1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
//===--- Integral.h - Wrapper for numeric types for the VM ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines the VM types and helpers operating on types.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_INTERP_INTEGRAL_H
#define LLVM_CLANG_AST_INTERP_INTEGRAL_H
#include "clang/AST/APValue.h"
#include "clang/AST/ComparisonCategories.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cstddef>
#include <cstdint>
#include "Primitives.h"
namespace clang {
namespace interp {
using APInt = llvm::APInt;
using APSInt = llvm::APSInt;
template <bool Signed> class IntegralAP;
// Helper structure to select the representation.
template <unsigned Bits, bool Signed> struct Repr;
template <> struct Repr<8, false> {
using Type = uint8_t;
};
template <> struct Repr<16, false> {
using Type = uint16_t;
};
template <> struct Repr<32, false> {
using Type = uint32_t;
};
template <> struct Repr<64, false> {
using Type = uint64_t;
};
template <> struct Repr<8, true> {
using Type = int8_t;
};
template <> struct Repr<16, true> {
using Type = int16_t;
};
template <> struct Repr<32, true> {
using Type = int32_t;
};
template <> struct Repr<64, true> {
using Type = int64_t;
};
/// Wrapper around numeric types.
///
/// These wrappers are required to shared an interface between APSint and
/// builtin primitive numeral types, while optimising for storage and
/// allowing methods operating on primitive type to compile to fast code.
template <unsigned Bits, bool Signed> class Integral final {
private:
template <unsigned OtherBits, bool OtherSigned> friend class Integral;
// The primitive representing the integral.
using ReprT = typename Repr<Bits, Signed>::Type;
ReprT V;
static_assert(std::is_trivially_copyable_v<ReprT>);
/// Primitive representing limits.
static const auto Min = std::numeric_limits<ReprT>::min();
static const auto Max = std::numeric_limits<ReprT>::max();
/// Construct an integral from anything that is convertible to storage.
template <typename T> explicit Integral(T V) : V(V) {}
public:
using AsUnsigned = Integral<Bits, false>;
/// Zero-initializes an integral.
Integral() : V(0) {}
/// Constructs an integral from another integral.
template <unsigned SrcBits, bool SrcSign>
explicit Integral(Integral<SrcBits, SrcSign> V) : V(V.V) {}
/// Construct an integral from a value based on signedness.
explicit Integral(const APSInt &V)
: V(V.isSigned() ? V.getSExtValue() : V.getZExtValue()) {}
bool operator<(Integral RHS) const { return V < RHS.V; }
bool operator>(Integral RHS) const { return V > RHS.V; }
bool operator<=(Integral RHS) const { return V <= RHS.V; }
bool operator>=(Integral RHS) const { return V >= RHS.V; }
bool operator==(Integral RHS) const { return V == RHS.V; }
bool operator!=(Integral RHS) const { return V != RHS.V; }
bool operator>(unsigned RHS) const {
return V >= 0 && static_cast<unsigned>(V) > RHS;
}
Integral operator-() const { return Integral(-V); }
Integral operator-(const Integral &Other) const {
return Integral(V - Other.V);
}
Integral operator~() const { return Integral(~V); }
template <unsigned DstBits, bool DstSign>
explicit operator Integral<DstBits, DstSign>() const {
return Integral<DstBits, DstSign>(V);
}
template <typename Ty, typename = std::enable_if_t<std::is_integral_v<Ty>>>
explicit operator Ty() const {
return V;
}
APSInt toAPSInt() const {
return APSInt(APInt(Bits, static_cast<uint64_t>(V), Signed), !Signed);
}
APSInt toAPSInt(unsigned BitWidth) const {
return APSInt(toAPInt(BitWidth), !Signed);
}
APInt toAPInt(unsigned BitWidth) const {
if constexpr (Signed)
return APInt(Bits, static_cast<uint64_t>(V), Signed)
.sextOrTrunc(BitWidth);
else
return APInt(Bits, static_cast<uint64_t>(V), Signed)
.zextOrTrunc(BitWidth);
}
APValue toAPValue(const ASTContext &) const { return APValue(toAPSInt()); }
Integral<Bits, false> toUnsigned() const {
return Integral<Bits, false>(*this);
}
constexpr static unsigned bitWidth() { return Bits; }
bool isZero() const { return !V; }
bool isMin() const { return *this == min(bitWidth()); }
bool isMinusOne() const { return Signed && V == ReprT(-1); }
constexpr static bool isSigned() { return Signed; }
bool isNegative() const { return V < ReprT(0); }
bool isPositive() const { return !isNegative(); }
ComparisonCategoryResult compare(const Integral &RHS) const {
return Compare(V, RHS.V);
}
void bitcastToMemory(std::byte *Dest) const {
std::memcpy(Dest, &V, sizeof(V));
}
static Integral bitcastFromMemory(const std::byte *Src, unsigned BitWidth) {
assert(BitWidth == sizeof(ReprT) * 8);
ReprT V;
std::memcpy(&V, Src, sizeof(ReprT));
return Integral(V);
}
std::string toDiagnosticString(const ASTContext &Ctx) const {
std::string NameStr;
llvm::raw_string_ostream OS(NameStr);
OS << V;
return NameStr;
}
unsigned countLeadingZeros() const {
if constexpr (!Signed)
return llvm::countl_zero<ReprT>(V);
if (isPositive())
return llvm::countl_zero<typename AsUnsigned::ReprT>(
static_cast<typename AsUnsigned::ReprT>(V));
llvm_unreachable("Don't call countLeadingZeros() on negative values.");
}
Integral truncate(unsigned TruncBits) const {
assert(TruncBits >= 1);
if (TruncBits >= Bits)
return *this;
const ReprT BitMask = (ReprT(1) << ReprT(TruncBits)) - 1;
const ReprT SignBit = ReprT(1) << (TruncBits - 1);
const ReprT ExtMask = ~BitMask;
return Integral((V & BitMask) | (Signed && (V & SignBit) ? ExtMask : 0));
}
void print(llvm::raw_ostream &OS) const { OS << V; }
static Integral min(unsigned NumBits) { return Integral(Min); }
static Integral max(unsigned NumBits) { return Integral(Max); }
template <typename ValT> static Integral from(ValT Value) {
if constexpr (std::is_integral<ValT>::value)
return Integral(Value);
else
return Integral::from(static_cast<Integral::ReprT>(Value));
}
template <unsigned SrcBits, bool SrcSign>
static std::enable_if_t<SrcBits != 0, Integral>
from(Integral<SrcBits, SrcSign> Value) {
return Integral(Value.V);
}
static Integral zero(unsigned BitWidth = 0) { return from(0); }
template <typename T> static Integral from(T Value, unsigned NumBits) {
return Integral(Value);
}
static bool inRange(int64_t Value, unsigned NumBits) {
return CheckRange<ReprT, Min, Max>(Value);
}
static bool increment(Integral A, Integral *R) {
return add(A, Integral(ReprT(1)), A.bitWidth(), R);
}
static bool decrement(Integral A, Integral *R) {
return sub(A, Integral(ReprT(1)), A.bitWidth(), R);
}
static bool add(Integral A, Integral B, unsigned OpBits, Integral *R) {
return CheckAddUB(A.V, B.V, R->V);
}
static bool sub(Integral A, Integral B, unsigned OpBits, Integral *R) {
return CheckSubUB(A.V, B.V, R->V);
}
static bool mul(Integral A, Integral B, unsigned OpBits, Integral *R) {
return CheckMulUB(A.V, B.V, R->V);
}
static bool rem(Integral A, Integral B, unsigned OpBits, Integral *R) {
*R = Integral(A.V % B.V);
return false;
}
static bool div(Integral A, Integral B, unsigned OpBits, Integral *R) {
*R = Integral(A.V / B.V);
return false;
}
static bool bitAnd(Integral A, Integral B, unsigned OpBits, Integral *R) {
*R = Integral(A.V & B.V);
return false;
}
static bool bitOr(Integral A, Integral B, unsigned OpBits, Integral *R) {
*R = Integral(A.V | B.V);
return false;
}
static bool bitXor(Integral A, Integral B, unsigned OpBits, Integral *R) {
*R = Integral(A.V ^ B.V);
return false;
}
static bool neg(Integral A, Integral *R) {
if (Signed && A.isMin())
return true;
*R = -A;
return false;
}
static bool comp(Integral A, Integral *R) {
*R = Integral(~A.V);
return false;
}
template <unsigned RHSBits, bool RHSSign>
static void shiftLeft(const Integral A, const Integral<RHSBits, RHSSign> B,
unsigned OpBits, Integral *R) {
*R = Integral::from(A.V << B.V, OpBits);
}
template <unsigned RHSBits, bool RHSSign>
static void shiftRight(const Integral A, const Integral<RHSBits, RHSSign> B,
unsigned OpBits, Integral *R) {
*R = Integral::from(A.V >> B.V, OpBits);
}
private:
template <typename T> static bool CheckAddUB(T A, T B, T &R) {
if constexpr (std::is_signed_v<T>) {
return llvm::AddOverflow<T>(A, B, R);
} else {
R = A + B;
return false;
}
}
template <typename T> static bool CheckSubUB(T A, T B, T &R) {
if constexpr (std::is_signed_v<T>) {
return llvm::SubOverflow<T>(A, B, R);
} else {
R = A - B;
return false;
}
}
template <typename T> static bool CheckMulUB(T A, T B, T &R) {
if constexpr (std::is_signed_v<T>) {
return llvm::MulOverflow<T>(A, B, R);
} else {
R = A * B;
return false;
}
}
template <typename T, T Min, T Max> static bool CheckRange(int64_t V) {
if constexpr (std::is_signed_v<T>) {
return Min <= V && V <= Max;
} else {
return V >= 0 && static_cast<uint64_t>(V) <= Max;
}
}
};
template <unsigned Bits, bool Signed>
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, Integral<Bits, Signed> I) {
I.print(OS);
return OS;
}
} // namespace interp
} // namespace clang
#endif
|