1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
//===--- Floating.h - Types for the constexpr VM ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines the VM types and helpers operating on types.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_INTERP_FLOATING_H
#define LLVM_CLANG_AST_INTERP_FLOATING_H
#include "Primitives.h"
#include "clang/AST/APValue.h"
#include "llvm/ADT/APFloat.h"
namespace clang {
namespace interp {
using APFloat = llvm::APFloat;
using APSInt = llvm::APSInt;
class Floating final {
private:
// The underlying value storage.
APFloat F;
public:
/// Zero-initializes a Floating.
Floating() : F(0.0f) {}
Floating(const APFloat &F) : F(F) {}
// Static constructors for special floating point values.
static Floating getInf(const llvm::fltSemantics &Sem) {
return Floating(APFloat::getInf(Sem));
}
const APFloat &getAPFloat() const { return F; }
bool operator<(Floating RHS) const { return F < RHS.F; }
bool operator>(Floating RHS) const { return F > RHS.F; }
bool operator<=(Floating RHS) const { return F <= RHS.F; }
bool operator>=(Floating RHS) const { return F >= RHS.F; }
bool operator==(Floating RHS) const { return F == RHS.F; }
bool operator!=(Floating RHS) const { return F != RHS.F; }
Floating operator-() const { return Floating(-F); }
APFloat::opStatus convertToInteger(APSInt &Result) const {
bool IsExact;
return F.convertToInteger(Result, llvm::APFloat::rmTowardZero, &IsExact);
}
Floating toSemantics(const llvm::fltSemantics *Sem,
llvm::RoundingMode RM) const {
APFloat Copy = F;
bool LosesInfo;
Copy.convert(*Sem, RM, &LosesInfo);
(void)LosesInfo;
return Floating(Copy);
}
/// Convert this Floating to one with the same semantics as \Other.
Floating toSemantics(const Floating &Other, llvm::RoundingMode RM) const {
return toSemantics(&Other.F.getSemantics(), RM);
}
APSInt toAPSInt(unsigned NumBits = 0) const {
return APSInt(F.bitcastToAPInt());
}
APValue toAPValue(const ASTContext &) const { return APValue(F); }
void print(llvm::raw_ostream &OS) const {
// Can't use APFloat::print() since it appends a newline.
SmallVector<char, 16> Buffer;
F.toString(Buffer);
OS << Buffer;
}
std::string toDiagnosticString(const ASTContext &Ctx) const {
std::string NameStr;
llvm::raw_string_ostream OS(NameStr);
print(OS);
return NameStr;
}
unsigned bitWidth() const { return F.semanticsSizeInBits(F.getSemantics()); }
bool isSigned() const { return true; }
bool isNegative() const { return F.isNegative(); }
bool isPositive() const { return !F.isNegative(); }
bool isZero() const { return F.isZero(); }
bool isNonZero() const { return F.isNonZero(); }
bool isMin() const { return F.isSmallest(); }
bool isMinusOne() const { return F.isExactlyValue(-1.0); }
bool isNan() const { return F.isNaN(); }
bool isSignaling() const { return F.isSignaling(); }
bool isInf() const { return F.isInfinity(); }
bool isFinite() const { return F.isFinite(); }
bool isNormal() const { return F.isNormal(); }
bool isDenormal() const { return F.isDenormal(); }
llvm::FPClassTest classify() const { return F.classify(); }
APFloat::fltCategory getCategory() const { return F.getCategory(); }
ComparisonCategoryResult compare(const Floating &RHS) const {
llvm::APFloatBase::cmpResult CmpRes = F.compare(RHS.F);
switch (CmpRes) {
case llvm::APFloatBase::cmpLessThan:
return ComparisonCategoryResult::Less;
case llvm::APFloatBase::cmpEqual:
return ComparisonCategoryResult::Equal;
case llvm::APFloatBase::cmpGreaterThan:
return ComparisonCategoryResult::Greater;
case llvm::APFloatBase::cmpUnordered:
return ComparisonCategoryResult::Unordered;
}
llvm_unreachable("Inavlid cmpResult value");
}
static APFloat::opStatus fromIntegral(APSInt Val,
const llvm::fltSemantics &Sem,
llvm::RoundingMode RM,
Floating &Result) {
APFloat F = APFloat(Sem);
APFloat::opStatus Status = F.convertFromAPInt(Val, Val.isSigned(), RM);
Result = Floating(F);
return Status;
}
static Floating bitcastFromMemory(const std::byte *Buff,
const llvm::fltSemantics &Sem) {
size_t Size = APFloat::semanticsSizeInBits(Sem);
llvm::APInt API(Size, true);
llvm::LoadIntFromMemory(API, (const uint8_t *)Buff, Size / 8);
return Floating(APFloat(Sem, API));
}
void bitcastToMemory(std::byte *Buff) const {
llvm::APInt API = F.bitcastToAPInt();
llvm::StoreIntToMemory(API, (uint8_t *)Buff, bitWidth() / 8);
}
// === Serialization support ===
size_t bytesToSerialize() const {
return sizeof(llvm::fltSemantics *) +
(APFloat::semanticsSizeInBits(F.getSemantics()) / 8);
}
void serialize(std::byte *Buff) const {
// Semantics followed by an APInt.
*reinterpret_cast<const llvm::fltSemantics **>(Buff) = &F.getSemantics();
llvm::APInt API = F.bitcastToAPInt();
llvm::StoreIntToMemory(API, (uint8_t *)(Buff + sizeof(void *)),
bitWidth() / 8);
}
static Floating deserialize(const std::byte *Buff) {
const llvm::fltSemantics *Sem;
std::memcpy((void *)&Sem, Buff, sizeof(void *));
return bitcastFromMemory(Buff + sizeof(void *), *Sem);
}
static Floating abs(const Floating &F) {
APFloat V = F.F;
if (V.isNegative())
V.changeSign();
return Floating(V);
}
// -------
static APFloat::opStatus add(const Floating &A, const Floating &B,
llvm::RoundingMode RM, Floating *R) {
*R = Floating(A.F);
return R->F.add(B.F, RM);
}
static APFloat::opStatus increment(const Floating &A, llvm::RoundingMode RM,
Floating *R) {
APFloat One(A.F.getSemantics(), 1);
*R = Floating(A.F);
return R->F.add(One, RM);
}
static APFloat::opStatus sub(const Floating &A, const Floating &B,
llvm::RoundingMode RM, Floating *R) {
*R = Floating(A.F);
return R->F.subtract(B.F, RM);
}
static APFloat::opStatus decrement(const Floating &A, llvm::RoundingMode RM,
Floating *R) {
APFloat One(A.F.getSemantics(), 1);
*R = Floating(A.F);
return R->F.subtract(One, RM);
}
static APFloat::opStatus mul(const Floating &A, const Floating &B,
llvm::RoundingMode RM, Floating *R) {
*R = Floating(A.F);
return R->F.multiply(B.F, RM);
}
static APFloat::opStatus div(const Floating &A, const Floating &B,
llvm::RoundingMode RM, Floating *R) {
*R = Floating(A.F);
return R->F.divide(B.F, RM);
}
static bool neg(const Floating &A, Floating *R) {
*R = -A;
return false;
}
};
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, Floating F);
Floating getSwappedBytes(Floating F);
} // namespace interp
} // namespace clang
#endif
|