1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
|
//===------- Interp.cpp - Interpreter for the constexpr VM ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Interp.h"
#include "Function.h"
#include "InterpFrame.h"
#include "InterpShared.h"
#include "InterpStack.h"
#include "Opcode.h"
#include "PrimType.h"
#include "Program.h"
#include "State.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/TargetInfo.h"
#include "llvm/ADT/StringExtras.h"
using namespace clang;
using namespace clang::interp;
static bool RetValue(InterpState &S, CodePtr &Pt) {
llvm::report_fatal_error("Interpreter cannot return values");
}
//===----------------------------------------------------------------------===//
// Jmp, Jt, Jf
//===----------------------------------------------------------------------===//
static bool Jmp(InterpState &S, CodePtr &PC, int32_t Offset) {
PC += Offset;
return true;
}
static bool Jt(InterpState &S, CodePtr &PC, int32_t Offset) {
if (S.Stk.pop<bool>()) {
PC += Offset;
}
return true;
}
static bool Jf(InterpState &S, CodePtr &PC, int32_t Offset) {
if (!S.Stk.pop<bool>()) {
PC += Offset;
}
return true;
}
static void diagnoseMissingInitializer(InterpState &S, CodePtr OpPC,
const ValueDecl *VD) {
const SourceInfo &E = S.Current->getSource(OpPC);
S.FFDiag(E, diag::note_constexpr_var_init_unknown, 1) << VD;
S.Note(VD->getLocation(), diag::note_declared_at) << VD->getSourceRange();
}
static void diagnoseNonConstVariable(InterpState &S, CodePtr OpPC,
const ValueDecl *VD);
static bool diagnoseUnknownDecl(InterpState &S, CodePtr OpPC,
const ValueDecl *D) {
const SourceInfo &E = S.Current->getSource(OpPC);
if (isa<ParmVarDecl>(D)) {
if (S.getLangOpts().CPlusPlus11) {
S.FFDiag(E, diag::note_constexpr_function_param_value_unknown) << D;
S.Note(D->getLocation(), diag::note_declared_at) << D->getSourceRange();
} else {
S.FFDiag(E);
}
return false;
}
if (!D->getType().isConstQualified()) {
diagnoseNonConstVariable(S, OpPC, D);
} else if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (!VD->getAnyInitializer()) {
diagnoseMissingInitializer(S, OpPC, VD);
} else {
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_var_init_non_constant, 1) << VD;
S.Note(VD->getLocation(), diag::note_declared_at);
}
}
return false;
}
static void diagnoseNonConstVariable(InterpState &S, CodePtr OpPC,
const ValueDecl *VD) {
const SourceInfo &Loc = S.Current->getSource(OpPC);
if (!S.getLangOpts().CPlusPlus) {
S.FFDiag(Loc);
return;
}
if (const auto *VarD = dyn_cast<VarDecl>(VD);
VarD && VarD->getType().isConstQualified() &&
!VarD->getAnyInitializer()) {
diagnoseMissingInitializer(S, OpPC, VD);
return;
}
// Rather random, but this is to match the diagnostic output of the current
// interpreter.
if (isa<ObjCIvarDecl>(VD))
return;
if (VD->getType()->isIntegralOrEnumerationType()) {
S.FFDiag(Loc, diag::note_constexpr_ltor_non_const_int, 1) << VD;
S.Note(VD->getLocation(), diag::note_declared_at);
return;
}
S.FFDiag(Loc,
S.getLangOpts().CPlusPlus11 ? diag::note_constexpr_ltor_non_constexpr
: diag::note_constexpr_ltor_non_integral,
1)
<< VD << VD->getType();
S.Note(VD->getLocation(), diag::note_declared_at);
}
static bool CheckActive(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
if (Ptr.isActive())
return true;
assert(Ptr.inUnion());
assert(Ptr.isField() && Ptr.getField());
Pointer U = Ptr.getBase();
Pointer C = Ptr;
while (!U.isRoot() && U.inUnion() && !U.isActive()) {
if (U.getField())
C = U;
U = U.getBase();
}
assert(C.isField());
// Get the inactive field descriptor.
const FieldDecl *InactiveField = C.getField();
assert(InactiveField);
// Consider:
// union U {
// struct {
// int x;
// int y;
// } a;
// }
//
// When activating x, we will also activate a. If we now try to read
// from y, we will get to CheckActive, because y is not active. In that
// case, our U will be a (not a union). We return here and let later code
// handle this.
if (!U.getFieldDesc()->isUnion())
return true;
// Find the active field of the union.
const Record *R = U.getRecord();
assert(R && R->isUnion() && "Not a union");
const FieldDecl *ActiveField = nullptr;
for (const Record::Field &F : R->fields()) {
const Pointer &Field = U.atField(F.Offset);
if (Field.isActive()) {
ActiveField = Field.getField();
break;
}
}
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_access_inactive_union_member)
<< AK << InactiveField << !ActiveField << ActiveField;
return false;
}
static bool CheckTemporary(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
if (auto ID = Ptr.getDeclID()) {
if (!Ptr.isStaticTemporary())
return true;
const auto *MTE = dyn_cast_if_present<MaterializeTemporaryExpr>(
Ptr.getDeclDesc()->asExpr());
if (!MTE)
return true;
// FIXME(perf): Since we do this check on every Load from a static
// temporary, it might make sense to cache the value of the
// isUsableInConstantExpressions call.
if (!MTE->isUsableInConstantExpressions(S.getASTContext()) &&
Ptr.block()->getEvalID() != S.Ctx.getEvalID()) {
const SourceInfo &E = S.Current->getSource(OpPC);
S.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
S.Note(Ptr.getDeclLoc(), diag::note_constexpr_temporary_here);
return false;
}
}
return true;
}
static bool CheckGlobal(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (auto ID = Ptr.getDeclID()) {
if (!Ptr.isStatic())
return true;
if (S.P.getCurrentDecl() == ID)
return true;
S.FFDiag(S.Current->getLocation(OpPC), diag::note_constexpr_modify_global);
return false;
}
return true;
}
namespace clang {
namespace interp {
static void popArg(InterpState &S, const Expr *Arg) {
PrimType Ty = S.getContext().classify(Arg).value_or(PT_Ptr);
TYPE_SWITCH(Ty, S.Stk.discard<T>());
}
void cleanupAfterFunctionCall(InterpState &S, CodePtr OpPC,
const Function *Func) {
assert(S.Current);
assert(Func);
if (Func->isUnevaluatedBuiltin())
return;
// Some builtin functions require us to only look at the call site, since
// the classified parameter types do not match.
if (unsigned BID = Func->getBuiltinID();
BID && S.getASTContext().BuiltinInfo.hasCustomTypechecking(BID)) {
const auto *CE =
cast<CallExpr>(S.Current->Caller->getExpr(S.Current->getRetPC()));
for (int32_t I = CE->getNumArgs() - 1; I >= 0; --I) {
const Expr *A = CE->getArg(I);
popArg(S, A);
}
return;
}
if (S.Current->Caller && Func->isVariadic()) {
// CallExpr we're look for is at the return PC of the current function, i.e.
// in the caller.
// This code path should be executed very rarely.
unsigned NumVarArgs;
const Expr *const *Args = nullptr;
unsigned NumArgs = 0;
const Expr *CallSite = S.Current->Caller->getExpr(S.Current->getRetPC());
if (const auto *CE = dyn_cast<CallExpr>(CallSite)) {
Args = CE->getArgs();
NumArgs = CE->getNumArgs();
} else if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite)) {
Args = CE->getArgs();
NumArgs = CE->getNumArgs();
} else
assert(false && "Can't get arguments from that expression type");
assert(NumArgs >= Func->getNumWrittenParams());
NumVarArgs = NumArgs - (Func->getNumWrittenParams() +
isa<CXXOperatorCallExpr>(CallSite));
for (unsigned I = 0; I != NumVarArgs; ++I) {
const Expr *A = Args[NumArgs - 1 - I];
popArg(S, A);
}
}
// And in any case, remove the fixed parameters (the non-variadic ones)
// at the end.
for (PrimType Ty : Func->args_reverse())
TYPE_SWITCH(Ty, S.Stk.discard<T>());
}
bool CheckExtern(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (!Ptr.isExtern())
return true;
if (Ptr.isInitialized() ||
(Ptr.getDeclDesc()->asVarDecl() == S.EvaluatingDecl))
return true;
if (!S.checkingPotentialConstantExpression() && S.getLangOpts().CPlusPlus) {
const auto *VD = Ptr.getDeclDesc()->asValueDecl();
diagnoseNonConstVariable(S, OpPC, VD);
}
return false;
}
bool CheckArray(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (!Ptr.isUnknownSizeArray())
return true;
const SourceInfo &E = S.Current->getSource(OpPC);
S.FFDiag(E, diag::note_constexpr_unsized_array_indexed);
return false;
}
bool CheckLive(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
if (Ptr.isZero()) {
const auto &Src = S.Current->getSource(OpPC);
if (Ptr.isField())
S.FFDiag(Src, diag::note_constexpr_null_subobject) << CSK_Field;
else
S.FFDiag(Src, diag::note_constexpr_access_null) << AK;
return false;
}
if (!Ptr.isLive()) {
const auto &Src = S.Current->getSource(OpPC);
if (Ptr.isDynamic()) {
S.FFDiag(Src, diag::note_constexpr_access_deleted_object) << AK;
} else if (!S.checkingPotentialConstantExpression()) {
bool IsTemp = Ptr.isTemporary();
S.FFDiag(Src, diag::note_constexpr_lifetime_ended, 1) << AK << !IsTemp;
if (IsTemp)
S.Note(Ptr.getDeclLoc(), diag::note_constexpr_temporary_here);
else
S.Note(Ptr.getDeclLoc(), diag::note_declared_at);
}
return false;
}
return true;
}
bool CheckConstant(InterpState &S, CodePtr OpPC, const Descriptor *Desc) {
assert(Desc);
const auto *D = Desc->asVarDecl();
if (!D || !D->hasGlobalStorage())
return true;
if (D == S.EvaluatingDecl)
return true;
if (D->isConstexpr())
return true;
// If we're evaluating the initializer for a constexpr variable in C23, we may
// only read other contexpr variables. Abort here since this one isn't
// constexpr.
if (const auto *VD = dyn_cast_if_present<VarDecl>(S.EvaluatingDecl);
VD && VD->isConstexpr() && S.getLangOpts().C23)
return Invalid(S, OpPC);
QualType T = D->getType();
bool IsConstant = T.isConstant(S.getASTContext());
if (T->isIntegralOrEnumerationType()) {
if (!IsConstant) {
diagnoseNonConstVariable(S, OpPC, D);
return false;
}
return true;
}
if (IsConstant) {
if (S.getLangOpts().CPlusPlus) {
S.CCEDiag(S.Current->getLocation(OpPC),
S.getLangOpts().CPlusPlus11
? diag::note_constexpr_ltor_non_constexpr
: diag::note_constexpr_ltor_non_integral,
1)
<< D << T;
S.Note(D->getLocation(), diag::note_declared_at);
} else {
S.CCEDiag(S.Current->getLocation(OpPC));
}
return true;
}
if (T->isPointerOrReferenceType()) {
if (!T->getPointeeType().isConstant(S.getASTContext()) ||
!S.getLangOpts().CPlusPlus11) {
diagnoseNonConstVariable(S, OpPC, D);
return false;
}
return true;
}
diagnoseNonConstVariable(S, OpPC, D);
return false;
}
static bool CheckConstant(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (!Ptr.isStatic() || !Ptr.isBlockPointer())
return true;
return CheckConstant(S, OpPC, Ptr.getDeclDesc());
}
bool CheckNull(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
CheckSubobjectKind CSK) {
if (!Ptr.isZero())
return true;
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_null_subobject)
<< CSK << S.Current->getRange(OpPC);
return false;
}
bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
if (!Ptr.isOnePastEnd())
return true;
if (S.getLangOpts().CPlusPlus) {
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_access_past_end)
<< AK << S.Current->getRange(OpPC);
}
return false;
}
bool CheckRange(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
CheckSubobjectKind CSK) {
if (!Ptr.isElementPastEnd())
return true;
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_past_end_subobject)
<< CSK << S.Current->getRange(OpPC);
return false;
}
bool CheckSubobject(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
CheckSubobjectKind CSK) {
if (!Ptr.isOnePastEnd())
return true;
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_past_end_subobject)
<< CSK << S.Current->getRange(OpPC);
return false;
}
bool CheckDowncast(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
uint32_t Offset) {
uint32_t MinOffset = Ptr.getDeclDesc()->getMetadataSize();
uint32_t PtrOffset = Ptr.getByteOffset();
// We subtract Offset from PtrOffset. The result must be at least
// MinOffset.
if (Offset < PtrOffset && (PtrOffset - Offset) >= MinOffset)
return true;
const auto *E = cast<CastExpr>(S.Current->getExpr(OpPC));
QualType TargetQT = E->getType()->getPointeeType();
QualType MostDerivedQT = Ptr.getDeclPtr().getType();
S.CCEDiag(E, diag::note_constexpr_invalid_downcast)
<< MostDerivedQT << TargetQT;
return false;
}
bool CheckConst(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
assert(Ptr.isLive() && "Pointer is not live");
if (!Ptr.isConst() || Ptr.isMutable())
return true;
// The This pointer is writable in constructors and destructors,
// even if isConst() returns true.
// TODO(perf): We could be hitting this code path quite a lot in complex
// constructors. Is there a better way to do this?
if (S.Current->getFunction()) {
for (const InterpFrame *Frame = S.Current; Frame; Frame = Frame->Caller) {
if (const Function *Func = Frame->getFunction();
Func && (Func->isConstructor() || Func->isDestructor()) &&
Ptr.block() == Frame->getThis().block()) {
return true;
}
}
}
if (!Ptr.isBlockPointer())
return false;
const QualType Ty = Ptr.getType();
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_modify_const_type) << Ty;
return false;
}
bool CheckMutable(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
assert(Ptr.isLive() && "Pointer is not live");
if (!Ptr.isMutable())
return true;
// In C++14 onwards, it is permitted to read a mutable member whose
// lifetime began within the evaluation.
if (S.getLangOpts().CPlusPlus14 &&
Ptr.block()->getEvalID() == S.Ctx.getEvalID())
return true;
const SourceInfo &Loc = S.Current->getSource(OpPC);
const FieldDecl *Field = Ptr.getField();
S.FFDiag(Loc, diag::note_constexpr_access_mutable, 1) << AK_Read << Field;
S.Note(Field->getLocation(), diag::note_declared_at);
return false;
}
static bool CheckVolatile(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
assert(Ptr.isLive());
// FIXME: This check here might be kinda expensive. Maybe it would be better
// to have another field in InlineDescriptor for this?
if (!Ptr.isBlockPointer())
return true;
QualType PtrType = Ptr.getType();
if (!PtrType.isVolatileQualified())
return true;
const SourceInfo &Loc = S.Current->getSource(OpPC);
if (S.getLangOpts().CPlusPlus)
S.FFDiag(Loc, diag::note_constexpr_access_volatile_type) << AK << PtrType;
else
S.FFDiag(Loc);
return false;
}
bool CheckInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
assert(Ptr.isLive());
if (Ptr.isInitialized())
return true;
if (const auto *VD = Ptr.getDeclDesc()->asVarDecl();
VD && (VD->isConstexpr() || VD->hasGlobalStorage())) {
const SourceInfo &Loc = S.Current->getSource(OpPC);
if (VD->getAnyInitializer()) {
S.FFDiag(Loc, diag::note_constexpr_var_init_non_constant, 1) << VD;
S.Note(VD->getLocation(), diag::note_declared_at);
} else {
diagnoseMissingInitializer(S, OpPC, VD);
}
return false;
}
if (!S.checkingPotentialConstantExpression()) {
S.FFDiag(S.Current->getSource(OpPC), diag::note_constexpr_access_uninit)
<< AK << /*uninitialized=*/true << S.Current->getRange(OpPC);
}
return false;
}
bool CheckGlobalInitialized(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (Ptr.isInitialized())
return true;
assert(S.getLangOpts().CPlusPlus);
const auto *VD = cast<VarDecl>(Ptr.getDeclDesc()->asValueDecl());
if ((!VD->hasConstantInitialization() &&
VD->mightBeUsableInConstantExpressions(S.getASTContext())) ||
(S.getLangOpts().OpenCL && !S.getLangOpts().CPlusPlus11 &&
!VD->hasICEInitializer(S.getASTContext()))) {
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_var_init_non_constant, 1) << VD;
S.Note(VD->getLocation(), diag::note_declared_at);
}
return false;
}
static bool CheckWeak(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (!Ptr.isWeak())
return true;
const auto *VD = Ptr.getDeclDesc()->asVarDecl();
assert(VD);
S.FFDiag(S.Current->getLocation(OpPC), diag::note_constexpr_var_init_weak)
<< VD;
S.Note(VD->getLocation(), diag::note_declared_at);
return false;
}
bool CheckLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
if (!CheckLive(S, OpPC, Ptr, AK))
return false;
if (!CheckConstant(S, OpPC, Ptr))
return false;
if (!CheckDummy(S, OpPC, Ptr, AK))
return false;
if (!CheckExtern(S, OpPC, Ptr))
return false;
if (!CheckRange(S, OpPC, Ptr, AK))
return false;
if (!CheckActive(S, OpPC, Ptr, AK))
return false;
if (!CheckInitialized(S, OpPC, Ptr, AK))
return false;
if (!CheckTemporary(S, OpPC, Ptr, AK))
return false;
if (!CheckWeak(S, OpPC, Ptr))
return false;
if (!CheckMutable(S, OpPC, Ptr))
return false;
if (!CheckVolatile(S, OpPC, Ptr, AK))
return false;
return true;
}
/// This is not used by any of the opcodes directly. It's used by
/// EvalEmitter to do the final lvalue-to-rvalue conversion.
bool CheckFinalLoad(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (!CheckLive(S, OpPC, Ptr, AK_Read))
return false;
if (!CheckConstant(S, OpPC, Ptr))
return false;
if (!CheckDummy(S, OpPC, Ptr, AK_Read))
return false;
if (!CheckExtern(S, OpPC, Ptr))
return false;
if (!CheckRange(S, OpPC, Ptr, AK_Read))
return false;
if (!CheckActive(S, OpPC, Ptr, AK_Read))
return false;
if (!CheckInitialized(S, OpPC, Ptr, AK_Read))
return false;
if (!CheckTemporary(S, OpPC, Ptr, AK_Read))
return false;
if (!CheckWeak(S, OpPC, Ptr))
return false;
if (!CheckMutable(S, OpPC, Ptr))
return false;
return true;
}
bool CheckStore(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (!CheckLive(S, OpPC, Ptr, AK_Assign))
return false;
if (!CheckDummy(S, OpPC, Ptr, AK_Assign))
return false;
if (!CheckExtern(S, OpPC, Ptr))
return false;
if (!CheckRange(S, OpPC, Ptr, AK_Assign))
return false;
if (!CheckGlobal(S, OpPC, Ptr))
return false;
if (!CheckConst(S, OpPC, Ptr))
return false;
return true;
}
bool CheckInvoke(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (!CheckLive(S, OpPC, Ptr, AK_MemberCall))
return false;
if (!Ptr.isDummy()) {
if (!CheckExtern(S, OpPC, Ptr))
return false;
if (!CheckRange(S, OpPC, Ptr, AK_MemberCall))
return false;
}
return true;
}
bool CheckInit(InterpState &S, CodePtr OpPC, const Pointer &Ptr) {
if (!CheckLive(S, OpPC, Ptr, AK_Assign))
return false;
if (!CheckRange(S, OpPC, Ptr, AK_Assign))
return false;
return true;
}
bool CheckCallable(InterpState &S, CodePtr OpPC, const Function *F) {
if (F->isVirtual() && !S.getLangOpts().CPlusPlus20) {
const SourceLocation &Loc = S.Current->getLocation(OpPC);
S.CCEDiag(Loc, diag::note_constexpr_virtual_call);
return false;
}
if (F->isConstexpr() && F->hasBody() &&
(F->getDecl()->isConstexpr() || F->getDecl()->hasAttr<MSConstexprAttr>()))
return true;
// Implicitly constexpr.
if (F->isLambdaStaticInvoker())
return true;
const SourceLocation &Loc = S.Current->getLocation(OpPC);
if (S.getLangOpts().CPlusPlus11) {
const FunctionDecl *DiagDecl = F->getDecl();
// Invalid decls have been diagnosed before.
if (DiagDecl->isInvalidDecl())
return false;
// If this function is not constexpr because it is an inherited
// non-constexpr constructor, diagnose that directly.
const auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl);
if (CD && CD->isInheritingConstructor()) {
const auto *Inherited = CD->getInheritedConstructor().getConstructor();
if (!Inherited->isConstexpr())
DiagDecl = CD = Inherited;
}
// FIXME: If DiagDecl is an implicitly-declared special member function
// or an inheriting constructor, we should be much more explicit about why
// it's not constexpr.
if (CD && CD->isInheritingConstructor()) {
S.FFDiag(Loc, diag::note_constexpr_invalid_inhctor, 1)
<< CD->getInheritedConstructor().getConstructor()->getParent();
S.Note(DiagDecl->getLocation(), diag::note_declared_at);
} else {
// Don't emit anything if the function isn't defined and we're checking
// for a constant expression. It might be defined at the point we're
// actually calling it.
bool IsExtern = DiagDecl->getStorageClass() == SC_Extern;
if (!DiagDecl->isDefined() && !IsExtern && DiagDecl->isConstexpr() &&
S.checkingPotentialConstantExpression())
return false;
// If the declaration is defined, declared 'constexpr' _and_ has a body,
// the below diagnostic doesn't add anything useful.
if (DiagDecl->isDefined() && DiagDecl->isConstexpr() &&
DiagDecl->hasBody())
return false;
S.FFDiag(Loc, diag::note_constexpr_invalid_function, 1)
<< DiagDecl->isConstexpr() << (bool)CD << DiagDecl;
if (DiagDecl->getDefinition())
S.Note(DiagDecl->getDefinition()->getLocation(),
diag::note_declared_at);
else
S.Note(DiagDecl->getLocation(), diag::note_declared_at);
}
} else {
S.FFDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
}
return false;
}
bool CheckCallDepth(InterpState &S, CodePtr OpPC) {
if ((S.Current->getDepth() + 1) > S.getLangOpts().ConstexprCallDepth) {
S.FFDiag(S.Current->getSource(OpPC),
diag::note_constexpr_depth_limit_exceeded)
<< S.getLangOpts().ConstexprCallDepth;
return false;
}
return true;
}
bool CheckThis(InterpState &S, CodePtr OpPC, const Pointer &This) {
if (!This.isZero())
return true;
const SourceInfo &Loc = S.Current->getSource(OpPC);
bool IsImplicit = false;
if (const auto *E = dyn_cast_if_present<CXXThisExpr>(Loc.asExpr()))
IsImplicit = E->isImplicit();
if (S.getLangOpts().CPlusPlus11)
S.FFDiag(Loc, diag::note_constexpr_this) << IsImplicit;
else
S.FFDiag(Loc);
return false;
}
bool CheckPure(InterpState &S, CodePtr OpPC, const CXXMethodDecl *MD) {
if (!MD->isPureVirtual())
return true;
const SourceInfo &E = S.Current->getSource(OpPC);
S.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << MD;
S.Note(MD->getLocation(), diag::note_declared_at);
return false;
}
bool CheckFloatResult(InterpState &S, CodePtr OpPC, const Floating &Result,
APFloat::opStatus Status, FPOptions FPO) {
// [expr.pre]p4:
// If during the evaluation of an expression, the result is not
// mathematically defined [...], the behavior is undefined.
// FIXME: C++ rules require us to not conform to IEEE 754 here.
if (Result.isNan()) {
const SourceInfo &E = S.Current->getSource(OpPC);
S.CCEDiag(E, diag::note_constexpr_float_arithmetic)
<< /*NaN=*/true << S.Current->getRange(OpPC);
return S.noteUndefinedBehavior();
}
// In a constant context, assume that any dynamic rounding mode or FP
// exception state matches the default floating-point environment.
if (S.inConstantContext())
return true;
if ((Status & APFloat::opInexact) &&
FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) {
// Inexact result means that it depends on rounding mode. If the requested
// mode is dynamic, the evaluation cannot be made in compile time.
const SourceInfo &E = S.Current->getSource(OpPC);
S.FFDiag(E, diag::note_constexpr_dynamic_rounding);
return false;
}
if ((Status != APFloat::opOK) &&
(FPO.getRoundingMode() == llvm::RoundingMode::Dynamic ||
FPO.getExceptionMode() != LangOptions::FPE_Ignore ||
FPO.getAllowFEnvAccess())) {
const SourceInfo &E = S.Current->getSource(OpPC);
S.FFDiag(E, diag::note_constexpr_float_arithmetic_strict);
return false;
}
if ((Status & APFloat::opStatus::opInvalidOp) &&
FPO.getExceptionMode() != LangOptions::FPE_Ignore) {
const SourceInfo &E = S.Current->getSource(OpPC);
// There is no usefully definable result.
S.FFDiag(E);
return false;
}
return true;
}
bool CheckDynamicMemoryAllocation(InterpState &S, CodePtr OpPC) {
if (S.getLangOpts().CPlusPlus20)
return true;
const SourceInfo &E = S.Current->getSource(OpPC);
S.CCEDiag(E, diag::note_constexpr_new);
return true;
}
bool CheckNewDeleteForms(InterpState &S, CodePtr OpPC,
DynamicAllocator::Form AllocForm,
DynamicAllocator::Form DeleteForm, const Descriptor *D,
const Expr *NewExpr) {
if (AllocForm == DeleteForm)
return true;
QualType TypeToDiagnose;
// We need to shuffle things around a bit here to get a better diagnostic,
// because the expression we allocated the block for was of type int*,
// but we want to get the array size right.
if (D->isArray()) {
QualType ElemQT = D->getType()->getPointeeType();
TypeToDiagnose = S.getASTContext().getConstantArrayType(
ElemQT, APInt(64, static_cast<uint64_t>(D->getNumElems()), false),
nullptr, ArraySizeModifier::Normal, 0);
} else
TypeToDiagnose = D->getType()->getPointeeType();
const SourceInfo &E = S.Current->getSource(OpPC);
S.FFDiag(E, diag::note_constexpr_new_delete_mismatch)
<< static_cast<int>(DeleteForm) << static_cast<int>(AllocForm)
<< TypeToDiagnose;
S.Note(NewExpr->getExprLoc(), diag::note_constexpr_dynamic_alloc_here)
<< NewExpr->getSourceRange();
return false;
}
bool CheckDeleteSource(InterpState &S, CodePtr OpPC, const Expr *Source,
const Pointer &Ptr) {
// Regular new type(...) call.
if (isa_and_nonnull<CXXNewExpr>(Source))
return true;
// operator new.
if (const auto *CE = dyn_cast_if_present<CallExpr>(Source);
CE && CE->getBuiltinCallee() == Builtin::BI__builtin_operator_new)
return true;
// std::allocator.allocate() call
if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(Source);
MCE && MCE->getMethodDecl()->getIdentifier()->isStr("allocate"))
return true;
// Whatever this is, we didn't heap allocate it.
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_delete_not_heap_alloc)
<< Ptr.toDiagnosticString(S.getASTContext());
if (Ptr.isTemporary())
S.Note(Ptr.getDeclLoc(), diag::note_constexpr_temporary_here);
else
S.Note(Ptr.getDeclLoc(), diag::note_declared_at);
return false;
}
/// We aleady know the given DeclRefExpr is invalid for some reason,
/// now figure out why and print appropriate diagnostics.
bool CheckDeclRef(InterpState &S, CodePtr OpPC, const DeclRefExpr *DR) {
const ValueDecl *D = DR->getDecl();
return diagnoseUnknownDecl(S, OpPC, D);
}
bool CheckDummy(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
AccessKinds AK) {
if (!Ptr.isDummy())
return true;
const Descriptor *Desc = Ptr.getDeclDesc();
const ValueDecl *D = Desc->asValueDecl();
if (!D)
return false;
if (AK == AK_Read || AK == AK_Increment || AK == AK_Decrement)
return diagnoseUnknownDecl(S, OpPC, D);
assert(AK == AK_Assign);
if (S.getLangOpts().CPlusPlus14) {
const SourceInfo &E = S.Current->getSource(OpPC);
S.FFDiag(E, diag::note_constexpr_modify_global);
}
return false;
}
bool CheckNonNullArgs(InterpState &S, CodePtr OpPC, const Function *F,
const CallExpr *CE, unsigned ArgSize) {
auto Args = llvm::ArrayRef(CE->getArgs(), CE->getNumArgs());
auto NonNullArgs = collectNonNullArgs(F->getDecl(), Args);
unsigned Offset = 0;
unsigned Index = 0;
for (const Expr *Arg : Args) {
if (NonNullArgs[Index] && Arg->getType()->isPointerType()) {
const Pointer &ArgPtr = S.Stk.peek<Pointer>(ArgSize - Offset);
if (ArgPtr.isZero()) {
const SourceLocation &Loc = S.Current->getLocation(OpPC);
S.CCEDiag(Loc, diag::note_non_null_attribute_failed);
return false;
}
}
Offset += align(primSize(S.Ctx.classify(Arg).value_or(PT_Ptr)));
++Index;
}
return true;
}
// FIXME: This is similar to code we already have in Compiler.cpp.
// I think it makes sense to instead add the field and base destruction stuff
// to the destructor Function itself. Then destroying a record would really
// _just_ be calling its destructor. That would also help with the diagnostic
// difference when the destructor or a field/base fails.
static bool runRecordDestructor(InterpState &S, CodePtr OpPC,
const Pointer &BasePtr,
const Descriptor *Desc) {
assert(Desc->isRecord());
const Record *R = Desc->ElemRecord;
assert(R);
if (Pointer::pointToSameBlock(BasePtr, S.Current->getThis())) {
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_double_destroy);
return false;
}
// Destructor of this record.
if (const CXXDestructorDecl *Dtor = R->getDestructor();
Dtor && !Dtor->isTrivial()) {
const Function *DtorFunc = S.getContext().getOrCreateFunction(Dtor);
if (!DtorFunc)
return false;
S.Stk.push<Pointer>(BasePtr);
if (!Call(S, OpPC, DtorFunc, 0))
return false;
}
return true;
}
static bool RunDestructors(InterpState &S, CodePtr OpPC, const Block *B) {
assert(B);
const Descriptor *Desc = B->getDescriptor();
if (Desc->isPrimitive() || Desc->isPrimitiveArray())
return true;
assert(Desc->isRecord() || Desc->isCompositeArray());
if (Desc->isCompositeArray()) {
const Descriptor *ElemDesc = Desc->ElemDesc;
assert(ElemDesc->isRecord());
Pointer RP(const_cast<Block *>(B));
for (unsigned I = 0; I != Desc->getNumElems(); ++I) {
if (!runRecordDestructor(S, OpPC, RP.atIndex(I).narrow(), ElemDesc))
return false;
}
return true;
}
assert(Desc->isRecord());
return runRecordDestructor(S, OpPC, Pointer(const_cast<Block *>(B)), Desc);
}
static bool hasVirtualDestructor(QualType T) {
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
if (const CXXDestructorDecl *DD = RD->getDestructor())
return DD->isVirtual();
return false;
}
bool Free(InterpState &S, CodePtr OpPC, bool DeleteIsArrayForm,
bool IsGlobalDelete) {
if (!CheckDynamicMemoryAllocation(S, OpPC))
return false;
const Expr *Source = nullptr;
const Block *BlockToDelete = nullptr;
{
// Extra scope for this so the block doesn't have this pointer
// pointing to it when we destroy it.
Pointer Ptr = S.Stk.pop<Pointer>();
// Deleteing nullptr is always fine.
if (Ptr.isZero())
return true;
// Remove base casts.
QualType InitialType = Ptr.getType();
while (Ptr.isBaseClass())
Ptr = Ptr.getBase();
// For the non-array case, the types must match if the static type
// does not have a virtual destructor.
if (!DeleteIsArrayForm && Ptr.getType() != InitialType &&
!hasVirtualDestructor(InitialType)) {
S.FFDiag(S.Current->getSource(OpPC),
diag::note_constexpr_delete_base_nonvirt_dtor)
<< InitialType << Ptr.getType();
return false;
}
if (!Ptr.isRoot() || Ptr.isOnePastEnd() || Ptr.isArrayElement()) {
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_delete_subobject)
<< Ptr.toDiagnosticString(S.getASTContext()) << Ptr.isOnePastEnd();
return false;
}
Source = Ptr.getDeclDesc()->asExpr();
BlockToDelete = Ptr.block();
if (!CheckDeleteSource(S, OpPC, Source, Ptr))
return false;
// For a class type with a virtual destructor, the selected operator delete
// is the one looked up when building the destructor.
QualType AllocType = Ptr.getType();
if (!DeleteIsArrayForm && !IsGlobalDelete) {
auto getVirtualOperatorDelete = [](QualType T) -> const FunctionDecl * {
if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
if (const CXXDestructorDecl *DD = RD->getDestructor())
return DD->isVirtual() ? DD->getOperatorDelete() : nullptr;
return nullptr;
};
if (const FunctionDecl *VirtualDelete =
getVirtualOperatorDelete(AllocType);
VirtualDelete &&
!VirtualDelete->isReplaceableGlobalAllocationFunction()) {
S.FFDiag(S.Current->getSource(OpPC),
diag::note_constexpr_new_non_replaceable)
<< isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete;
return false;
}
}
}
assert(Source);
assert(BlockToDelete);
// Invoke destructors before deallocating the memory.
if (!RunDestructors(S, OpPC, BlockToDelete))
return false;
DynamicAllocator &Allocator = S.getAllocator();
const Descriptor *BlockDesc = BlockToDelete->getDescriptor();
std::optional<DynamicAllocator::Form> AllocForm =
Allocator.getAllocationForm(Source);
if (!Allocator.deallocate(Source, BlockToDelete, S)) {
// Nothing has been deallocated, this must be a double-delete.
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc, diag::note_constexpr_double_delete);
return false;
}
assert(AllocForm);
DynamicAllocator::Form DeleteForm = DeleteIsArrayForm
? DynamicAllocator::Form::Array
: DynamicAllocator::Form::NonArray;
return CheckNewDeleteForms(S, OpPC, *AllocForm, DeleteForm, BlockDesc,
Source);
}
void diagnoseEnumValue(InterpState &S, CodePtr OpPC, const EnumDecl *ED,
const APSInt &Value) {
llvm::APInt Min;
llvm::APInt Max;
if (S.EvaluatingDecl && !S.EvaluatingDecl->isConstexpr())
return;
ED->getValueRange(Max, Min);
--Max;
if (ED->getNumNegativeBits() &&
(Max.slt(Value.getSExtValue()) || Min.sgt(Value.getSExtValue()))) {
const SourceLocation &Loc = S.Current->getLocation(OpPC);
S.CCEDiag(Loc, diag::note_constexpr_unscoped_enum_out_of_range)
<< llvm::toString(Value, 10) << Min.getSExtValue() << Max.getSExtValue()
<< ED;
} else if (!ED->getNumNegativeBits() && Max.ult(Value.getZExtValue())) {
const SourceLocation &Loc = S.Current->getLocation(OpPC);
S.CCEDiag(Loc, diag::note_constexpr_unscoped_enum_out_of_range)
<< llvm::toString(Value, 10) << Min.getZExtValue() << Max.getZExtValue()
<< ED;
}
}
bool CheckLiteralType(InterpState &S, CodePtr OpPC, const Type *T) {
assert(T);
assert(!S.getLangOpts().CPlusPlus23);
// C++1y: A constant initializer for an object o [...] may also invoke
// constexpr constructors for o and its subobjects even if those objects
// are of non-literal class types.
//
// C++11 missed this detail for aggregates, so classes like this:
// struct foo_t { union { int i; volatile int j; } u; };
// are not (obviously) initializable like so:
// __attribute__((__require_constant_initialization__))
// static const foo_t x = {{0}};
// because "i" is a subobject with non-literal initialization (due to the
// volatile member of the union). See:
// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677
// Therefore, we use the C++1y behavior.
if (S.Current->getFunction() && S.Current->getFunction()->isConstructor() &&
S.Current->getThis().getDeclDesc()->asDecl() == S.EvaluatingDecl) {
return true;
}
const Expr *E = S.Current->getExpr(OpPC);
if (S.getLangOpts().CPlusPlus11)
S.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType();
else
S.FFDiag(E, diag::note_invalid_subexpr_in_const_expr);
return false;
}
static bool getField(InterpState &S, CodePtr OpPC, const Pointer &Ptr,
uint32_t Off) {
if (S.getLangOpts().CPlusPlus && S.inConstantContext() &&
!CheckNull(S, OpPC, Ptr, CSK_Field))
return false;
if (!CheckExtern(S, OpPC, Ptr))
return false;
if (!CheckRange(S, OpPC, Ptr, CSK_Field))
return false;
if (!CheckArray(S, OpPC, Ptr))
return false;
if (!CheckSubobject(S, OpPC, Ptr, CSK_Field))
return false;
if (Ptr.isIntegralPointer()) {
S.Stk.push<Pointer>(Ptr.asIntPointer().atOffset(S.getASTContext(), Off));
return true;
}
if (!Ptr.isBlockPointer()) {
// FIXME: The only time we (seem to) get here is when trying to access a
// field of a typeid pointer. In that case, we're supposed to diagnose e.g.
// `typeid(int).name`, but we currently diagnose `&typeid(int)`.
S.FFDiag(S.Current->getSource(OpPC),
diag::note_constexpr_access_unreadable_object)
<< AK_Read << Ptr.toDiagnosticString(S.getASTContext());
return false;
}
if (Off > Ptr.block()->getSize())
return false;
S.Stk.push<Pointer>(Ptr.atField(Off));
return true;
}
bool GetPtrField(InterpState &S, CodePtr OpPC, uint32_t Off) {
const auto &Ptr = S.Stk.peek<Pointer>();
return getField(S, OpPC, Ptr, Off);
}
bool GetPtrFieldPop(InterpState &S, CodePtr OpPC, uint32_t Off) {
const auto &Ptr = S.Stk.pop<Pointer>();
return getField(S, OpPC, Ptr, Off);
}
static bool checkConstructor(InterpState &S, CodePtr OpPC, const Function *Func,
const Pointer &ThisPtr) {
assert(Func->isConstructor());
const Descriptor *D = ThisPtr.getFieldDesc();
// FIXME: I think this case is not 100% correct. E.g. a pointer into a
// subobject of a composite array.
if (!D->ElemRecord)
return true;
if (D->ElemRecord->getNumVirtualBases() == 0)
return true;
S.FFDiag(S.Current->getLocation(OpPC), diag::note_constexpr_virtual_base)
<< Func->getParentDecl();
return false;
}
bool CallVar(InterpState &S, CodePtr OpPC, const Function *Func,
uint32_t VarArgSize) {
if (Func->hasThisPointer()) {
size_t ArgSize = Func->getArgSize() + VarArgSize;
size_t ThisOffset = ArgSize - (Func->hasRVO() ? primSize(PT_Ptr) : 0);
const Pointer &ThisPtr = S.Stk.peek<Pointer>(ThisOffset);
// If the current function is a lambda static invoker and
// the function we're about to call is a lambda call operator,
// skip the CheckInvoke, since the ThisPtr is a null pointer
// anyway.
if (!(S.Current->getFunction() &&
S.Current->getFunction()->isLambdaStaticInvoker() &&
Func->isLambdaCallOperator())) {
if (!CheckInvoke(S, OpPC, ThisPtr))
return false;
}
if (S.checkingPotentialConstantExpression())
return false;
}
if (!CheckCallable(S, OpPC, Func))
return false;
if (!CheckCallDepth(S, OpPC))
return false;
auto NewFrame = std::make_unique<InterpFrame>(S, Func, OpPC, VarArgSize);
InterpFrame *FrameBefore = S.Current;
S.Current = NewFrame.get();
// Note that we cannot assert(CallResult.hasValue()) here since
// Ret() above only sets the APValue if the curent frame doesn't
// have a caller set.
if (Interpret(S)) {
NewFrame.release(); // Frame was delete'd already.
assert(S.Current == FrameBefore);
return true;
}
// Interpreting the function failed somehow. Reset to
// previous state.
S.Current = FrameBefore;
return false;
}
bool Call(InterpState &S, CodePtr OpPC, const Function *Func,
uint32_t VarArgSize) {
assert(Func);
auto cleanup = [&]() -> bool {
cleanupAfterFunctionCall(S, OpPC, Func);
return false;
};
if (Func->hasThisPointer()) {
size_t ArgSize = Func->getArgSize() + VarArgSize;
size_t ThisOffset = ArgSize - (Func->hasRVO() ? primSize(PT_Ptr) : 0);
const Pointer &ThisPtr = S.Stk.peek<Pointer>(ThisOffset);
// If the current function is a lambda static invoker and
// the function we're about to call is a lambda call operator,
// skip the CheckInvoke, since the ThisPtr is a null pointer
// anyway.
if (S.Current->getFunction() &&
S.Current->getFunction()->isLambdaStaticInvoker() &&
Func->isLambdaCallOperator()) {
assert(ThisPtr.isZero());
} else {
if (!CheckInvoke(S, OpPC, ThisPtr))
return cleanup();
}
if (Func->isConstructor() && !checkConstructor(S, OpPC, Func, ThisPtr))
return false;
}
if (!CheckCallable(S, OpPC, Func))
return cleanup();
// FIXME: The isConstructor() check here is not always right. The current
// constant evaluator is somewhat inconsistent in when it allows a function
// call when checking for a constant expression.
if (Func->hasThisPointer() && S.checkingPotentialConstantExpression() &&
!Func->isConstructor())
return cleanup();
if (!CheckCallDepth(S, OpPC))
return cleanup();
auto NewFrame = std::make_unique<InterpFrame>(S, Func, OpPC, VarArgSize);
InterpFrame *FrameBefore = S.Current;
S.Current = NewFrame.get();
InterpStateCCOverride CCOverride(S, Func->getDecl()->isImmediateFunction());
// Note that we cannot assert(CallResult.hasValue()) here since
// Ret() above only sets the APValue if the curent frame doesn't
// have a caller set.
if (Interpret(S)) {
NewFrame.release(); // Frame was delete'd already.
assert(S.Current == FrameBefore);
return true;
}
// Interpreting the function failed somehow. Reset to
// previous state.
S.Current = FrameBefore;
return false;
}
bool CallVirt(InterpState &S, CodePtr OpPC, const Function *Func,
uint32_t VarArgSize) {
assert(Func->hasThisPointer());
assert(Func->isVirtual());
size_t ArgSize = Func->getArgSize() + VarArgSize;
size_t ThisOffset = ArgSize - (Func->hasRVO() ? primSize(PT_Ptr) : 0);
Pointer &ThisPtr = S.Stk.peek<Pointer>(ThisOffset);
const CXXRecordDecl *DynamicDecl = nullptr;
{
Pointer TypePtr = ThisPtr;
while (TypePtr.isBaseClass())
TypePtr = TypePtr.getBase();
QualType DynamicType = TypePtr.getType();
if (DynamicType->isPointerType() || DynamicType->isReferenceType())
DynamicDecl = DynamicType->getPointeeCXXRecordDecl();
else
DynamicDecl = DynamicType->getAsCXXRecordDecl();
}
assert(DynamicDecl);
const auto *StaticDecl = cast<CXXRecordDecl>(Func->getParentDecl());
const auto *InitialFunction = cast<CXXMethodDecl>(Func->getDecl());
const CXXMethodDecl *Overrider = S.getContext().getOverridingFunction(
DynamicDecl, StaticDecl, InitialFunction);
if (Overrider != InitialFunction) {
// DR1872: An instantiated virtual constexpr function can't be called in a
// constant expression (prior to C++20). We can still constant-fold such a
// call.
if (!S.getLangOpts().CPlusPlus20 && Overrider->isVirtual()) {
const Expr *E = S.Current->getExpr(OpPC);
S.CCEDiag(E, diag::note_constexpr_virtual_call) << E->getSourceRange();
}
Func = S.getContext().getOrCreateFunction(Overrider);
const CXXRecordDecl *ThisFieldDecl =
ThisPtr.getFieldDesc()->getType()->getAsCXXRecordDecl();
if (Func->getParentDecl()->isDerivedFrom(ThisFieldDecl)) {
// If the function we call is further DOWN the hierarchy than the
// FieldDesc of our pointer, just go up the hierarchy of this field
// the furthest we can go.
while (ThisPtr.isBaseClass())
ThisPtr = ThisPtr.getBase();
}
}
if (!Call(S, OpPC, Func, VarArgSize))
return false;
// Covariant return types. The return type of Overrider is a pointer
// or reference to a class type.
if (Overrider != InitialFunction &&
Overrider->getReturnType()->isPointerOrReferenceType() &&
InitialFunction->getReturnType()->isPointerOrReferenceType()) {
QualType OverriderPointeeType =
Overrider->getReturnType()->getPointeeType();
QualType InitialPointeeType =
InitialFunction->getReturnType()->getPointeeType();
// We've called Overrider above, but calling code expects us to return what
// InitialFunction returned. According to the rules for covariant return
// types, what InitialFunction returns needs to be a base class of what
// Overrider returns. So, we need to do an upcast here.
unsigned Offset = S.getContext().collectBaseOffset(
InitialPointeeType->getAsRecordDecl(),
OverriderPointeeType->getAsRecordDecl());
return GetPtrBasePop(S, OpPC, Offset);
}
return true;
}
bool CallBI(InterpState &S, CodePtr OpPC, const Function *Func,
const CallExpr *CE, uint32_t BuiltinID) {
// A little arbitrary, but the current interpreter allows evaluation
// of builtin functions in this mode, with some exceptions.
if (BuiltinID == Builtin::BI__builtin_operator_new &&
S.checkingPotentialConstantExpression())
return false;
auto NewFrame = std::make_unique<InterpFrame>(S, Func, OpPC);
InterpFrame *FrameBefore = S.Current;
S.Current = NewFrame.get();
if (InterpretBuiltin(S, OpPC, Func, CE, BuiltinID)) {
// Release ownership of NewFrame to prevent it from being deleted.
NewFrame.release(); // Frame was deleted already.
// Ensure that S.Current is correctly reset to the previous frame.
assert(S.Current == FrameBefore);
return true;
}
// Interpreting the function failed somehow. Reset to
// previous state.
S.Current = FrameBefore;
return false;
}
bool CallPtr(InterpState &S, CodePtr OpPC, uint32_t ArgSize,
const CallExpr *CE) {
const FunctionPointer &FuncPtr = S.Stk.pop<FunctionPointer>();
const Function *F = FuncPtr.getFunction();
if (!F) {
const auto *E = cast<CallExpr>(S.Current->getExpr(OpPC));
S.FFDiag(E, diag::note_constexpr_null_callee)
<< const_cast<Expr *>(E->getCallee()) << E->getSourceRange();
return false;
}
if (!FuncPtr.isValid() || !F->getDecl())
return Invalid(S, OpPC);
assert(F);
// This happens when the call expression has been cast to
// something else, but we don't support that.
if (S.Ctx.classify(F->getDecl()->getReturnType()) !=
S.Ctx.classify(CE->getType()))
return false;
// Check argument nullability state.
if (F->hasNonNullAttr()) {
if (!CheckNonNullArgs(S, OpPC, F, CE, ArgSize))
return false;
}
assert(ArgSize >= F->getWrittenArgSize());
uint32_t VarArgSize = ArgSize - F->getWrittenArgSize();
// We need to do this explicitly here since we don't have the necessary
// information to do it automatically.
if (F->isThisPointerExplicit())
VarArgSize -= align(primSize(PT_Ptr));
if (F->isVirtual())
return CallVirt(S, OpPC, F, VarArgSize);
return Call(S, OpPC, F, VarArgSize);
}
bool CheckNewTypeMismatch(InterpState &S, CodePtr OpPC, const Expr *E,
std::optional<uint64_t> ArraySize) {
const Pointer &Ptr = S.Stk.peek<Pointer>();
if (!CheckStore(S, OpPC, Ptr))
return false;
if (!InvalidNewDeleteExpr(S, OpPC, E))
return false;
const auto *NewExpr = cast<CXXNewExpr>(E);
QualType StorageType = Ptr.getType();
if ((isa_and_nonnull<CXXNewExpr>(Ptr.getFieldDesc()->asExpr()) ||
isa_and_nonnull<CXXMemberCallExpr>(Ptr.getFieldDesc()->asExpr())) &&
StorageType->isPointerType()) {
// FIXME: Are there other cases where this is a problem?
StorageType = StorageType->getPointeeType();
}
const ASTContext &ASTCtx = S.getASTContext();
QualType AllocType;
if (ArraySize) {
AllocType = ASTCtx.getConstantArrayType(
NewExpr->getAllocatedType(),
APInt(64, static_cast<uint64_t>(*ArraySize), false), nullptr,
ArraySizeModifier::Normal, 0);
} else {
AllocType = NewExpr->getAllocatedType();
}
unsigned StorageSize = 1;
unsigned AllocSize = 1;
if (const auto *CAT = dyn_cast<ConstantArrayType>(AllocType))
AllocSize = CAT->getZExtSize();
if (const auto *CAT = dyn_cast<ConstantArrayType>(StorageType))
StorageSize = CAT->getZExtSize();
if (AllocSize > StorageSize ||
!ASTCtx.hasSimilarType(ASTCtx.getBaseElementType(AllocType),
ASTCtx.getBaseElementType(StorageType))) {
S.FFDiag(S.Current->getLocation(OpPC),
diag::note_constexpr_placement_new_wrong_type)
<< StorageType << AllocType;
return false;
}
// Can't activate fields in a union, unless the direct base is the union.
if (Ptr.inUnion() && !Ptr.isActive() && !Ptr.getBase().getRecord()->isUnion())
return CheckActive(S, OpPC, Ptr, AK_Construct);
return true;
}
bool InvalidNewDeleteExpr(InterpState &S, CodePtr OpPC, const Expr *E) {
assert(E);
if (S.getLangOpts().CPlusPlus26)
return true;
const auto &Loc = S.Current->getSource(OpPC);
if (const auto *NewExpr = dyn_cast<CXXNewExpr>(E)) {
const FunctionDecl *OperatorNew = NewExpr->getOperatorNew();
if (!S.getLangOpts().CPlusPlus26 && NewExpr->getNumPlacementArgs() > 0) {
// This is allowed pre-C++26, but only an std function.
if (S.Current->isStdFunction())
return true;
S.FFDiag(Loc, diag::note_constexpr_new_placement)
<< /*C++26 feature*/ 1 << E->getSourceRange();
} else if (NewExpr->getNumPlacementArgs() == 1 &&
!OperatorNew->isReservedGlobalPlacementOperator()) {
S.FFDiag(Loc, diag::note_constexpr_new_placement)
<< /*Unsupported*/ 0 << E->getSourceRange();
} else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) {
S.FFDiag(Loc, diag::note_constexpr_new_non_replaceable)
<< isa<CXXMethodDecl>(OperatorNew) << OperatorNew;
}
} else {
const auto *DeleteExpr = cast<CXXDeleteExpr>(E);
const FunctionDecl *OperatorDelete = DeleteExpr->getOperatorDelete();
if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) {
S.FFDiag(Loc, diag::note_constexpr_new_non_replaceable)
<< isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete;
}
}
return false;
}
bool handleFixedPointOverflow(InterpState &S, CodePtr OpPC,
const FixedPoint &FP) {
const Expr *E = S.Current->getExpr(OpPC);
if (S.checkingForUndefinedBehavior()) {
S.getASTContext().getDiagnostics().Report(
E->getExprLoc(), diag::warn_fixedpoint_constant_overflow)
<< FP.toDiagnosticString(S.getASTContext()) << E->getType();
}
S.CCEDiag(E, diag::note_constexpr_overflow)
<< FP.toDiagnosticString(S.getASTContext()) << E->getType();
return S.noteUndefinedBehavior();
}
bool InvalidShuffleVectorIndex(InterpState &S, CodePtr OpPC, uint32_t Index) {
const SourceInfo &Loc = S.Current->getSource(OpPC);
S.FFDiag(Loc,
diag::err_shufflevector_minus_one_is_undefined_behavior_constexpr)
<< Index;
return false;
}
bool CheckPointerToIntegralCast(InterpState &S, CodePtr OpPC,
const Pointer &Ptr, unsigned BitWidth) {
if (Ptr.isDummy())
return false;
const SourceInfo &E = S.Current->getSource(OpPC);
S.CCEDiag(E, diag::note_constexpr_invalid_cast)
<< 2 << S.getLangOpts().CPlusPlus << S.Current->getRange(OpPC);
if (Ptr.isBlockPointer() && !Ptr.isZero()) {
// Only allow based lvalue casts if they are lossless.
if (S.getASTContext().getTargetInfo().getPointerWidth(LangAS::Default) !=
BitWidth)
return Invalid(S, OpPC);
}
return true;
}
bool CastPointerIntegralAP(InterpState &S, CodePtr OpPC, uint32_t BitWidth) {
const Pointer &Ptr = S.Stk.pop<Pointer>();
if (!CheckPointerToIntegralCast(S, OpPC, Ptr, BitWidth))
return false;
S.Stk.push<IntegralAP<false>>(
IntegralAP<false>::from(Ptr.getIntegerRepresentation(), BitWidth));
return true;
}
bool CastPointerIntegralAPS(InterpState &S, CodePtr OpPC, uint32_t BitWidth) {
const Pointer &Ptr = S.Stk.pop<Pointer>();
if (!CheckPointerToIntegralCast(S, OpPC, Ptr, BitWidth))
return false;
S.Stk.push<IntegralAP<true>>(
IntegralAP<true>::from(Ptr.getIntegerRepresentation(), BitWidth));
return true;
}
bool CheckBitCast(InterpState &S, CodePtr OpPC, bool HasIndeterminateBits,
bool TargetIsUCharOrByte) {
// This is always fine.
if (!HasIndeterminateBits)
return true;
// Indeterminate bits can only be bitcast to unsigned char or std::byte.
if (TargetIsUCharOrByte)
return true;
const Expr *E = S.Current->getExpr(OpPC);
QualType ExprType = E->getType();
S.FFDiag(E, diag::note_constexpr_bit_cast_indet_dest)
<< ExprType << S.getLangOpts().CharIsSigned << E->getSourceRange();
return false;
}
bool GetTypeid(InterpState &S, CodePtr OpPC, const Type *TypePtr,
const Type *TypeInfoType) {
S.Stk.push<Pointer>(TypePtr, TypeInfoType);
return true;
}
bool GetTypeidPtr(InterpState &S, CodePtr OpPC, const Type *TypeInfoType) {
const auto &P = S.Stk.pop<Pointer>();
if (!P.isBlockPointer())
return false;
if (P.isDummy()) {
QualType StarThisType =
S.getASTContext().getLValueReferenceType(P.getType());
S.FFDiag(S.Current->getSource(OpPC),
diag::note_constexpr_polymorphic_unknown_dynamic_type)
<< AK_TypeId
<< P.toAPValue(S.getASTContext())
.getAsString(S.getASTContext(), StarThisType);
return false;
}
S.Stk.push<Pointer>(P.getType().getTypePtr(), TypeInfoType);
return true;
}
bool DiagTypeid(InterpState &S, CodePtr OpPC) {
const auto *E = cast<CXXTypeidExpr>(S.Current->getExpr(OpPC));
S.CCEDiag(E, diag::note_constexpr_typeid_polymorphic)
<< E->getExprOperand()->getType()
<< E->getExprOperand()->getSourceRange();
return false;
}
// https://github.com/llvm/llvm-project/issues/102513
#if defined(_MSC_VER) && !defined(__clang__) && !defined(NDEBUG)
#pragma optimize("", off)
#endif
bool Interpret(InterpState &S) {
// The current stack frame when we started Interpret().
// This is being used by the ops to determine wheter
// to return from this function and thus terminate
// interpretation.
const InterpFrame *StartFrame = S.Current;
assert(!S.Current->isRoot());
CodePtr PC = S.Current->getPC();
// Empty program.
if (!PC)
return true;
for (;;) {
auto Op = PC.read<Opcode>();
CodePtr OpPC = PC;
switch (Op) {
#define GET_INTERP
#include "Opcodes.inc"
#undef GET_INTERP
}
}
}
// https://github.com/llvm/llvm-project/issues/102513
#if defined(_MSC_VER) && !defined(__clang__) && !defined(NDEBUG)
#pragma optimize("", on)
#endif
} // namespace interp
} // namespace clang
|