1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
|
//=== SemaFunctionEffects.cpp - Sema handling of function effects ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements Sema handling of function effects.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DynamicRecursiveASTVisitor.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/Type.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Sema/SemaInternal.h"
#define DEBUG_TYPE "effectanalysis"
using namespace clang;
namespace {
enum class ViolationID : uint8_t {
None = 0, // Sentinel for an empty Violation.
// These first 5 map to a %select{} in one of several FunctionEffects
// diagnostics, e.g. warn_func_effect_violation.
BaseDiagnosticIndex,
AllocatesMemory = BaseDiagnosticIndex,
ThrowsOrCatchesExceptions,
HasStaticLocalVariable,
AccessesThreadLocalVariable,
AccessesObjCMethodOrProperty,
// These only apply to callees, where the analysis stops at the Decl.
DeclDisallowsInference,
// These both apply to indirect calls. The difference is that sometimes
// we have an actual Decl (generally a variable) which is the function
// pointer being called, and sometimes, typically due to a cast, we only
// have an expression.
CallsDeclWithoutEffect,
CallsExprWithoutEffect,
};
// Information about the AST context in which a violation was found, so
// that diagnostics can point to the correct source.
class ViolationSite {
public:
enum class Kind : uint8_t {
Default, // Function body.
MemberInitializer,
DefaultArgExpr
};
private:
llvm::PointerIntPair<CXXDefaultArgExpr *, 2, Kind> Impl;
public:
ViolationSite() = default;
explicit ViolationSite(CXXDefaultArgExpr *E)
: Impl(E, Kind::DefaultArgExpr) {}
Kind kind() const { return static_cast<Kind>(Impl.getInt()); }
CXXDefaultArgExpr *defaultArgExpr() const { return Impl.getPointer(); }
void setKind(Kind K) { Impl.setPointerAndInt(nullptr, K); }
};
// Represents a violation of the rules, potentially for the entire duration of
// the analysis phase, in order to refer to it when explaining why a caller has
// been made unsafe by a callee. Can be transformed into either a Diagnostic
// (warning or a note), depending on whether the violation pertains to a
// function failing to be verifed as holding an effect vs. a function failing to
// be inferred as holding that effect.
struct Violation {
FunctionEffect Effect;
std::optional<FunctionEffect>
CalleeEffectPreventingInference; // Only for certain IDs; can be nullopt.
ViolationID ID = ViolationID::None;
ViolationSite Site;
SourceLocation Loc;
const Decl *Callee =
nullptr; // Only valid for ViolationIDs Calls{Decl,Expr}WithoutEffect.
Violation(FunctionEffect Effect, ViolationID ID, ViolationSite VS,
SourceLocation Loc, const Decl *Callee = nullptr,
std::optional<FunctionEffect> CalleeEffect = std::nullopt)
: Effect(Effect), CalleeEffectPreventingInference(CalleeEffect), ID(ID),
Site(VS), Loc(Loc), Callee(Callee) {}
unsigned diagnosticSelectIndex() const {
return unsigned(ID) - unsigned(ViolationID::BaseDiagnosticIndex);
}
};
enum class SpecialFuncType : uint8_t { None, OperatorNew, OperatorDelete };
enum class CallableType : uint8_t {
// Unknown: probably function pointer.
Unknown,
Function,
Virtual,
Block
};
// Return whether a function's effects CAN be verified.
// The question of whether it SHOULD be verified is independent.
static bool functionIsVerifiable(const FunctionDecl *FD) {
if (FD->isTrivial()) {
// Otherwise `struct x { int a; };` would have an unverifiable default
// constructor.
return true;
}
return FD->hasBody();
}
static bool isNoexcept(const FunctionDecl *FD) {
const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
return FPT && (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>());
}
// This list is probably incomplete.
// FIXME: Investigate:
// __builtin_eh_return?
// __builtin_allow_runtime_check?
// __builtin_unwind_init and other similar things that sound exception-related.
// va_copy?
// coroutines?
static FunctionEffectKindSet getBuiltinFunctionEffects(unsigned BuiltinID) {
FunctionEffectKindSet Result;
switch (BuiltinID) {
case 0: // Not builtin.
default: // By default, builtins have no known effects.
break;
// These allocate/deallocate heap memory.
case Builtin::ID::BI__builtin_calloc:
case Builtin::ID::BI__builtin_malloc:
case Builtin::ID::BI__builtin_realloc:
case Builtin::ID::BI__builtin_free:
case Builtin::ID::BI__builtin_operator_delete:
case Builtin::ID::BI__builtin_operator_new:
case Builtin::ID::BIaligned_alloc:
case Builtin::ID::BIcalloc:
case Builtin::ID::BImalloc:
case Builtin::ID::BImemalign:
case Builtin::ID::BIrealloc:
case Builtin::ID::BIfree:
case Builtin::ID::BIfopen:
case Builtin::ID::BIpthread_create:
case Builtin::ID::BI_Block_object_dispose:
Result.insert(FunctionEffect(FunctionEffect::Kind::Allocating));
break;
// These block in some other way than allocating memory.
// longjmp() and friends are presumed unsafe because they are the moral
// equivalent of throwing a C++ exception, which is unsafe.
case Builtin::ID::BIlongjmp:
case Builtin::ID::BI_longjmp:
case Builtin::ID::BIsiglongjmp:
case Builtin::ID::BI__builtin_longjmp:
case Builtin::ID::BIobjc_exception_throw:
// Objective-C runtime.
case Builtin::ID::BIobjc_msgSend:
case Builtin::ID::BIobjc_msgSend_fpret:
case Builtin::ID::BIobjc_msgSend_fp2ret:
case Builtin::ID::BIobjc_msgSend_stret:
case Builtin::ID::BIobjc_msgSendSuper:
case Builtin::ID::BIobjc_getClass:
case Builtin::ID::BIobjc_getMetaClass:
case Builtin::ID::BIobjc_enumerationMutation:
case Builtin::ID::BIobjc_assign_ivar:
case Builtin::ID::BIobjc_assign_global:
case Builtin::ID::BIobjc_sync_enter:
case Builtin::ID::BIobjc_sync_exit:
case Builtin::ID::BINSLog:
case Builtin::ID::BINSLogv:
// stdio.h
case Builtin::ID::BIfread:
case Builtin::ID::BIfwrite:
// stdio.h: printf family.
case Builtin::ID::BIprintf:
case Builtin::ID::BI__builtin_printf:
case Builtin::ID::BIfprintf:
case Builtin::ID::BIsnprintf:
case Builtin::ID::BIsprintf:
case Builtin::ID::BIvprintf:
case Builtin::ID::BIvfprintf:
case Builtin::ID::BIvsnprintf:
case Builtin::ID::BIvsprintf:
// stdio.h: scanf family.
case Builtin::ID::BIscanf:
case Builtin::ID::BIfscanf:
case Builtin::ID::BIsscanf:
case Builtin::ID::BIvscanf:
case Builtin::ID::BIvfscanf:
case Builtin::ID::BIvsscanf:
Result.insert(FunctionEffect(FunctionEffect::Kind::Blocking));
break;
}
return Result;
}
// Transitory, more extended information about a callable, which can be a
// function, block, or function pointer.
struct CallableInfo {
// CDecl holds the function's definition, if any.
// FunctionDecl if CallableType::Function or Virtual
// BlockDecl if CallableType::Block
const Decl *CDecl;
// Remember whether the callable is a function, block, virtual method,
// or (presumed) function pointer.
CallableType CType = CallableType::Unknown;
// Remember whether the callable is an operator new or delete function,
// so that calls to them are reported more meaningfully, as memory
// allocations.
SpecialFuncType FuncType = SpecialFuncType::None;
// We inevitably want to know the callable's declared effects, so cache them.
FunctionEffectKindSet Effects;
CallableInfo(const Decl &CD, SpecialFuncType FT = SpecialFuncType::None)
: CDecl(&CD), FuncType(FT) {
FunctionEffectsRef DeclEffects;
if (auto *FD = dyn_cast<FunctionDecl>(CDecl)) {
// Use the function's definition, if any.
if (const FunctionDecl *Def = FD->getDefinition())
CDecl = FD = Def;
CType = CallableType::Function;
if (auto *Method = dyn_cast<CXXMethodDecl>(FD);
Method && Method->isVirtual())
CType = CallableType::Virtual;
DeclEffects = FD->getFunctionEffects();
} else if (auto *BD = dyn_cast<BlockDecl>(CDecl)) {
CType = CallableType::Block;
DeclEffects = BD->getFunctionEffects();
} else if (auto *VD = dyn_cast<ValueDecl>(CDecl)) {
// ValueDecl is function, enum, or variable, so just look at its type.
DeclEffects = FunctionEffectsRef::get(VD->getType());
}
Effects = FunctionEffectKindSet(DeclEffects);
}
CallableType type() const { return CType; }
bool isCalledDirectly() const {
return CType == CallableType::Function || CType == CallableType::Block;
}
bool isVerifiable() const {
switch (CType) {
case CallableType::Unknown:
case CallableType::Virtual:
return false;
case CallableType::Block:
return true;
case CallableType::Function:
return functionIsVerifiable(dyn_cast<FunctionDecl>(CDecl));
}
llvm_unreachable("undefined CallableType");
}
/// Generate a name for logging and diagnostics.
std::string getNameForDiagnostic(Sema &S) const {
std::string Name;
llvm::raw_string_ostream OS(Name);
if (auto *FD = dyn_cast<FunctionDecl>(CDecl))
FD->getNameForDiagnostic(OS, S.getPrintingPolicy(),
/*Qualified=*/true);
else if (auto *BD = dyn_cast<BlockDecl>(CDecl))
OS << "(block " << BD->getBlockManglingNumber() << ")";
else if (auto *VD = dyn_cast<NamedDecl>(CDecl))
VD->printQualifiedName(OS);
return Name;
}
};
// ----------
// Map effects to single Violations, to hold the first (of potentially many)
// violations pertaining to an effect, per function.
class EffectToViolationMap {
// Since we currently only have a tiny number of effects (typically no more
// than 1), use a SmallVector with an inline capacity of 1. Since it
// is often empty, use a unique_ptr to the SmallVector.
// Note that Violation itself contains a FunctionEffect which is the key.
// FIXME: Is there a way to simplify this using existing data structures?
using ImplVec = llvm::SmallVector<Violation, 1>;
std::unique_ptr<ImplVec> Impl;
public:
// Insert a new Violation if we do not already have one for its effect.
void maybeInsert(const Violation &Viol) {
if (Impl == nullptr)
Impl = std::make_unique<ImplVec>();
else if (lookup(Viol.Effect) != nullptr)
return;
Impl->push_back(Viol);
}
const Violation *lookup(FunctionEffect Key) {
if (Impl == nullptr)
return nullptr;
auto *Iter = llvm::find_if(
*Impl, [&](const auto &Item) { return Item.Effect == Key; });
return Iter != Impl->end() ? &*Iter : nullptr;
}
size_t size() const { return Impl ? Impl->size() : 0; }
};
// ----------
// State pertaining to a function whose AST is walked and whose effect analysis
// is dependent on a subsequent analysis of other functions.
class PendingFunctionAnalysis {
friend class CompleteFunctionAnalysis;
public:
struct DirectCall {
const Decl *Callee;
SourceLocation CallLoc;
// Not all recursive calls are detected, just enough
// to break cycles.
bool Recursed = false;
ViolationSite VSite;
DirectCall(const Decl *D, SourceLocation CallLoc, ViolationSite VSite)
: Callee(D), CallLoc(CallLoc), VSite(VSite) {}
};
// We always have two disjoint sets of effects to verify:
// 1. Effects declared explicitly by this function.
// 2. All other inferrable effects needing verification.
FunctionEffectKindSet DeclaredVerifiableEffects;
FunctionEffectKindSet EffectsToInfer;
private:
// Violations pertaining to the function's explicit effects.
SmallVector<Violation, 0> ViolationsForExplicitEffects;
// Violations pertaining to other, non-explicit, inferrable effects.
EffectToViolationMap InferrableEffectToFirstViolation;
// These unverified direct calls are what keeps the analysis "pending",
// until the callees can be verified.
SmallVector<DirectCall, 0> UnverifiedDirectCalls;
public:
PendingFunctionAnalysis(Sema &S, const CallableInfo &CInfo,
FunctionEffectKindSet AllInferrableEffectsToVerify)
: DeclaredVerifiableEffects(CInfo.Effects) {
// Check for effects we are not allowed to infer.
FunctionEffectKindSet InferrableEffects;
for (FunctionEffect effect : AllInferrableEffectsToVerify) {
std::optional<FunctionEffect> ProblemCalleeEffect =
effect.effectProhibitingInference(*CInfo.CDecl, CInfo.Effects);
if (!ProblemCalleeEffect)
InferrableEffects.insert(effect);
else {
// Add a Violation for this effect if a caller were to
// try to infer it.
InferrableEffectToFirstViolation.maybeInsert(Violation(
effect, ViolationID::DeclDisallowsInference, ViolationSite{},
CInfo.CDecl->getLocation(), nullptr, ProblemCalleeEffect));
}
}
// InferrableEffects is now the set of inferrable effects which are not
// prohibited.
EffectsToInfer = FunctionEffectKindSet::difference(
InferrableEffects, DeclaredVerifiableEffects);
}
// Hide the way that Violations for explicitly required effects vs. inferred
// ones are handled differently.
void checkAddViolation(bool Inferring, const Violation &NewViol) {
if (!Inferring)
ViolationsForExplicitEffects.push_back(NewViol);
else
InferrableEffectToFirstViolation.maybeInsert(NewViol);
}
void addUnverifiedDirectCall(const Decl *D, SourceLocation CallLoc,
ViolationSite VSite) {
UnverifiedDirectCalls.emplace_back(D, CallLoc, VSite);
}
// Analysis is complete when there are no unverified direct calls.
bool isComplete() const { return UnverifiedDirectCalls.empty(); }
const Violation *violationForInferrableEffect(FunctionEffect effect) {
return InferrableEffectToFirstViolation.lookup(effect);
}
// Mutable because caller may need to set a DirectCall's Recursing flag.
MutableArrayRef<DirectCall> unverifiedCalls() {
assert(!isComplete());
return UnverifiedDirectCalls;
}
ArrayRef<Violation> getSortedViolationsForExplicitEffects(SourceManager &SM) {
if (!ViolationsForExplicitEffects.empty())
llvm::sort(ViolationsForExplicitEffects,
[&SM](const Violation &LHS, const Violation &RHS) {
return SM.isBeforeInTranslationUnit(LHS.Loc, RHS.Loc);
});
return ViolationsForExplicitEffects;
}
void dump(Sema &SemaRef, llvm::raw_ostream &OS) const {
OS << "Pending: Declared ";
DeclaredVerifiableEffects.dump(OS);
OS << ", " << ViolationsForExplicitEffects.size() << " violations; ";
OS << " Infer ";
EffectsToInfer.dump(OS);
OS << ", " << InferrableEffectToFirstViolation.size() << " violations";
if (!UnverifiedDirectCalls.empty()) {
OS << "; Calls: ";
for (const DirectCall &Call : UnverifiedDirectCalls) {
CallableInfo CI(*Call.Callee);
OS << " " << CI.getNameForDiagnostic(SemaRef);
}
}
OS << "\n";
}
};
// ----------
class CompleteFunctionAnalysis {
// Current size: 2 pointers
public:
// Has effects which are both the declared ones -- not to be inferred -- plus
// ones which have been successfully inferred. These are all considered
// "verified" for the purposes of callers; any issue with verifying declared
// effects has already been reported and is not the problem of any caller.
FunctionEffectKindSet VerifiedEffects;
private:
// This is used to generate notes about failed inference.
EffectToViolationMap InferrableEffectToFirstViolation;
public:
// The incoming Pending analysis is consumed (member(s) are moved-from).
CompleteFunctionAnalysis(ASTContext &Ctx, PendingFunctionAnalysis &&Pending,
FunctionEffectKindSet DeclaredEffects,
FunctionEffectKindSet AllInferrableEffectsToVerify)
: VerifiedEffects(DeclaredEffects) {
for (FunctionEffect effect : AllInferrableEffectsToVerify)
if (Pending.violationForInferrableEffect(effect) == nullptr)
VerifiedEffects.insert(effect);
InferrableEffectToFirstViolation =
std::move(Pending.InferrableEffectToFirstViolation);
}
const Violation *firstViolationForEffect(FunctionEffect Effect) {
return InferrableEffectToFirstViolation.lookup(Effect);
}
void dump(llvm::raw_ostream &OS) const {
OS << "Complete: Verified ";
VerifiedEffects.dump(OS);
OS << "; Infer ";
OS << InferrableEffectToFirstViolation.size() << " violations\n";
}
};
// ==========
class Analyzer {
Sema &S;
// Subset of Sema.AllEffectsToVerify
FunctionEffectKindSet AllInferrableEffectsToVerify;
using FuncAnalysisPtr =
llvm::PointerUnion<PendingFunctionAnalysis *, CompleteFunctionAnalysis *>;
// Map all Decls analyzed to FuncAnalysisPtr. Pending state is larger
// than complete state, so use different objects to represent them.
// The state pointers are owned by the container.
class AnalysisMap : llvm::DenseMap<const Decl *, FuncAnalysisPtr> {
using Base = llvm::DenseMap<const Decl *, FuncAnalysisPtr>;
public:
~AnalysisMap();
// Use non-public inheritance in order to maintain the invariant
// that lookups and insertions are via the canonical Decls.
FuncAnalysisPtr lookup(const Decl *Key) const {
return Base::lookup(Key->getCanonicalDecl());
}
FuncAnalysisPtr &operator[](const Decl *Key) {
return Base::operator[](Key->getCanonicalDecl());
}
/// Shortcut for the case where we only care about completed analysis.
CompleteFunctionAnalysis *completedAnalysisForDecl(const Decl *D) const {
if (FuncAnalysisPtr AP = lookup(D);
isa_and_nonnull<CompleteFunctionAnalysis *>(AP))
return cast<CompleteFunctionAnalysis *>(AP);
return nullptr;
}
void dump(Sema &SemaRef, llvm::raw_ostream &OS) {
OS << "\nAnalysisMap:\n";
for (const auto &item : *this) {
CallableInfo CI(*item.first);
const auto AP = item.second;
OS << item.first << " " << CI.getNameForDiagnostic(SemaRef) << " : ";
if (AP.isNull()) {
OS << "null\n";
} else if (auto *CFA = dyn_cast<CompleteFunctionAnalysis *>(AP)) {
OS << CFA << " ";
CFA->dump(OS);
} else if (auto *PFA = dyn_cast<PendingFunctionAnalysis *>(AP)) {
OS << PFA << " ";
PFA->dump(SemaRef, OS);
} else
llvm_unreachable("never");
}
OS << "---\n";
}
};
AnalysisMap DeclAnalysis;
public:
Analyzer(Sema &S) : S(S) {}
void run(const TranslationUnitDecl &TU) {
// Gather all of the effects to be verified to see what operations need to
// be checked, and to see which ones are inferrable.
for (FunctionEffect Effect : S.AllEffectsToVerify) {
const FunctionEffect::Flags Flags = Effect.flags();
if (Flags & FunctionEffect::FE_InferrableOnCallees)
AllInferrableEffectsToVerify.insert(Effect);
}
LLVM_DEBUG(llvm::dbgs() << "AllInferrableEffectsToVerify: ";
AllInferrableEffectsToVerify.dump(llvm::dbgs());
llvm::dbgs() << "\n";);
// We can use DeclsWithEffectsToVerify as a stack for a
// depth-first traversal; there's no need for a second container. But first,
// reverse it, so when working from the end, Decls are verified in the order
// they are declared.
SmallVector<const Decl *> &VerificationQueue = S.DeclsWithEffectsToVerify;
std::reverse(VerificationQueue.begin(), VerificationQueue.end());
while (!VerificationQueue.empty()) {
const Decl *D = VerificationQueue.back();
if (FuncAnalysisPtr AP = DeclAnalysis.lookup(D)) {
if (auto *Pending = dyn_cast<PendingFunctionAnalysis *>(AP)) {
// All children have been traversed; finish analysis.
finishPendingAnalysis(D, Pending);
}
VerificationQueue.pop_back();
continue;
}
// Not previously visited; begin a new analysis for this Decl.
PendingFunctionAnalysis *Pending = verifyDecl(D);
if (Pending == nullptr) {
// Completed now.
VerificationQueue.pop_back();
continue;
}
// Analysis remains pending because there are direct callees to be
// verified first. Push them onto the queue.
for (PendingFunctionAnalysis::DirectCall &Call :
Pending->unverifiedCalls()) {
FuncAnalysisPtr AP = DeclAnalysis.lookup(Call.Callee);
if (AP.isNull()) {
VerificationQueue.push_back(Call.Callee);
continue;
}
// This indicates recursion (not necessarily direct). For the
// purposes of effect analysis, we can just ignore it since
// no effects forbid recursion.
assert(isa<PendingFunctionAnalysis *>(AP));
Call.Recursed = true;
}
}
}
private:
// Verify a single Decl. Return the pending structure if that was the result,
// else null. This method must not recurse.
PendingFunctionAnalysis *verifyDecl(const Decl *D) {
CallableInfo CInfo(*D);
bool isExternC = false;
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
isExternC = FD->getCanonicalDecl()->isExternCContext();
// For C++, with non-extern "C" linkage only - if any of the Decl's declared
// effects forbid throwing (e.g. nonblocking) then the function should also
// be declared noexcept.
if (S.getLangOpts().CPlusPlus && !isExternC) {
for (FunctionEffect Effect : CInfo.Effects) {
if (!(Effect.flags() & FunctionEffect::FE_ExcludeThrow))
continue;
bool IsNoexcept = false;
if (auto *FD = D->getAsFunction()) {
IsNoexcept = isNoexcept(FD);
} else if (auto *BD = dyn_cast<BlockDecl>(D)) {
if (auto *TSI = BD->getSignatureAsWritten()) {
auto *FPT = TSI->getType()->castAs<FunctionProtoType>();
IsNoexcept = FPT->isNothrow() || BD->hasAttr<NoThrowAttr>();
}
}
if (!IsNoexcept)
S.Diag(D->getBeginLoc(), diag::warn_perf_constraint_implies_noexcept)
<< GetCallableDeclKind(D, nullptr) << Effect.name();
break;
}
}
// Build a PendingFunctionAnalysis on the stack. If it turns out to be
// complete, we'll have avoided a heap allocation; if it's incomplete, it's
// a fairly trivial move to a heap-allocated object.
PendingFunctionAnalysis FAnalysis(S, CInfo, AllInferrableEffectsToVerify);
LLVM_DEBUG(llvm::dbgs()
<< "\nVerifying " << CInfo.getNameForDiagnostic(S) << " ";
FAnalysis.dump(S, llvm::dbgs()););
FunctionBodyASTVisitor Visitor(*this, FAnalysis, CInfo);
Visitor.run();
if (FAnalysis.isComplete()) {
completeAnalysis(CInfo, std::move(FAnalysis));
return nullptr;
}
// Move the pending analysis to the heap and save it in the map.
PendingFunctionAnalysis *PendingPtr =
new PendingFunctionAnalysis(std::move(FAnalysis));
DeclAnalysis[D] = PendingPtr;
LLVM_DEBUG(llvm::dbgs() << "inserted pending " << PendingPtr << "\n";
DeclAnalysis.dump(S, llvm::dbgs()););
return PendingPtr;
}
// Consume PendingFunctionAnalysis, create with it a CompleteFunctionAnalysis,
// inserted in the container.
void completeAnalysis(const CallableInfo &CInfo,
PendingFunctionAnalysis &&Pending) {
if (ArrayRef<Violation> Viols =
Pending.getSortedViolationsForExplicitEffects(S.getSourceManager());
!Viols.empty())
emitDiagnostics(Viols, CInfo);
CompleteFunctionAnalysis *CompletePtr = new CompleteFunctionAnalysis(
S.getASTContext(), std::move(Pending), CInfo.Effects,
AllInferrableEffectsToVerify);
DeclAnalysis[CInfo.CDecl] = CompletePtr;
LLVM_DEBUG(llvm::dbgs() << "inserted complete " << CompletePtr << "\n";
DeclAnalysis.dump(S, llvm::dbgs()););
}
// Called after all direct calls requiring inference have been found -- or
// not. Repeats calls to FunctionBodyASTVisitor::followCall() but without
// the possibility of inference. Deletes Pending.
void finishPendingAnalysis(const Decl *D, PendingFunctionAnalysis *Pending) {
CallableInfo Caller(*D);
LLVM_DEBUG(llvm::dbgs() << "finishPendingAnalysis for "
<< Caller.getNameForDiagnostic(S) << " : ";
Pending->dump(S, llvm::dbgs()); llvm::dbgs() << "\n";);
for (const PendingFunctionAnalysis::DirectCall &Call :
Pending->unverifiedCalls()) {
if (Call.Recursed)
continue;
CallableInfo Callee(*Call.Callee);
followCall(Caller, *Pending, Callee, Call.CallLoc,
/*AssertNoFurtherInference=*/true, Call.VSite);
}
completeAnalysis(Caller, std::move(*Pending));
delete Pending;
}
// Here we have a call to a Decl, either explicitly via a CallExpr or some
// other AST construct. PFA pertains to the caller.
void followCall(const CallableInfo &Caller, PendingFunctionAnalysis &PFA,
const CallableInfo &Callee, SourceLocation CallLoc,
bool AssertNoFurtherInference, ViolationSite VSite) {
const bool DirectCall = Callee.isCalledDirectly();
// Initially, the declared effects; inferred effects will be added.
FunctionEffectKindSet CalleeEffects = Callee.Effects;
bool IsInferencePossible = DirectCall;
if (DirectCall)
if (CompleteFunctionAnalysis *CFA =
DeclAnalysis.completedAnalysisForDecl(Callee.CDecl)) {
// Combine declared effects with those which may have been inferred.
CalleeEffects.insert(CFA->VerifiedEffects);
IsInferencePossible = false; // We've already traversed it.
}
if (AssertNoFurtherInference) {
assert(!IsInferencePossible);
}
if (!Callee.isVerifiable())
IsInferencePossible = false;
LLVM_DEBUG(llvm::dbgs()
<< "followCall from " << Caller.getNameForDiagnostic(S)
<< " to " << Callee.getNameForDiagnostic(S)
<< "; verifiable: " << Callee.isVerifiable() << "; callee ";
CalleeEffects.dump(llvm::dbgs()); llvm::dbgs() << "\n";
llvm::dbgs() << " callee " << Callee.CDecl << " canonical "
<< Callee.CDecl->getCanonicalDecl() << "\n";);
auto Check1Effect = [&](FunctionEffect Effect, bool Inferring) {
if (!Effect.shouldDiagnoseFunctionCall(DirectCall, CalleeEffects))
return;
// If inference is not allowed, or the target is indirect (virtual
// method/function ptr?), generate a Violation now.
if (!IsInferencePossible ||
!(Effect.flags() & FunctionEffect::FE_InferrableOnCallees)) {
if (Callee.FuncType == SpecialFuncType::None)
PFA.checkAddViolation(Inferring,
{Effect, ViolationID::CallsDeclWithoutEffect,
VSite, CallLoc, Callee.CDecl});
else
PFA.checkAddViolation(
Inferring,
{Effect, ViolationID::AllocatesMemory, VSite, CallLoc});
} else {
// Inference is allowed and necessary; defer it.
PFA.addUnverifiedDirectCall(Callee.CDecl, CallLoc, VSite);
}
};
for (FunctionEffect Effect : PFA.DeclaredVerifiableEffects)
Check1Effect(Effect, false);
for (FunctionEffect Effect : PFA.EffectsToInfer)
Check1Effect(Effect, true);
}
// Describe a callable Decl for a diagnostic.
// (Not an enum class because the value is always converted to an integer for
// use in a diagnostic.)
enum CallableDeclKind {
CDK_Function,
CDK_Constructor,
CDK_Destructor,
CDK_Lambda,
CDK_Block,
CDK_MemberInitializer,
};
// Describe a call site or target using an enum mapping to a %select{}
// in a diagnostic, e.g. warn_func_effect_violation,
// warn_perf_constraint_implies_noexcept, and others.
static CallableDeclKind GetCallableDeclKind(const Decl *D,
const Violation *V) {
if (V != nullptr &&
V->Site.kind() == ViolationSite::Kind::MemberInitializer)
return CDK_MemberInitializer;
if (isa<BlockDecl>(D))
return CDK_Block;
if (auto *Method = dyn_cast<CXXMethodDecl>(D)) {
if (isa<CXXConstructorDecl>(D))
return CDK_Constructor;
if (isa<CXXDestructorDecl>(D))
return CDK_Destructor;
const CXXRecordDecl *Rec = Method->getParent();
if (Rec->isLambda())
return CDK_Lambda;
}
return CDK_Function;
};
// Should only be called when function's analysis is determined to be
// complete.
void emitDiagnostics(ArrayRef<Violation> Viols, const CallableInfo &CInfo) {
if (Viols.empty())
return;
auto MaybeAddTemplateNote = [&](const Decl *D) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
while (FD != nullptr && FD->isTemplateInstantiation() &&
FD->getPointOfInstantiation().isValid()) {
S.Diag(FD->getPointOfInstantiation(),
diag::note_func_effect_from_template);
FD = FD->getTemplateInstantiationPattern();
}
}
};
// For note_func_effect_call_indirect.
enum { Indirect_VirtualMethod, Indirect_FunctionPtr };
auto MaybeAddSiteContext = [&](const Decl *D, const Violation &V) {
// If a violation site is a member initializer, add a note pointing to
// the constructor which invoked it.
if (V.Site.kind() == ViolationSite::Kind::MemberInitializer) {
unsigned ImplicitCtor = 0;
if (auto *Ctor = dyn_cast<CXXConstructorDecl>(D);
Ctor && Ctor->isImplicit())
ImplicitCtor = 1;
S.Diag(D->getLocation(), diag::note_func_effect_in_constructor)
<< ImplicitCtor;
}
// If a violation site is a default argument expression, add a note
// pointing to the call site using the default argument.
else if (V.Site.kind() == ViolationSite::Kind::DefaultArgExpr)
S.Diag(V.Site.defaultArgExpr()->getUsedLocation(),
diag::note_in_evaluating_default_argument);
};
// Top-level violations are warnings.
for (const Violation &Viol1 : Viols) {
StringRef effectName = Viol1.Effect.name();
switch (Viol1.ID) {
case ViolationID::None:
case ViolationID::DeclDisallowsInference: // Shouldn't happen
// here.
llvm_unreachable("Unexpected violation kind");
break;
case ViolationID::AllocatesMemory:
case ViolationID::ThrowsOrCatchesExceptions:
case ViolationID::HasStaticLocalVariable:
case ViolationID::AccessesThreadLocalVariable:
case ViolationID::AccessesObjCMethodOrProperty:
S.Diag(Viol1.Loc, diag::warn_func_effect_violation)
<< GetCallableDeclKind(CInfo.CDecl, &Viol1) << effectName
<< Viol1.diagnosticSelectIndex();
MaybeAddSiteContext(CInfo.CDecl, Viol1);
MaybeAddTemplateNote(CInfo.CDecl);
break;
case ViolationID::CallsExprWithoutEffect:
S.Diag(Viol1.Loc, diag::warn_func_effect_calls_expr_without_effect)
<< GetCallableDeclKind(CInfo.CDecl, &Viol1) << effectName;
MaybeAddSiteContext(CInfo.CDecl, Viol1);
MaybeAddTemplateNote(CInfo.CDecl);
break;
case ViolationID::CallsDeclWithoutEffect: {
CallableInfo CalleeInfo(*Viol1.Callee);
std::string CalleeName = CalleeInfo.getNameForDiagnostic(S);
S.Diag(Viol1.Loc, diag::warn_func_effect_calls_func_without_effect)
<< GetCallableDeclKind(CInfo.CDecl, &Viol1) << effectName
<< GetCallableDeclKind(CalleeInfo.CDecl, nullptr) << CalleeName;
MaybeAddSiteContext(CInfo.CDecl, Viol1);
MaybeAddTemplateNote(CInfo.CDecl);
// Emit notes explaining the transitive chain of inferences: Why isn't
// the callee safe?
for (const Decl *Callee = Viol1.Callee; Callee != nullptr;) {
std::optional<CallableInfo> MaybeNextCallee;
CompleteFunctionAnalysis *Completed =
DeclAnalysis.completedAnalysisForDecl(CalleeInfo.CDecl);
if (Completed == nullptr) {
// No result - could be
// - non-inline and extern
// - indirect (virtual or through function pointer)
// - effect has been explicitly disclaimed (e.g. "blocking")
CallableType CType = CalleeInfo.type();
if (CType == CallableType::Virtual)
S.Diag(Callee->getLocation(),
diag::note_func_effect_call_indirect)
<< Indirect_VirtualMethod << effectName;
else if (CType == CallableType::Unknown)
S.Diag(Callee->getLocation(),
diag::note_func_effect_call_indirect)
<< Indirect_FunctionPtr << effectName;
else if (CalleeInfo.Effects.contains(Viol1.Effect.oppositeKind()))
S.Diag(Callee->getLocation(),
diag::note_func_effect_call_disallows_inference)
<< GetCallableDeclKind(CInfo.CDecl, nullptr) << effectName
<< FunctionEffect(Viol1.Effect.oppositeKind()).name();
else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee);
FD == nullptr || FD->getBuiltinID() == 0) {
// A builtin callee generally doesn't have a useful source
// location at which to insert a note.
S.Diag(Callee->getLocation(), diag::note_func_effect_call_extern)
<< effectName;
}
break;
}
const Violation *PtrViol2 =
Completed->firstViolationForEffect(Viol1.Effect);
if (PtrViol2 == nullptr)
break;
const Violation &Viol2 = *PtrViol2;
switch (Viol2.ID) {
case ViolationID::None:
llvm_unreachable("Unexpected violation kind");
break;
case ViolationID::DeclDisallowsInference:
S.Diag(Viol2.Loc, diag::note_func_effect_call_disallows_inference)
<< GetCallableDeclKind(CalleeInfo.CDecl, nullptr) << effectName
<< Viol2.CalleeEffectPreventingInference->name();
break;
case ViolationID::CallsExprWithoutEffect:
S.Diag(Viol2.Loc, diag::note_func_effect_call_indirect)
<< Indirect_FunctionPtr << effectName;
break;
case ViolationID::AllocatesMemory:
case ViolationID::ThrowsOrCatchesExceptions:
case ViolationID::HasStaticLocalVariable:
case ViolationID::AccessesThreadLocalVariable:
case ViolationID::AccessesObjCMethodOrProperty:
S.Diag(Viol2.Loc, diag::note_func_effect_violation)
<< GetCallableDeclKind(CalleeInfo.CDecl, &Viol2) << effectName
<< Viol2.diagnosticSelectIndex();
MaybeAddSiteContext(CalleeInfo.CDecl, Viol2);
break;
case ViolationID::CallsDeclWithoutEffect:
MaybeNextCallee.emplace(*Viol2.Callee);
S.Diag(Viol2.Loc, diag::note_func_effect_calls_func_without_effect)
<< GetCallableDeclKind(CalleeInfo.CDecl, &Viol2) << effectName
<< GetCallableDeclKind(Viol2.Callee, nullptr)
<< MaybeNextCallee->getNameForDiagnostic(S);
break;
}
MaybeAddTemplateNote(Callee);
Callee = Viol2.Callee;
if (MaybeNextCallee) {
CalleeInfo = *MaybeNextCallee;
CalleeName = CalleeInfo.getNameForDiagnostic(S);
}
}
} break;
}
}
}
// ----------
// This AST visitor is used to traverse the body of a function during effect
// verification. This happens in 2 situations:
// [1] The function has declared effects which need to be validated.
// [2] The function has not explicitly declared an effect in question, and is
// being checked for implicit conformance.
//
// Violations are always routed to a PendingFunctionAnalysis.
struct FunctionBodyASTVisitor : DynamicRecursiveASTVisitor {
Analyzer &Outer;
PendingFunctionAnalysis &CurrentFunction;
CallableInfo &CurrentCaller;
ViolationSite VSite;
const Expr *TrailingRequiresClause = nullptr;
const Expr *NoexceptExpr = nullptr;
FunctionBodyASTVisitor(Analyzer &Outer,
PendingFunctionAnalysis &CurrentFunction,
CallableInfo &CurrentCaller)
: Outer(Outer), CurrentFunction(CurrentFunction),
CurrentCaller(CurrentCaller) {
ShouldVisitImplicitCode = true;
ShouldWalkTypesOfTypeLocs = false;
}
// -- Entry point --
void run() {
// The target function may have implicit code paths beyond the
// body: member and base destructors. Visit these first.
if (auto *Dtor = dyn_cast<CXXDestructorDecl>(CurrentCaller.CDecl))
followDestructor(dyn_cast<CXXRecordDecl>(Dtor->getParent()), Dtor);
if (auto *FD = dyn_cast<FunctionDecl>(CurrentCaller.CDecl)) {
TrailingRequiresClause = FD->getTrailingRequiresClause();
// Note that FD->getType->getAs<FunctionProtoType>() can yield a
// noexcept Expr which has been boiled down to a constant expression.
// Going through the TypeSourceInfo obtains the actual expression which
// will be traversed as part of the function -- unless we capture it
// here and have TraverseStmt skip it.
if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) {
if (FunctionProtoTypeLoc TL =
TSI->getTypeLoc().getAs<FunctionProtoTypeLoc>())
if (const FunctionProtoType *FPT = TL.getTypePtr())
NoexceptExpr = FPT->getNoexceptExpr();
}
}
// Do an AST traversal of the function/block body
TraverseDecl(const_cast<Decl *>(CurrentCaller.CDecl));
}
// -- Methods implementing common logic --
// Handle a language construct forbidden by some effects. Only effects whose
// flags include the specified flag receive a violation. \p Flag describes
// the construct.
void diagnoseLanguageConstruct(FunctionEffect::FlagBit Flag,
ViolationID VID, SourceLocation Loc,
const Decl *Callee = nullptr) {
// If there are any declared verifiable effects which forbid the construct
// represented by the flag, store just one violation.
for (FunctionEffect Effect : CurrentFunction.DeclaredVerifiableEffects) {
if (Effect.flags() & Flag) {
addViolation(/*inferring=*/false, Effect, VID, Loc, Callee);
break;
}
}
// For each inferred effect which forbids the construct, store a
// violation, if we don't already have a violation for that effect.
for (FunctionEffect Effect : CurrentFunction.EffectsToInfer)
if (Effect.flags() & Flag)
addViolation(/*inferring=*/true, Effect, VID, Loc, Callee);
}
void addViolation(bool Inferring, FunctionEffect Effect, ViolationID VID,
SourceLocation Loc, const Decl *Callee = nullptr) {
CurrentFunction.checkAddViolation(
Inferring, Violation(Effect, VID, VSite, Loc, Callee));
}
// Here we have a call to a Decl, either explicitly via a CallExpr or some
// other AST construct. CallableInfo pertains to the callee.
void followCall(CallableInfo &CI, SourceLocation CallLoc) {
// Check for a call to a builtin function, whose effects are
// handled specially.
if (const auto *FD = dyn_cast<FunctionDecl>(CI.CDecl)) {
if (unsigned BuiltinID = FD->getBuiltinID()) {
CI.Effects = getBuiltinFunctionEffects(BuiltinID);
if (CI.Effects.empty()) {
// A builtin with no known effects is assumed safe.
return;
}
// A builtin WITH effects doesn't get any special treatment for
// being noreturn/noexcept, e.g. longjmp(), so we skip the check
// below.
} else {
// If the callee is both `noreturn` and `noexcept`, it presumably
// terminates. Ignore it for the purposes of effect analysis.
// If not C++, `noreturn` alone is sufficient.
if (FD->isNoReturn() &&
(!Outer.S.getLangOpts().CPlusPlus || isNoexcept(FD)))
return;
}
}
Outer.followCall(CurrentCaller, CurrentFunction, CI, CallLoc,
/*AssertNoFurtherInference=*/false, VSite);
}
void checkIndirectCall(CallExpr *Call, QualType CalleeType) {
FunctionEffectKindSet CalleeEffects;
if (FunctionEffectsRef Effects = FunctionEffectsRef::get(CalleeType);
!Effects.empty())
CalleeEffects.insert(Effects);
auto Check1Effect = [&](FunctionEffect Effect, bool Inferring) {
if (Effect.shouldDiagnoseFunctionCall(
/*direct=*/false, CalleeEffects))
addViolation(Inferring, Effect, ViolationID::CallsExprWithoutEffect,
Call->getBeginLoc());
};
for (FunctionEffect Effect : CurrentFunction.DeclaredVerifiableEffects)
Check1Effect(Effect, false);
for (FunctionEffect Effect : CurrentFunction.EffectsToInfer)
Check1Effect(Effect, true);
}
// This destructor's body should be followed by the caller, but here we
// follow the field and base destructors.
void followDestructor(const CXXRecordDecl *Rec,
const CXXDestructorDecl *Dtor) {
SourceLocation DtorLoc = Dtor->getLocation();
for (const FieldDecl *Field : Rec->fields())
followTypeDtor(Field->getType(), DtorLoc);
if (const auto *Class = dyn_cast<CXXRecordDecl>(Rec))
for (const CXXBaseSpecifier &Base : Class->bases())
followTypeDtor(Base.getType(), DtorLoc);
}
void followTypeDtor(QualType QT, SourceLocation CallSite) {
const Type *Ty = QT.getTypePtr();
while (Ty->isArrayType()) {
const ArrayType *Arr = Ty->getAsArrayTypeUnsafe();
QT = Arr->getElementType();
Ty = QT.getTypePtr();
}
if (Ty->isRecordType()) {
if (const CXXRecordDecl *Class = Ty->getAsCXXRecordDecl()) {
if (CXXDestructorDecl *Dtor = Class->getDestructor();
Dtor && !Dtor->isDeleted()) {
CallableInfo CI(*Dtor);
followCall(CI, CallSite);
}
}
}
}
// -- Methods for use of RecursiveASTVisitor --
bool VisitCXXThrowExpr(CXXThrowExpr *Throw) override {
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeThrow,
ViolationID::ThrowsOrCatchesExceptions,
Throw->getThrowLoc());
return true;
}
bool VisitCXXCatchStmt(CXXCatchStmt *Catch) override {
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeCatch,
ViolationID::ThrowsOrCatchesExceptions,
Catch->getCatchLoc());
return true;
}
bool VisitObjCAtThrowStmt(ObjCAtThrowStmt *Throw) override {
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeThrow,
ViolationID::ThrowsOrCatchesExceptions,
Throw->getThrowLoc());
return true;
}
bool VisitObjCAtCatchStmt(ObjCAtCatchStmt *Catch) override {
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeCatch,
ViolationID::ThrowsOrCatchesExceptions,
Catch->getAtCatchLoc());
return true;
}
bool VisitObjCAtFinallyStmt(ObjCAtFinallyStmt *Finally) override {
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeCatch,
ViolationID::ThrowsOrCatchesExceptions,
Finally->getAtFinallyLoc());
return true;
}
bool VisitObjCMessageExpr(ObjCMessageExpr *Msg) override {
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeObjCMessageSend,
ViolationID::AccessesObjCMethodOrProperty,
Msg->getBeginLoc());
return true;
}
bool VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *ARP) override {
// Under the hood, @autorelease (potentially?) allocates memory and
// invokes ObjC methods. We don't currently have memory allocation as
// a "language construct" but we do have ObjC messaging, so diagnose that.
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeObjCMessageSend,
ViolationID::AccessesObjCMethodOrProperty,
ARP->getBeginLoc());
return true;
}
bool VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *Sync) override {
// Under the hood, this calls objc_sync_enter and objc_sync_exit, wrapped
// in a @try/@finally block. Diagnose this generically as "ObjC
// messaging".
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeObjCMessageSend,
ViolationID::AccessesObjCMethodOrProperty,
Sync->getBeginLoc());
return true;
}
bool VisitSEHExceptStmt(SEHExceptStmt *Exc) override {
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeCatch,
ViolationID::ThrowsOrCatchesExceptions,
Exc->getExceptLoc());
return true;
}
bool VisitCallExpr(CallExpr *Call) override {
LLVM_DEBUG(llvm::dbgs()
<< "VisitCallExpr : "
<< Call->getBeginLoc().printToString(Outer.S.SourceMgr)
<< "\n";);
Expr *CalleeExpr = Call->getCallee();
if (const Decl *Callee = CalleeExpr->getReferencedDeclOfCallee()) {
CallableInfo CI(*Callee);
followCall(CI, Call->getBeginLoc());
return true;
}
if (isa<CXXPseudoDestructorExpr>(CalleeExpr)) {
// Just destroying a scalar, fine.
return true;
}
// No Decl, just an Expr. Just check based on its type.
checkIndirectCall(Call, CalleeExpr->getType());
return true;
}
bool VisitVarDecl(VarDecl *Var) override {
LLVM_DEBUG(llvm::dbgs()
<< "VisitVarDecl : "
<< Var->getBeginLoc().printToString(Outer.S.SourceMgr)
<< "\n";);
if (Var->isStaticLocal())
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeStaticLocalVars,
ViolationID::HasStaticLocalVariable,
Var->getLocation());
const QualType::DestructionKind DK =
Var->needsDestruction(Outer.S.getASTContext());
if (DK == QualType::DK_cxx_destructor)
followTypeDtor(Var->getType(), Var->getLocation());
return true;
}
bool VisitCXXNewExpr(CXXNewExpr *New) override {
// RecursiveASTVisitor does not visit the implicit call to operator new.
if (FunctionDecl *FD = New->getOperatorNew()) {
CallableInfo CI(*FD, SpecialFuncType::OperatorNew);
followCall(CI, New->getBeginLoc());
}
// It's a bit excessive to check operator delete here, since it's
// just a fallback for operator new followed by a failed constructor.
// We could check it via New->getOperatorDelete().
// It DOES however visit the called constructor
return true;
}
bool VisitCXXDeleteExpr(CXXDeleteExpr *Delete) override {
// RecursiveASTVisitor does not visit the implicit call to operator
// delete.
if (FunctionDecl *FD = Delete->getOperatorDelete()) {
CallableInfo CI(*FD, SpecialFuncType::OperatorDelete);
followCall(CI, Delete->getBeginLoc());
}
// It DOES however visit the called destructor
return true;
}
bool VisitCXXConstructExpr(CXXConstructExpr *Construct) override {
LLVM_DEBUG(llvm::dbgs() << "VisitCXXConstructExpr : "
<< Construct->getBeginLoc().printToString(
Outer.S.SourceMgr)
<< "\n";);
// RecursiveASTVisitor does not visit the implicit call to the
// constructor.
const CXXConstructorDecl *Ctor = Construct->getConstructor();
CallableInfo CI(*Ctor);
followCall(CI, Construct->getLocation());
return true;
}
bool TraverseStmt(Stmt *Statement) override {
// If this statement is a `requires` clause from the top-level function
// being traversed, ignore it, since it's not generating runtime code.
// We skip the traversal of lambdas (beyond their captures, see
// TraverseLambdaExpr below), so just caching this from our constructor
// should suffice.
if (Statement != TrailingRequiresClause && Statement != NoexceptExpr)
return DynamicRecursiveASTVisitor::TraverseStmt(Statement);
return true;
}
bool TraverseConstructorInitializer(CXXCtorInitializer *Init) override {
ViolationSite PrevVS = VSite;
if (Init->isAnyMemberInitializer())
VSite.setKind(ViolationSite::Kind::MemberInitializer);
bool Result =
DynamicRecursiveASTVisitor::TraverseConstructorInitializer(Init);
VSite = PrevVS;
return Result;
}
bool TraverseCXXDefaultArgExpr(CXXDefaultArgExpr *E) override {
LLVM_DEBUG(llvm::dbgs()
<< "TraverseCXXDefaultArgExpr : "
<< E->getUsedLocation().printToString(Outer.S.SourceMgr)
<< "\n";);
ViolationSite PrevVS = VSite;
if (VSite.kind() == ViolationSite::Kind::Default)
VSite = ViolationSite{E};
bool Result = DynamicRecursiveASTVisitor::TraverseCXXDefaultArgExpr(E);
VSite = PrevVS;
return Result;
}
bool TraverseLambdaExpr(LambdaExpr *Lambda) override {
// We override this so as to be able to skip traversal of the lambda's
// body. We have to explicitly traverse the captures. Why not return
// false from shouldVisitLambdaBody()? Because we need to visit a lambda's
// body when we are verifying the lambda itself; we only want to skip it
// in the context of the outer function.
for (unsigned I = 0, N = Lambda->capture_size(); I < N; ++I)
TraverseLambdaCapture(Lambda, Lambda->capture_begin() + I,
Lambda->capture_init_begin()[I]);
return true;
}
bool TraverseBlockExpr(BlockExpr * /*unused*/) override {
// As with lambdas, don't traverse the block's body.
// TODO: are the capture expressions (ctor call?) safe?
return true;
}
bool VisitDeclRefExpr(DeclRefExpr *E) override {
const ValueDecl *Val = E->getDecl();
if (const auto *Var = dyn_cast<VarDecl>(Val)) {
if (Var->getTLSKind() != VarDecl::TLS_None) {
// At least on macOS, thread-local variables are initialized on
// first access, including a heap allocation.
diagnoseLanguageConstruct(FunctionEffect::FE_ExcludeThreadLocalVars,
ViolationID::AccessesThreadLocalVariable,
E->getLocation());
}
}
return true;
}
bool TraverseGenericSelectionExpr(GenericSelectionExpr *Node) override {
return TraverseStmt(Node->getResultExpr());
}
bool
TraverseUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *Node) override {
return true;
}
bool TraverseTypeOfExprTypeLoc(TypeOfExprTypeLoc Node) override {
return true;
}
bool TraverseDecltypeTypeLoc(DecltypeTypeLoc Node) override { return true; }
bool TraverseCXXNoexceptExpr(CXXNoexceptExpr *Node) override {
return true;
}
bool TraverseCXXTypeidExpr(CXXTypeidExpr *Node) override { return true; }
// Skip concept requirements since they don't generate code.
bool TraverseConceptRequirement(concepts::Requirement *R) override {
return true;
}
};
};
Analyzer::AnalysisMap::~AnalysisMap() {
for (const auto &Item : *this) {
FuncAnalysisPtr AP = Item.second;
if (auto *PFA = dyn_cast<PendingFunctionAnalysis *>(AP))
delete PFA;
else
delete cast<CompleteFunctionAnalysis *>(AP);
}
}
} // anonymous namespace
namespace clang {
bool Sema::diagnoseConflictingFunctionEffect(
const FunctionEffectsRef &FX, const FunctionEffectWithCondition &NewEC,
SourceLocation NewAttrLoc) {
// If the new effect has a condition, we can't detect conflicts until the
// condition is resolved.
if (NewEC.Cond.getCondition() != nullptr)
return false;
// Diagnose the new attribute as incompatible with a previous one.
auto Incompatible = [&](const FunctionEffectWithCondition &PrevEC) {
Diag(NewAttrLoc, diag::err_attributes_are_not_compatible)
<< ("'" + NewEC.description() + "'")
<< ("'" + PrevEC.description() + "'") << false;
// We don't necessarily have the location of the previous attribute,
// so no note.
return true;
};
// Compare against previous attributes.
FunctionEffect::Kind NewKind = NewEC.Effect.kind();
for (const FunctionEffectWithCondition &PrevEC : FX) {
// Again, can't check yet when the effect is conditional.
if (PrevEC.Cond.getCondition() != nullptr)
continue;
FunctionEffect::Kind PrevKind = PrevEC.Effect.kind();
// Note that we allow PrevKind == NewKind; it's redundant and ignored.
if (PrevEC.Effect.oppositeKind() == NewKind)
return Incompatible(PrevEC);
// A new allocating is incompatible with a previous nonblocking.
if (PrevKind == FunctionEffect::Kind::NonBlocking &&
NewKind == FunctionEffect::Kind::Allocating)
return Incompatible(PrevEC);
// A new nonblocking is incompatible with a previous allocating.
if (PrevKind == FunctionEffect::Kind::Allocating &&
NewKind == FunctionEffect::Kind::NonBlocking)
return Incompatible(PrevEC);
}
return false;
}
void Sema::diagnoseFunctionEffectMergeConflicts(
const FunctionEffectSet::Conflicts &Errs, SourceLocation NewLoc,
SourceLocation OldLoc) {
for (const FunctionEffectSet::Conflict &Conflict : Errs) {
Diag(NewLoc, diag::warn_conflicting_func_effects)
<< Conflict.Kept.description() << Conflict.Rejected.description();
Diag(OldLoc, diag::note_previous_declaration);
}
}
// Decl should be a FunctionDecl or BlockDecl.
void Sema::maybeAddDeclWithEffects(const Decl *D,
const FunctionEffectsRef &FX) {
if (!D->hasBody()) {
if (const auto *FD = D->getAsFunction(); FD && !FD->willHaveBody())
return;
}
if (Diags.getIgnoreAllWarnings() ||
(Diags.getSuppressSystemWarnings() &&
SourceMgr.isInSystemHeader(D->getLocation())))
return;
if (hasUncompilableErrorOccurred())
return;
// For code in dependent contexts, we'll do this at instantiation time.
// Without this check, we would analyze the function based on placeholder
// template parameters, and potentially generate spurious diagnostics.
if (cast<DeclContext>(D)->isDependentContext())
return;
addDeclWithEffects(D, FX);
}
void Sema::addDeclWithEffects(const Decl *D, const FunctionEffectsRef &FX) {
// To avoid the possibility of conflict, don't add effects which are
// not FE_InferrableOnCallees and therefore not verified; this removes
// blocking/allocating but keeps nonblocking/nonallocating.
// Also, ignore any conditions when building the list of effects.
bool AnyVerifiable = false;
for (const FunctionEffectWithCondition &EC : FX)
if (EC.Effect.flags() & FunctionEffect::FE_InferrableOnCallees) {
AllEffectsToVerify.insert(EC.Effect);
AnyVerifiable = true;
}
// Record the declaration for later analysis.
if (AnyVerifiable)
DeclsWithEffectsToVerify.push_back(D);
}
void Sema::performFunctionEffectAnalysis(TranslationUnitDecl *TU) {
if (hasUncompilableErrorOccurred() || Diags.getIgnoreAllWarnings())
return;
if (TU == nullptr)
return;
Analyzer{*this}.run(*TU);
}
Sema::FunctionEffectDiffVector::FunctionEffectDiffVector(
const FunctionEffectsRef &Old, const FunctionEffectsRef &New) {
FunctionEffectsRef::iterator POld = Old.begin();
FunctionEffectsRef::iterator OldEnd = Old.end();
FunctionEffectsRef::iterator PNew = New.begin();
FunctionEffectsRef::iterator NewEnd = New.end();
while (true) {
int cmp = 0;
if (POld == OldEnd) {
if (PNew == NewEnd)
break;
cmp = 1;
} else if (PNew == NewEnd)
cmp = -1;
else {
FunctionEffectWithCondition Old = *POld;
FunctionEffectWithCondition New = *PNew;
if (Old.Effect.kind() < New.Effect.kind())
cmp = -1;
else if (New.Effect.kind() < Old.Effect.kind())
cmp = 1;
else {
cmp = 0;
if (Old.Cond.getCondition() != New.Cond.getCondition()) {
// FIXME: Cases where the expressions are equivalent but
// don't have the same identity.
push_back(FunctionEffectDiff{
Old.Effect.kind(), FunctionEffectDiff::Kind::ConditionMismatch,
Old, New});
}
}
}
if (cmp < 0) {
// removal
FunctionEffectWithCondition Old = *POld;
push_back(FunctionEffectDiff{Old.Effect.kind(),
FunctionEffectDiff::Kind::Removed, Old,
std::nullopt});
++POld;
} else if (cmp > 0) {
// addition
FunctionEffectWithCondition New = *PNew;
push_back(FunctionEffectDiff{New.Effect.kind(),
FunctionEffectDiff::Kind::Added,
std::nullopt, New});
++PNew;
} else {
++POld;
++PNew;
}
}
}
bool Sema::FunctionEffectDiff::shouldDiagnoseConversion(
QualType SrcType, const FunctionEffectsRef &SrcFX, QualType DstType,
const FunctionEffectsRef &DstFX) const {
switch (EffectKind) {
case FunctionEffect::Kind::NonAllocating:
// nonallocating can't be added (spoofed) during a conversion, unless we
// have nonblocking.
if (DiffKind == Kind::Added) {
for (const auto &CFE : SrcFX) {
if (CFE.Effect.kind() == FunctionEffect::Kind::NonBlocking)
return false;
}
}
[[fallthrough]];
case FunctionEffect::Kind::NonBlocking:
// nonblocking can't be added (spoofed) during a conversion.
switch (DiffKind) {
case Kind::Added:
return true;
case Kind::Removed:
return false;
case Kind::ConditionMismatch:
// FIXME: Condition mismatches are too coarse right now -- expressions
// which are equivalent but don't have the same identity are detected as
// mismatches. We're going to diagnose those anyhow until expression
// matching is better.
return true;
}
break;
case FunctionEffect::Kind::Blocking:
case FunctionEffect::Kind::Allocating:
return false;
}
llvm_unreachable("unknown effect kind");
}
bool Sema::FunctionEffectDiff::shouldDiagnoseRedeclaration(
const FunctionDecl &OldFunction, const FunctionEffectsRef &OldFX,
const FunctionDecl &NewFunction, const FunctionEffectsRef &NewFX) const {
switch (EffectKind) {
case FunctionEffect::Kind::NonAllocating:
case FunctionEffect::Kind::NonBlocking:
// nonblocking/nonallocating can't be removed in a redeclaration.
switch (DiffKind) {
case Kind::Added:
return false; // No diagnostic.
case Kind::Removed:
return true; // Issue diagnostic.
case Kind::ConditionMismatch:
// All these forms of mismatches are diagnosed.
return true;
}
break;
case FunctionEffect::Kind::Blocking:
case FunctionEffect::Kind::Allocating:
return false;
}
llvm_unreachable("unknown effect kind");
}
Sema::FunctionEffectDiff::OverrideResult
Sema::FunctionEffectDiff::shouldDiagnoseMethodOverride(
const CXXMethodDecl &OldMethod, const FunctionEffectsRef &OldFX,
const CXXMethodDecl &NewMethod, const FunctionEffectsRef &NewFX) const {
switch (EffectKind) {
case FunctionEffect::Kind::NonAllocating:
case FunctionEffect::Kind::NonBlocking:
switch (DiffKind) {
// If added on an override, that's fine and not diagnosed.
case Kind::Added:
return OverrideResult::NoAction;
// If missing from an override (removed), propagate from base to derived.
case Kind::Removed:
return OverrideResult::Merge;
// If there's a mismatch involving the effect's polarity or condition,
// issue a warning.
case Kind::ConditionMismatch:
return OverrideResult::Warn;
}
break;
case FunctionEffect::Kind::Blocking:
case FunctionEffect::Kind::Allocating:
return OverrideResult::NoAction;
}
llvm_unreachable("unknown effect kind");
}
} // namespace clang
|