File: Context.cpp

package info (click to toggle)
llvm-toolchain-20 1%3A20.1.6-1~exp1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 2,111,304 kB
  • sloc: cpp: 7,438,677; ansic: 1,393,822; asm: 1,012,926; python: 241,650; f90: 86,635; objc: 75,479; lisp: 42,144; pascal: 17,286; sh: 10,027; ml: 5,082; perl: 4,730; awk: 3,523; makefile: 3,349; javascript: 2,251; xml: 892; fortran: 672
file content (320 lines) | stat: -rw-r--r-- 8,408 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
//===--- Context.cpp - Context for the constexpr VM -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Context.h"
#include "ByteCodeEmitter.h"
#include "Compiler.h"
#include "EvalEmitter.h"
#include "Interp.h"
#include "InterpFrame.h"
#include "InterpStack.h"
#include "PrimType.h"
#include "Program.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/TargetInfo.h"

using namespace clang;
using namespace clang::interp;

Context::Context(ASTContext &Ctx) : Ctx(Ctx), P(new Program(*this)) {}

Context::~Context() {}

bool Context::isPotentialConstantExpr(State &Parent, const FunctionDecl *FD) {
  assert(Stk.empty());
  const Function *Func = getOrCreateFunction(FD);
  if (!Func)
    return false;

  if (!Run(Parent, Func))
    return false;

  return Func->isConstexpr();
}

bool Context::evaluateAsRValue(State &Parent, const Expr *E, APValue &Result) {
  ++EvalID;
  bool Recursing = !Stk.empty();
  size_t StackSizeBefore = Stk.size();
  Compiler<EvalEmitter> C(*this, *P, Parent, Stk);

  auto Res = C.interpretExpr(E, /*ConvertResultToRValue=*/E->isGLValue());

  if (Res.isInvalid()) {
    C.cleanup();
    Stk.clearTo(StackSizeBefore);
    return false;
  }

  if (!Recursing) {
    assert(Stk.empty());
    C.cleanup();
#ifndef NDEBUG
    // Make sure we don't rely on some value being still alive in
    // InterpStack memory.
    Stk.clearTo(StackSizeBefore);
#endif
  }

  Result = Res.toAPValue();

  return true;
}

bool Context::evaluate(State &Parent, const Expr *E, APValue &Result,
                       ConstantExprKind Kind) {
  ++EvalID;
  bool Recursing = !Stk.empty();
  size_t StackSizeBefore = Stk.size();
  Compiler<EvalEmitter> C(*this, *P, Parent, Stk);

  auto Res = C.interpretExpr(E, /*ConvertResultToRValue=*/false,
                             /*DestroyToplevelScope=*/true);
  if (Res.isInvalid()) {
    C.cleanup();
    Stk.clearTo(StackSizeBefore);
    return false;
  }

  if (!Recursing) {
    assert(Stk.empty());
    C.cleanup();
#ifndef NDEBUG
    // Make sure we don't rely on some value being still alive in
    // InterpStack memory.
    Stk.clearTo(StackSizeBefore);
#endif
  }

  Result = Res.toAPValue();
  return true;
}

bool Context::evaluateAsInitializer(State &Parent, const VarDecl *VD,
                                    APValue &Result) {
  ++EvalID;
  bool Recursing = !Stk.empty();
  size_t StackSizeBefore = Stk.size();
  Compiler<EvalEmitter> C(*this, *P, Parent, Stk);

  bool CheckGlobalInitialized =
      shouldBeGloballyIndexed(VD) &&
      (VD->getType()->isRecordType() || VD->getType()->isArrayType());
  auto Res = C.interpretDecl(VD, CheckGlobalInitialized);
  if (Res.isInvalid()) {
    C.cleanup();
    Stk.clearTo(StackSizeBefore);

    return false;
  }

  if (!Recursing) {
    assert(Stk.empty());
    C.cleanup();
#ifndef NDEBUG
    // Make sure we don't rely on some value being still alive in
    // InterpStack memory.
    Stk.clearTo(StackSizeBefore);
#endif
  }

  Result = Res.toAPValue();
  return true;
}

const LangOptions &Context::getLangOpts() const { return Ctx.getLangOpts(); }

std::optional<PrimType> Context::classify(QualType T) const {
  if (T->isBooleanType())
    return PT_Bool;

  // We map these to primitive arrays.
  if (T->isAnyComplexType() || T->isVectorType())
    return std::nullopt;

  if (T->isSignedIntegerOrEnumerationType()) {
    switch (Ctx.getIntWidth(T)) {
    case 64:
      return PT_Sint64;
    case 32:
      return PT_Sint32;
    case 16:
      return PT_Sint16;
    case 8:
      return PT_Sint8;
    default:
      return PT_IntAPS;
    }
  }

  if (T->isUnsignedIntegerOrEnumerationType()) {
    switch (Ctx.getIntWidth(T)) {
    case 64:
      return PT_Uint64;
    case 32:
      return PT_Uint32;
    case 16:
      return PT_Uint16;
    case 8:
      return PT_Uint8;
    case 1:
      // Might happen for enum types.
      return PT_Bool;
    default:
      return PT_IntAP;
    }
  }

  if (T->isNullPtrType())
    return PT_Ptr;

  if (T->isFloatingType())
    return PT_Float;

  if (T->isSpecificBuiltinType(BuiltinType::BoundMember) ||
      T->isMemberPointerType())
    return PT_MemberPtr;

  if (T->isFunctionPointerType() || T->isFunctionReferenceType() ||
      T->isFunctionType() || T->isBlockPointerType())
    return PT_FnPtr;

  if (T->isPointerOrReferenceType() || T->isObjCObjectPointerType())
    return PT_Ptr;

  if (const auto *AT = T->getAs<AtomicType>())
    return classify(AT->getValueType());

  if (const auto *DT = dyn_cast<DecltypeType>(T))
    return classify(DT->getUnderlyingType());

  if (T->isFixedPointType())
    return PT_FixedPoint;

  return std::nullopt;
}

unsigned Context::getCharBit() const {
  return Ctx.getTargetInfo().getCharWidth();
}

/// Simple wrapper around getFloatTypeSemantics() to make code a
/// little shorter.
const llvm::fltSemantics &Context::getFloatSemantics(QualType T) const {
  return Ctx.getFloatTypeSemantics(T);
}

bool Context::Run(State &Parent, const Function *Func) {

  {
    InterpState State(Parent, *P, Stk, *this);
    State.Current = new InterpFrame(State, Func, /*Caller=*/nullptr, CodePtr(),
                                    Func->getArgSize());
    if (Interpret(State)) {
      assert(Stk.empty());
      return true;
    }

    // State gets destroyed here, so the Stk.clear() below doesn't accidentally
    // remove values the State's destructor might access.
  }

  Stk.clear();
  return false;
}

// TODO: Virtual bases?
const CXXMethodDecl *
Context::getOverridingFunction(const CXXRecordDecl *DynamicDecl,
                               const CXXRecordDecl *StaticDecl,
                               const CXXMethodDecl *InitialFunction) const {
  assert(DynamicDecl);
  assert(StaticDecl);
  assert(InitialFunction);

  const CXXRecordDecl *CurRecord = DynamicDecl;
  const CXXMethodDecl *FoundFunction = InitialFunction;
  for (;;) {
    const CXXMethodDecl *Overrider =
        FoundFunction->getCorrespondingMethodDeclaredInClass(CurRecord, false);
    if (Overrider)
      return Overrider;

    // Common case of only one base class.
    if (CurRecord->getNumBases() == 1) {
      CurRecord = CurRecord->bases_begin()->getType()->getAsCXXRecordDecl();
      continue;
    }

    // Otherwise, go to the base class that will lead to the StaticDecl.
    for (const CXXBaseSpecifier &Spec : CurRecord->bases()) {
      const CXXRecordDecl *Base = Spec.getType()->getAsCXXRecordDecl();
      if (Base == StaticDecl || Base->isDerivedFrom(StaticDecl)) {
        CurRecord = Base;
        break;
      }
    }
  }

  llvm_unreachable(
      "Couldn't find an overriding function in the class hierarchy?");
  return nullptr;
}

const Function *Context::getOrCreateFunction(const FunctionDecl *FD) {
  assert(FD);
  FD = FD->getMostRecentDecl();
  const Function *Func = P->getFunction(FD);
  bool IsBeingCompiled = Func && Func->isDefined() && !Func->isFullyCompiled();
  bool WasNotDefined = Func && !Func->isConstexpr() && !Func->isDefined();

  if (IsBeingCompiled)
    return Func;

  if (!Func || WasNotDefined) {
    if (auto F = Compiler<ByteCodeEmitter>(*this, *P).compileFunc(FD))
      Func = F;
  }

  return Func;
}

unsigned Context::collectBaseOffset(const RecordDecl *BaseDecl,
                                    const RecordDecl *DerivedDecl) const {
  assert(BaseDecl);
  assert(DerivedDecl);
  const auto *FinalDecl = cast<CXXRecordDecl>(BaseDecl);
  const RecordDecl *CurDecl = DerivedDecl;
  const Record *CurRecord = P->getOrCreateRecord(CurDecl);
  assert(CurDecl && FinalDecl);

  unsigned OffsetSum = 0;
  for (;;) {
    assert(CurRecord->getNumBases() > 0);
    // One level up
    for (const Record::Base &B : CurRecord->bases()) {
      const auto *BaseDecl = cast<CXXRecordDecl>(B.Decl);

      if (BaseDecl == FinalDecl || BaseDecl->isDerivedFrom(FinalDecl)) {
        OffsetSum += B.Offset;
        CurRecord = B.R;
        CurDecl = BaseDecl;
        break;
      }
    }
    if (CurDecl == FinalDecl)
      break;
  }

  assert(OffsetSum > 0);
  return OffsetSum;
}

const Record *Context::getRecord(const RecordDecl *D) const {
  return P->getOrCreateRecord(D);
}