer(F, F->Offset, InitExpr))
return false;
} else if (const Type *Base = Init->getBaseClass()) {
const auto *BaseDecl = Base->getAsCXXRecordDecl();
assert(BaseDecl);
if (Init->isBaseVirtual()) {
assert(R->getVirtualBase(BaseDecl));
if (!this->emitGetPtrThisVirtBase(BaseDecl, InitExpr))
return false;
} else {
// Base class initializer.
// Get This Base and call initializer on it.
const Record::Base *B = R->getBase(BaseDecl);
assert(B);
if (!this->emitGetPtrThisBase(B->Offset, InitExpr))
return false;
}
if (!this->visitInitializer(InitExpr))
return false;
if (!this->emitFinishInitPop(InitExpr))
return false;
} else if (const IndirectFieldDecl *IFD = Init->getIndirectMember()) {
assert(IFD->getChainingSize() >= 2);
unsigned NestedFieldOffset = 0;
const Record::Field *NestedField = nullptr;
for (const NamedDecl *ND : IFD->chain()) {
const auto *FD = cast<FieldDecl>(ND);
const Record *FieldRecord = this->P.getOrCreateRecord(FD->getParent());
assert(FieldRecord);
NestedField = FieldRecord->getField(FD);
assert(NestedField);
NestedFieldOffset += NestedField->Offset;
}
assert(NestedField);
if (!emitFieldInitializer(NestedField, NestedFieldOffset, InitExpr))
return false;
} else {
assert(Init->isDelegatingInitializer());
if (!this->emitThis(InitExpr))
return false;
if (!this->visitInitializer(Init->getInit()))
return false;
if (!this->emitPopPtr(InitExpr))
return false;
}
if (!Scope.destroyLocals())
return false;
}
if (const auto *Body = Ctor->getBody())
if (!visitStmt(Body))
return false;
return this->emitRetVoid(SourceInfo{});
}
template <class Emitter>
bool Compiler<Emitter>::compileDestructor(const CXXDestructorDecl *Dtor) {
const RecordDecl *RD = Dtor->getParent();
const Record *R = this->getRecord(RD);
if (!R)
return false;
if (!Dtor->isTrivial() && Dtor->getBody()) {
if (!this->visitStmt(Dtor->getBody()))
return false;
}
if (!this->emitThis(Dtor))
return false;
assert(R);
if (!R->isUnion()) {
// First, destroy all fields.
for (const Record::Field &Field : llvm::reverse(R->fields())) {
const Descriptor *D = Field.Desc;
if (!D->isPrimitive() && !D->isPrimitiveArray()) {
if (!this->emitGetPtrField(Field.Offset, SourceInfo{}))
return false;
if (!this->emitDestruction(D, SourceInfo{}))
return false;
if (!this->emitPopPtr(SourceInfo{}))
return false;
}
}
}
for (const Record::Base &Base : llvm::reverse(R->bases())) {
if (Base.R->isAnonymousUnion())
continue;
if (!this->emitGetPtrBase(Base.Offset, SourceInfo{}))
return false;
if (!this->emitRecordDestruction(Base.R, {}))
return false;
if (!this->emitPopPtr(SourceInfo{}))
return false;
}
// FIXME: Virtual bases.
return this->emitPopPtr(Dtor) && this->emitRetVoid(Dtor);
}
template <class Emitter>
bool Compiler<Emitter>::visitFunc(const FunctionDecl *F) {
// Classify the return type.
ReturnType = this->classify(F->getReturnType());
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(F))
return this->compileConstructor(Ctor);
if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(F))
return this->compileDestructor(Dtor);
// Emit custom code if this is a lambda static invoker.
if (const auto *MD = dyn_cast<CXXMethodDecl>(F);
MD && MD->isLambdaStaticInvoker())
return this->emitLambdaStaticInvokerBody(MD);
// Regular functions.
if (const auto *Body = F->getBody())
if (!visitStmt(Body))
return false;
// Emit a guard return to protect against a code path missing one.
if (F->getReturnType()->isVoidType())
return this->emitRetVoid(SourceInfo{});
return this->emitNoRet(SourceInfo{});
}
template <class Emitter>
bool Compiler<Emitter>::VisitUnaryOperator(const UnaryOperator *E) {
const Expr *SubExpr = E->getSubExpr();
if (SubExpr->getType()->isAnyComplexType())
return this->VisitComplexUnaryOperator(E);
if (SubExpr->getType()->isVectorType())
return this->VisitVectorUnaryOperator(E);
if (SubExpr->getType()->isFixedPointType())
return this->VisitFixedPointUnaryOperator(E);
std::optional<PrimType> T = classify(SubExpr->getType());
switch (E->getOpcode()) {
case UO_PostInc: { // x++
if (!Ctx.getLangOpts().CPlusPlus14)
return this->emitInvalid(E);
if (!T)
return this->emitError(E);
if (!this->visit(SubExpr))
return false;
if (T == PT_Ptr || T == PT_FnPtr) {
if (!this->emitIncPtr(E))
return false;
return DiscardResult ? this->emitPopPtr(E) : true;
}
if (T == PT_Float) {
return DiscardResult ? this->emitIncfPop(getFPOptions(E), E)
: this->emitIncf(getFPOptions(E), E);
}
return DiscardResult ? this->emitIncPop(*T, E) : this->emitInc(*T, E);
}
case UO_PostDec: { // x--
if (!Ctx.getLangOpts().CPlusPlus14)
return this->emitInvalid(E);
if (!T)
return this->emitError(E);
if (!this->visit(SubExpr))
return false;
if (T == PT_Ptr || T == PT_FnPtr) {
if (!this->emitDecPtr(E))
return false;
return DiscardResult ? this->emitPopPtr(E) : true;
}
if (T == PT_Float) {
return DiscardResult ? this->emitDecfPop(getFPOptions(E), E)
: this->emitDecf(getFPOptions(E), E);
}
return DiscardResult ? this->emitDecPop(*T, E) : this->emitDec(*T, E);
}
case UO_PreInc: { // ++x
if (!Ctx.getLangOpts().CPlusPlus14)
return this->emitInvalid(E);
if (!T)
return this->emitError(E);
if (!this->visit(SubExpr))
return false;
if (T == PT_Ptr || T == PT_FnPtr) {
if (!this->emitLoadPtr(E))
return false;
if (!this->emitConstUint8(1, E))
return false;
if (!this->emitAddOffsetUint8(E))
return false;
return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
}
// Post-inc and pre-inc are the same if the value is to be discarded.
if (DiscardResult) {
if (T == PT_Float)
return this->emitIncfPop(getFPOptions(E), E);
return this->emitIncPop(*T, E);
}
if (T == PT_Float) {
const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
if (!this->emitLoadFloat(E))
return false;
if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
return false;
if (!this->emitAddf(getFPOptions(E), E))
return false;
if (!this->emitStoreFloat(E))
return false;
} else {
assert(isIntegralType(*T));
if (!this->emitLoad(*T, E))
return false;
if (!this->emitConst(1, E))
return false;
if (!this->emitAdd(*T, E))
return false;
if (!this->emitStore(*T, E))
return false;
}
return E->isGLValue() || this->emitLoadPop(*T, E);
}
case UO_PreDec: { // --x
if (!Ctx.getLangOpts().CPlusPlus14)
return this->emitInvalid(E);
if (!T)
return this->emitError(E);
if (!this->visit(SubExpr))
return false;
if (T == PT_Ptr || T == PT_FnPtr) {
if (!this->emitLoadPtr(E))
return false;
if (!this->emitConstUint8(1, E))
return false;
if (!this->emitSubOffsetUint8(E))
return false;
return DiscardResult ? this->emitStorePopPtr(E) : this->emitStorePtr(E);
}
// Post-dec and pre-dec are the same if the value is to be discarded.
if (DiscardResult) {
if (T == PT_Float)
return this->emitDecfPop(getFPOptions(E), E);
return this->emitDecPop(*T, E);
}
if (T == PT_Float) {
const auto &TargetSemantics = Ctx.getFloatSemantics(E->getType());
if (!this->emitLoadFloat(E))
return false;
if (!this->emitConstFloat(llvm::APFloat(TargetSemantics, 1), E))
return false;
if (!this->emitSubf(getFPOptions(E), E))
return false;
if (!this->emitStoreFloat(E))
return false;
} else {
assert(isIntegralType(*T));
if (!this->emitLoad(*T, E))
return false;
if (!this->emitConst(1, E))
return false;
if (!this->emitSub(*T, E))
return false;
if (!this->emitStore(*T, E))
return false;
}
return E->isGLValue() || this->emitLoadPop(*T, E);
}
case UO_LNot: // !x
if (!T)
return this->emitError(E);
if (DiscardResult)
return this->discard(SubExpr);
if (!this->visitBool(SubExpr))
return false;
if (!this->emitInv(E))
return false;
if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
return this->emitCast(PT_Bool, ET, E);
return true;
case UO_Minus: // -x
if (!T)
return this->emitError(E);
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitPop(*T, E) : this->emitNeg(*T, E);
case UO_Plus: // +x
if (!T)
return this->emitError(E);
if (!this->visit(SubExpr)) // noop
return false;
return DiscardResult ? this->emitPop(*T, E) : true;
case UO_AddrOf: // &x
if (E->getType()->isMemberPointerType()) {
// C++11 [expr.unary.op]p3 has very strict rules on how the address of a
// member can be formed.
return this->emitGetMemberPtr(cast<DeclRefExpr>(SubExpr)->getDecl(), E);
}
// We should already have a pointer when we get here.
return this->delegate(SubExpr);
case UO_Deref: // *x
if (DiscardResult) {
// assert(false);
return this->discard(SubExpr);
}
if (!this->visit(SubExpr))
return false;
if (classifyPrim(SubExpr) == PT_Ptr)
return this->emitNarrowPtr(E);
return true;
case UO_Not: // ~x
if (!T)
return this->emitError(E);
if (!this->visit(SubExpr))
return false;
return DiscardResult ? this->emitPop(*T, E) : this->emitComp(*T, E);
case UO_Real: // __real x
assert(T);
return this->delegate(SubExpr);
case UO_Imag: { // __imag x
assert(T);
if (!this->discard(SubExpr))
return false;
return this->visitZeroInitializer(*T, SubExpr->getType(), SubExpr);
}
case UO_Extension:
return this->delegate(SubExpr);
case UO_Coawait:
assert(false && "Unhandled opcode");
}
return false;
}
template <class Emitter>
bool Compiler<Emitter>::VisitComplexUnaryOperator(const UnaryOperator *E) {
const Expr *SubExpr = E->getSubExpr();
assert(SubExpr->getType()->isAnyComplexType());
if (DiscardResult)
return this->discard(SubExpr);
std::optional<PrimType> ResT = classify(E);
auto prepareResult = [=]() -> bool {
if (!ResT && !Initializing) {
std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
if (!LocalIndex)
return false;
return this->emitGetPtrLocal(*LocalIndex, E);
}
return true;
};
// The offset of the temporary, if we created one.
unsigned SubExprOffset = ~0u;
auto createTemp = [=, &SubExprOffset]() -> bool {
SubExprOffset = this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
if (!this->visit(SubExpr))
return false;
return this->emitSetLocal(PT_Ptr, SubExprOffset, E);
};
PrimType ElemT = classifyComplexElementType(SubExpr->getType());
auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
if (!this->emitGetLocal(PT_Ptr, Offset, E))
return false;
return this->emitArrayElemPop(ElemT, Index, E);
};
switch (E->getOpcode()) {
case UO_Minus:
if (!prepareResult())
return false;
if (!createTemp())
return false;
for (unsigned I = 0; I != 2; ++I) {
if (!getElem(SubExprOffset, I))
return false;
if (!this->emitNeg(ElemT, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
break;
case UO_Plus: // +x
case UO_AddrOf: // &x
case UO_Deref: // *x
return this->delegate(SubExpr);
case UO_LNot:
if (!this->visit(SubExpr))
return false;
if (!this->emitComplexBoolCast(SubExpr))
return false;
if (!this->emitInv(E))
return false;
if (PrimType ET = classifyPrim(E->getType()); ET != PT_Bool)
return this->emitCast(PT_Bool, ET, E);
return true;
case UO_Real:
return this->emitComplexReal(SubExpr);
case UO_Imag:
if (!this->visit(SubExpr))
return false;
if (SubExpr->isLValue()) {
if (!this->emitConstUint8(1, E))
return false;
return this->emitArrayElemPtrPopUint8(E);
}
// Since our _Complex implementation does not map to a primitive type,
// we sometimes have to do the lvalue-to-rvalue conversion here manually.
return this->emitArrayElemPop(classifyPrim(E->getType()), 1, E);
case UO_Not: // ~x
if (!this->visit(SubExpr))
return false;
// Negate the imaginary component.
if (!this->emitArrayElem(ElemT, 1, E))
return false;
if (!this->emitNeg(ElemT, E))
return false;
if (!this->emitInitElem(ElemT, 1, E))
return false;
return DiscardResult ? this->emitPopPtr(E) : true;
case UO_Extension:
return this->delegate(SubExpr);
default:
return this->emitInvalid(E);
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::VisitVectorUnaryOperator(const UnaryOperator *E) {
const Expr *SubExpr = E->getSubExpr();
assert(SubExpr->getType()->isVectorType());
if (DiscardResult)
return this->discard(SubExpr);
auto UnaryOp = E->getOpcode();
if (UnaryOp == UO_Extension)
return this->delegate(SubExpr);
if (UnaryOp != UO_Plus && UnaryOp != UO_Minus && UnaryOp != UO_LNot &&
UnaryOp != UO_Not && UnaryOp != UO_AddrOf)
return this->emitInvalid(E);
// Nothing to do here.
if (UnaryOp == UO_Plus || UnaryOp == UO_AddrOf)
return this->delegate(SubExpr);
if (!Initializing) {
std::optional<unsigned> LocalIndex = allocateLocal(SubExpr);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
// The offset of the temporary, if we created one.
unsigned SubExprOffset =
this->allocateLocalPrimitive(SubExpr, PT_Ptr, true, false);
if (!this->visit(SubExpr))
return false;
if (!this->emitSetLocal(PT_Ptr, SubExprOffset, E))
return false;
const auto *VecTy = SubExpr->getType()->getAs<VectorType>();
PrimType ElemT = classifyVectorElementType(SubExpr->getType());
auto getElem = [=](unsigned Offset, unsigned Index) -> bool {
if (!this->emitGetLocal(PT_Ptr, Offset, E))
return false;
return this->emitArrayElemPop(ElemT, Index, E);
};
switch (UnaryOp) {
case UO_Minus:
for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
if (!getElem(SubExprOffset, I))
return false;
if (!this->emitNeg(ElemT, E))
return false;
if (!this->emitInitElem(ElemT, I, E))
return false;
}
break;
case UO_LNot: { // !x
// In C++, the logic operators !, &&, || are available for vectors. !v is
// equivalent to v == 0.
//
// The result of the comparison is a vector of the same width and number of
// elements as the comparison operands with a signed integral element type.
//
// https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.html
QualType ResultVecTy = E->getType();
PrimType ResultVecElemT =
classifyPrim(ResultVecTy->getAs<VectorType>()->getElementType());
for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
if (!getElem(SubExprOffset, I))
return false;
// operator ! on vectors returns -1 for 'truth', so negate it.
if (!this->emitPrimCast(ElemT, PT_Bool, Ctx.getASTContext().BoolTy, E))
return false;
if (!this->emitInv(E))
return false;
if (!this->emitPrimCast(PT_Bool, ElemT, VecTy->getElementType(), E))
return false;
if (!this->emitNeg(ElemT, E))
return false;
if (ElemT != ResultVecElemT &&
!this->emitPrimCast(ElemT, ResultVecElemT, ResultVecTy, E))
return false;
if (!this->emitInitElem(ResultVecElemT, I, E))
return false;
}
break;
}
case UO_Not: // ~x
for (unsigned I = 0; I != VecTy->getNumElements(); ++I) {
if (!getElem(SubExprOffset, I))
return false;
if (ElemT == PT_Bool) {
if (!this->emitInv(E))
return false;
} else {
if (!this->emitComp(ElemT, E))
return false;
}
if (!this->emitInitElem(ElemT, I, E))
return false;
}
break;
default:
llvm_unreachable("Unsupported unary operators should be handled up front");
}
return true;
}
template <class Emitter>
bool Compiler<Emitter>::visitDeclRef(const ValueDecl *D, const Expr *E) {
if (DiscardResult)
return true;
if (const auto *ECD = dyn_cast<EnumConstantDecl>(D)) {
return this->emitConst(ECD->getInitVal(), E);
} else if (const auto *BD = dyn_cast<BindingDecl>(D)) {
return this->visit(BD->getBinding());
} else if (const auto *FuncDecl = dyn_cast<FunctionDecl>(D)) {
const Function *F = getFunction(FuncDecl);
return F && this->emitGetFnPtr(F, E);
} else if (const auto *TPOD = dyn_cast<TemplateParamObjectDecl>(D)) {
if (std::optional<unsigned> Index = P.getOrCreateGlobal(D)) {
if (!this->emitGetPtrGlobal(*Index, E))
return false;
if (std::optional<PrimType> T = classify(E->getType())) {
if (!this->visitAPValue(TPOD->getValue(), *T, E))
return false;
return this->emitInitGlobal(*T, *Index, E);
}
return this->visitAPValueInitializer(TPOD->getValue(), E);
}
return false;
}
// References are implemented via pointers, so when we see a DeclRefExpr
// pointing to a reference, we need to get its value directly (i.e. the
// pointer to the actual value) instead of a pointer to the pointer to the
// value.
bool IsReference = D->getType()->isReferenceType();
// Check for local/global variables and parameters.
if (auto It = Locals.find(D); It != Locals.end()) {
const unsigned Offset = It->second.Offset;
if (IsReference)
return this->emitGetLocal(PT_Ptr, Offset, E);
return this->emitGetPtrLocal(Offset, E);
} else if (auto GlobalIndex = P.getGlobal(D)) {
if (IsReference) {
if (!Ctx.getLangOpts().CPlusPlus11)
return this->emitGetGlobal(classifyPrim(E), *GlobalIndex, E);
return this->emitGetGlobalUnchecked(classifyPrim(E), *GlobalIndex, E);
}
return this->emitGetPtrGlobal(*GlobalIndex, E);
} else if (const auto *PVD = dyn_cast<ParmVarDecl>(D)) {
if (auto It = this->Params.find(PVD); It != this->Params.end()) {
if (IsReference || !It->second.IsPtr)
return this->emitGetParam(classifyPrim(E), It->second.Offset, E);
return this->emitGetPtrParam(It->second.Offset, E);
}
if (D->getType()->isReferenceType())
return false; // FIXME: Do we need to emit InvalidDeclRef?
}
// In case we need to re-visit a declaration.
auto revisit = [&](const VarDecl *VD) -> bool {
auto VarState = this->visitDecl(VD);
if (VarState.notCreated())
return true;
if (!VarState)
return false;
// Retry.
return this->visitDeclRef(D, E);
};
// Handle lambda captures.
if (auto It = this->LambdaCaptures.find(D);
It != this->LambdaCaptures.end()) {
auto [Offset, IsPtr] = It->second;
if (IsPtr)
return this->emitGetThisFieldPtr(Offset, E);
return this->emitGetPtrThisField(Offset, E);
} else if (const auto *DRE = dyn_cast<DeclRefExpr>(E);
DRE && DRE->refersToEnclosingVariableOrCapture()) {
if (const auto *VD = dyn_cast<VarDecl>(D); VD && VD->isInitCapture())
return revisit(VD);
}
// Avoid infinite recursion.
if (D == InitializingDecl)
return this->emitDummyPtr(D, E);
// Try to lazily visit (or emit dummy pointers for) declarations
// we haven't seen yet.
// For C.
if (!Ctx.getLangOpts().CPlusPlus) {
if (const auto *VD = dyn_cast<VarDecl>(D);
VD && VD->getAnyInitializer() &&
VD->getType().isConstant(Ctx.getASTContext()) && !VD->isWeak())
return revisit(VD);
return this->emitDummyPtr(D, E);
}
// ... and C++.
const auto *VD = dyn_cast<VarDecl>(D);
if (!VD)
return this->emitDummyPtr(D, E);
const auto typeShouldBeVisited = [&](QualType T) -> bool {
if (T.isConstant(Ctx.getASTContext()))
return true;
return T->isReferenceType();
};
// DecompositionDecls are just proxies for us.
if (isa<DecompositionDecl>(VD))
return revisit(VD);
if ((VD->hasGlobalStorage() || VD->isStaticDataMember()) &&
typeShouldBeVisited(VD->getType())) {
if (const Expr *Init = VD->getAnyInitializer();
Init && !Init->isValueDependent()) {
// Whether or not the evaluation is successul doesn't really matter
// here -- we will create a global variable in any case, and that
// will have the state of initializer evaluation attached.
APValue V;
SmallVector<PartialDiagnosticAt> Notes;
(void)Init->EvaluateAsInitializer(V, Ctx.getASTContext(), VD, Notes,
true);
return this->visitDeclRef(D, E);
}
return revisit(VD);
}
// FIXME: The evaluateValue() check here is a little ridiculous, since
// it will ultimately call into Context::evaluateAsInitializer(). In
// other words, we're evaluating the initializer, just to know if we can
// evaluate the initializer.
if (VD->isLocalVarDecl() && typeShouldBeVisited(VD->getType()) &&
VD->getInit() && !VD->getInit()->isValueDependent()) {
if (VD->evaluateValue())
return revisit(VD);
if (!D->getType()->isReferenceType())
return this->emitDummyPtr(D, E);
return this->emitInvalidDeclRef(cast<DeclRefExpr>(E),
/*InitializerFailed=*/true, E);
}
return this->emitDummyPtr(D, E);
}
template <class Emitter>
bool Compiler<Emitter>::VisitDeclRefExpr(const DeclRefExpr *E) {
const auto *D = E->getDecl();
return this->visitDeclRef(D, E);
}
template <class Emitter> void Compiler<Emitter>::emitCleanup() {
for (VariableScope<Emitter> *C = VarScope; C; C = C->getParent())
C->emitDestruction();
}
template <class Emitter>
unsigned Compiler<Emitter>::collectBaseOffset(const QualType BaseType,
const QualType DerivedType) {
const auto extractRecordDecl = [](QualType Ty) -> const CXXRecordDecl * {
if (const auto *R = Ty->getPointeeCXXRecordDecl())
return R;
return Ty->getAsCXXRecordDecl();
};
const CXXRecordDecl *BaseDecl = extractRecordDecl(BaseType);
const CXXRecordDecl *DerivedDecl = extractRecordDecl(DerivedType);
return Ctx.collectBaseOffset(BaseDecl, DerivedDecl);
}
/// Emit casts from a PrimType to another PrimType.
template <class Emitter>
bool Compiler<Emitter>::emitPrimCast(PrimType FromT, PrimType ToT,
QualType ToQT, const Expr *E) {
if (FromT == PT_Float) {
// Floating to floating.
if (ToT == PT_Float) {
const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
return this->emitCastFP(ToSem, getRoundingMode(E), E);
}
if (ToT == PT_IntAP)
return this->emitCastFloatingIntegralAP(Ctx.getBitWidth(ToQT),
getFPOptions(E), E);
if (ToT == PT_IntAPS)
return this->emitCastFloatingIntegralAPS(Ctx.getBitWidth(ToQT),
getFPOptions(E), E);
// Float to integral.
if (isIntegralType(ToT) || ToT == PT_Bool)
return this->emitCastFloatingIntegral(ToT, getFPOptions(E), E);
}
if (isIntegralType(FromT) || FromT == PT_Bool) {
if (ToT == PT_IntAP)
return this->emitCastAP(FromT, Ctx.getBitWidth(ToQT), E);
if (ToT == PT_IntAPS)
return this->emitCastAPS(FromT, Ctx.getBitWidth(ToQT), E);
// Integral to integral.
if (isIntegralType(ToT) || ToT == PT_Bool)
return FromT != ToT ? this->emitCast(FromT, ToT, E) : true;
if (ToT == PT_Float) {
// Integral to floating.
const llvm::fltSemantics *ToSem = &Ctx.getFloatSemantics(ToQT);
return this->emitCastIntegralFloating(FromT, ToSem, getFPOptions(E), E);
}
}
return false;
}
/// Emits __real(SubExpr)
template <class Emitter>
bool Compiler<Emitter>::emitComplexReal(const Expr *SubExpr) {
assert(SubExpr->getType()->isAnyComplexType());
if (DiscardResult)
return this->discard(SubExpr);
if (!this->visit(SubExpr))
return false;
if (SubExpr->isLValue()) {
if (!this->emitConstUint8(0, SubExpr))
return false;
return this->emitArrayElemPtrPopUint8(SubExpr);
}
// Rvalue, load the actual element.
return this->emitArrayElemPop(classifyComplexElementType(SubExpr->getType()),
0, SubExpr);
}
template <class Emitter>
bool Compiler<Emitter>::emitComplexBoolCast(const Expr *E) {
assert(!DiscardResult);
PrimType ElemT = classifyComplexElementType(E->getType());
// We emit the expression (__real(E) != 0 || __imag(E) != 0)
// for us, that means (bool)E[0] || (bool)E[1]
if (!this->emitArrayElem(ElemT, 0, E))
return false;
if (ElemT == PT_Float) {
if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
return false;
} else {
if (!this->emitCast(ElemT, PT_Bool, E))
return false;
}
// We now have the bool value of E[0] on the stack.
LabelTy LabelTrue = this->getLabel();
if (!this->jumpTrue(LabelTrue))
return false;
if (!this->emitArrayElemPop(ElemT, 1, E))
return false;
if (ElemT == PT_Float) {
if (!this->emitCastFloatingIntegral(PT_Bool, getFPOptions(E), E))
return false;
} else {
if (!this->emitCast(ElemT, PT_Bool, E))
return false;
}
// Leave the boolean value of E[1] on the stack.
LabelTy EndLabel = this->getLabel();
this->jump(EndLabel);
this->emitLabel(LabelTrue);
if (!this->emitPopPtr(E))
return false;
if (!this->emitConstBool(true, E))
return false;
this->fallthrough(EndLabel);
this->emitLabel(EndLabel);
return true;
}
template <class Emitter>
bool Compiler<Emitter>::emitComplexComparison(const Expr *LHS, const Expr *RHS,
const BinaryOperator *E) {
assert(E->isComparisonOp());
assert(!Initializing);
assert(!DiscardResult);
PrimType ElemT;
bool LHSIsComplex;
unsigned LHSOffset;
if (LHS->getType()->isAnyComplexType()) {
LHSIsComplex = true;
ElemT = classifyComplexElementType(LHS->getType());
LHSOffset = allocateLocalPrimitive(LHS, PT_Ptr, /*IsConst=*/true,
/*IsExtended=*/false);
if (!this->visit(LHS))
return false;
if (!this->emitSetLocal(PT_Ptr, LHSOffset, E))
return false;
} else {
LHSIsComplex = false;
PrimType LHST = classifyPrim(LHS->getType());
LHSOffset = this->allocateLocalPrimitive(LHS, LHST, true, false);
if (!this->visit(LHS))
return false;
if (!this->emitSetLocal(LHST, LHSOffset, E))
return false;
}
bool RHSIsComplex;
unsigned RHSOffset;
if (RHS->getType()->isAnyComplexType()) {
RHSIsComplex = true;
ElemT = classifyComplexElementType(RHS->getType());
RHSOffset = allocateLocalPrimitive(RHS, PT_Ptr, /*IsConst=*/true,
/*IsExtended=*/false);
if (!this->visit(RHS))
return false;
if (!this->emitSetLocal(PT_Ptr, RHSOffset, E))
return false;
} else {
RHSIsComplex = false;
PrimType RHST = classifyPrim(RHS->getType());
RHSOffset = this->allocateLocalPrimitive(RHS, RHST, true, false);
if (!this->visit(RHS))
return false;
if (!this->emitSetLocal(RHST, RHSOffset, E))
return false;
}
auto getElem = [&](unsigned LocalOffset, unsigned Index,
bool IsComplex) -> bool {
if (IsComplex) {
if (!this->emitGetLocal(PT_Ptr, LocalOffset, E))
return false;
return this->emitArrayElemPop(ElemT, Index, E);
}
return this->emitGetLocal(ElemT, LocalOffset, E);
};
for (unsigned I = 0; I != 2; ++I) {
// Get both values.
if (!getElem(LHSOffset, I, LHSIsComplex))
return false;
if (!getElem(RHSOffset, I, RHSIsComplex))
return false;
// And compare them.
if (!this->emitEQ(ElemT, E))
return false;
if (!this->emitCastBoolUint8(E))
return false;
}
// We now have two bool values on the stack. Compare those.
if (!this->emitAddUint8(E))
return false;
if (!this->emitConstUint8(2, E))
return false;
if (E->getOpcode() == BO_EQ) {
if (!this->emitEQUint8(E))
return false;
} else if (E->getOpcode() == BO_NE) {
if (!this->emitNEUint8(E))
return false;
} else
return false;
// In C, this returns an int.
if (PrimType ResT = classifyPrim(E->getType()); ResT != PT_Bool)
return this->emitCast(PT_Bool, ResT, E);
return true;
}
/// When calling this, we have a pointer of the local-to-destroy
/// on the stack.
/// Emit destruction of record types (or arrays of record types).
template <class Emitter>
bool Compiler<Emitter>::emitRecordDestruction(const Record *R, SourceInfo Loc) {
assert(R);
assert(!R->isAnonymousUnion());
const CXXDestructorDecl *Dtor = R->getDestructor();
if (!Dtor || Dtor->isTrivial())
return true;
assert(Dtor);
const Function *DtorFunc = getFunction(Dtor);
if (!DtorFunc)
return false;
assert(DtorFunc->hasThisPointer());
assert(DtorFunc->getNumParams() == 1);
if (!this->emitDupPtr(Loc))
return false;
return this->emitCall(DtorFunc, 0, Loc);
}
/// When calling this, we have a pointer of the local-to-destroy
/// on the stack.
/// Emit destruction of record types (or arrays of record types).
template <class Emitter>
bool Compiler<Emitter>::emitDestruction(const Descriptor *Desc,
SourceInfo Loc) {
assert(Desc);
assert(!Desc->isPrimitive());
assert(!Desc->isPrimitiveArray());
// Arrays.
if (Desc->isArray()) {
const Descriptor *ElemDesc = Desc->ElemDesc;
assert(ElemDesc);
// Don't need to do anything for these.
if (ElemDesc->isPrimitiveArray())
return true;
// If this is an array of record types, check if we need
// to call the element destructors at all. If not, try
// to save the work.
if (const Record *ElemRecord = ElemDesc->ElemRecord) {
if (const CXXDestructorDecl *Dtor = ElemRecord->getDestructor();
!Dtor || Dtor->isTrivial())
return true;
}
for (ssize_t I = Desc->getNumElems() - 1; I >= 0; --I) {
if (!this->emitConstUint64(I, Loc))
return false;
if (!this->emitArrayElemPtrUint64(Loc))
return false;
if (!this->emitDestruction(ElemDesc, Loc))
return false;
if (!this->emitPopPtr(Loc))
return false;
}
return true;
}
assert(Desc->ElemRecord);
if (Desc->ElemRecord->isAnonymousUnion())
return true;
return this->emitRecordDestruction(Desc->ElemRecord, Loc);
}
/// Create a dummy pointer for the given decl (or expr) and
/// push a pointer to it on the stack.
template <class Emitter>
bool Compiler<Emitter>::emitDummyPtr(const DeclTy &D, const Expr *E) {
assert(!DiscardResult && "Should've been checked before");
unsigned DummyID = P.getOrCreateDummy(D);
if (!this->emitGetPtrGlobal(DummyID, E))
return false;
if (E->getType()->isVoidType())
return true;
// Convert the dummy pointer to another pointer type if we have to.
if (PrimType PT = classifyPrim(E); PT != PT_Ptr) {
if (isPtrType(PT))
return this->emitDecayPtr(PT_Ptr, PT, E);
return false;
}
return true;
}
// This function is constexpr if and only if To, From, and the types of
// all subobjects of To and From are types T such that...
// (3.1) - is_union_v<T> is false;
// (3.2) - is_pointer_v<T> is false;
// (3.3) - is_member_pointer_v<T> is false;
// (3.4) - is_volatile_v<T> is false; and
// (3.5) - T has no non-static data members of reference type
template <class Emitter>
bool Compiler<Emitter>::emitBuiltinBitCast(const CastExpr *E) {
const Expr *SubExpr = E->getSubExpr();
QualType FromType = SubExpr->getType();
QualType ToType = E->getType();
std::optional<PrimType> ToT = classify(ToType);
assert(!ToType->isReferenceType());
// Prepare storage for the result in case we discard.
if (DiscardResult && !Initializing && !ToT) {
std::optional<unsigned> LocalIndex = allocateLocal(E);
if (!LocalIndex)
return false;
if (!this->emitGetPtrLocal(*LocalIndex, E))
return false;
}
// Get a pointer to the value-to-cast on the stack.
// For CK_LValueToRValueBitCast, this is always an lvalue and
// we later assume it to be one (i.e. a PT_Ptr). However,
// we call this function for other utility methods where
// a bitcast might be useful, so convert it to a PT_Ptr in that case.
if (SubExpr->isGLValue() || FromType->isVectorType()) {
if (!this->visit(SubExpr))
return false;
} else if (std::optional<PrimType> FromT = classify(SubExpr)) {
unsigned TempOffset = allocateLocalPrimitive(
SubExpr, *FromT, /*IsConst=*/true, /*IsExtended=*/false);
if (!this->visit(SubExpr))
return false;
if (!this->emitSetLocal(*FromT, TempOffset, E))
return false;
if (!this->emitGetPtrLocal(TempOffset, E))
return false;
} else {
return false;
}
if (!ToT) {
if (!this->emitBitCast(E))
return false;
return DiscardResult ? this->emitPopPtr(E) : true;
}
assert(ToT);
const llvm::fltSemantics *TargetSemantics = nullptr;
if (ToT == PT_Float)
TargetSemantics = &Ctx.getFloatSemantics(ToType);
// Conversion to a primitive type. FromType can be another
// primitive type, or a record/array.
bool ToTypeIsUChar = (ToType->isSpecificBuiltinType(BuiltinType::UChar) ||
ToType->isSpecificBuiltinType(BuiltinType::Char_U));
uint32_t ResultBitWidth = std::max(Ctx.getBitWidth(ToType), 8u);
if (!this->emitBitCastPrim(*ToT, ToTypeIsUChar || ToType->isStdByteType(),
ResultBitWidth, TargetSemantics, E))
return false;
if (DiscardResult)
return this->emitPop(*ToT, E);
return true;
}
namespace clang {
namespace interp {
template class Compiler<ByteCodeEmitter>;
template class Compiler<EvalEmitter>;
} // namespace interp
} // namespace clang
|