1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
|
//===- SemaHLSL.cpp - Semantic Analysis for HLSL constructs ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This implements Semantic Analysis for HLSL constructs.
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaHLSL.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Attrs.inc"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/DynamicRecursiveASTVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/ParsedAttr.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/Template.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/DXILABI.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/TargetParser/Triple.h"
#include <cstddef>
#include <iterator>
#include <utility>
using namespace clang;
using RegisterType = HLSLResourceBindingAttr::RegisterType;
static CXXRecordDecl *createHostLayoutStruct(Sema &S,
CXXRecordDecl *StructDecl);
static RegisterType getRegisterType(ResourceClass RC) {
switch (RC) {
case ResourceClass::SRV:
return RegisterType::SRV;
case ResourceClass::UAV:
return RegisterType::UAV;
case ResourceClass::CBuffer:
return RegisterType::CBuffer;
case ResourceClass::Sampler:
return RegisterType::Sampler;
}
llvm_unreachable("unexpected ResourceClass value");
}
// Converts the first letter of string Slot to RegisterType.
// Returns false if the letter does not correspond to a valid register type.
static bool convertToRegisterType(StringRef Slot, RegisterType *RT) {
assert(RT != nullptr);
switch (Slot[0]) {
case 't':
case 'T':
*RT = RegisterType::SRV;
return true;
case 'u':
case 'U':
*RT = RegisterType::UAV;
return true;
case 'b':
case 'B':
*RT = RegisterType::CBuffer;
return true;
case 's':
case 'S':
*RT = RegisterType::Sampler;
return true;
case 'c':
case 'C':
*RT = RegisterType::C;
return true;
case 'i':
case 'I':
*RT = RegisterType::I;
return true;
default:
return false;
}
}
static ResourceClass getResourceClass(RegisterType RT) {
switch (RT) {
case RegisterType::SRV:
return ResourceClass::SRV;
case RegisterType::UAV:
return ResourceClass::UAV;
case RegisterType::CBuffer:
return ResourceClass::CBuffer;
case RegisterType::Sampler:
return ResourceClass::Sampler;
case RegisterType::C:
case RegisterType::I:
// Deliberately falling through to the unreachable below.
break;
}
llvm_unreachable("unexpected RegisterType value");
}
DeclBindingInfo *ResourceBindings::addDeclBindingInfo(const VarDecl *VD,
ResourceClass ResClass) {
assert(getDeclBindingInfo(VD, ResClass) == nullptr &&
"DeclBindingInfo already added");
assert(!hasBindingInfoForDecl(VD) || BindingsList.back().Decl == VD);
// VarDecl may have multiple entries for different resource classes.
// DeclToBindingListIndex stores the index of the first binding we saw
// for this decl. If there are any additional ones then that index
// shouldn't be updated.
DeclToBindingListIndex.try_emplace(VD, BindingsList.size());
return &BindingsList.emplace_back(VD, ResClass);
}
DeclBindingInfo *ResourceBindings::getDeclBindingInfo(const VarDecl *VD,
ResourceClass ResClass) {
auto Entry = DeclToBindingListIndex.find(VD);
if (Entry != DeclToBindingListIndex.end()) {
for (unsigned Index = Entry->getSecond();
Index < BindingsList.size() && BindingsList[Index].Decl == VD;
++Index) {
if (BindingsList[Index].ResClass == ResClass)
return &BindingsList[Index];
}
}
return nullptr;
}
bool ResourceBindings::hasBindingInfoForDecl(const VarDecl *VD) const {
return DeclToBindingListIndex.contains(VD);
}
SemaHLSL::SemaHLSL(Sema &S) : SemaBase(S) {}
Decl *SemaHLSL::ActOnStartBuffer(Scope *BufferScope, bool CBuffer,
SourceLocation KwLoc, IdentifierInfo *Ident,
SourceLocation IdentLoc,
SourceLocation LBrace) {
// For anonymous namespace, take the location of the left brace.
DeclContext *LexicalParent = SemaRef.getCurLexicalContext();
HLSLBufferDecl *Result = HLSLBufferDecl::Create(
getASTContext(), LexicalParent, CBuffer, KwLoc, Ident, IdentLoc, LBrace);
// if CBuffer is false, then it's a TBuffer
auto RC = CBuffer ? llvm::hlsl::ResourceClass::CBuffer
: llvm::hlsl::ResourceClass::SRV;
auto RK = CBuffer ? llvm::hlsl::ResourceKind::CBuffer
: llvm::hlsl::ResourceKind::TBuffer;
Result->addAttr(HLSLResourceClassAttr::CreateImplicit(getASTContext(), RC));
Result->addAttr(HLSLResourceAttr::CreateImplicit(getASTContext(), RK));
SemaRef.PushOnScopeChains(Result, BufferScope);
SemaRef.PushDeclContext(BufferScope, Result);
return Result;
}
// Calculate the size of a legacy cbuffer type in bytes based on
// https://learn.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-packing-rules
static unsigned calculateLegacyCbufferSize(const ASTContext &Context,
QualType T) {
unsigned Size = 0;
constexpr unsigned CBufferAlign = 16;
if (const RecordType *RT = T->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
for (const FieldDecl *Field : RD->fields()) {
QualType Ty = Field->getType();
unsigned FieldSize = calculateLegacyCbufferSize(Context, Ty);
// FIXME: This is not the correct alignment, it does not work for 16-bit
// types. See llvm/llvm-project#119641.
unsigned FieldAlign = 4;
if (Ty->isAggregateType())
FieldAlign = CBufferAlign;
Size = llvm::alignTo(Size, FieldAlign);
Size += FieldSize;
}
} else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
if (unsigned ElementCount = AT->getSize().getZExtValue()) {
unsigned ElementSize =
calculateLegacyCbufferSize(Context, AT->getElementType());
unsigned AlignedElementSize = llvm::alignTo(ElementSize, CBufferAlign);
Size = AlignedElementSize * (ElementCount - 1) + ElementSize;
}
} else if (const VectorType *VT = T->getAs<VectorType>()) {
unsigned ElementCount = VT->getNumElements();
unsigned ElementSize =
calculateLegacyCbufferSize(Context, VT->getElementType());
Size = ElementSize * ElementCount;
} else {
Size = Context.getTypeSize(T) / 8;
}
return Size;
}
// Validate packoffset:
// - if packoffset it used it must be set on all declarations inside the buffer
// - packoffset ranges must not overlap
static void validatePackoffset(Sema &S, HLSLBufferDecl *BufDecl) {
llvm::SmallVector<std::pair<VarDecl *, HLSLPackOffsetAttr *>> PackOffsetVec;
// Make sure the packoffset annotations are either on all declarations
// or on none.
bool HasPackOffset = false;
bool HasNonPackOffset = false;
for (auto *Field : BufDecl->decls()) {
VarDecl *Var = dyn_cast<VarDecl>(Field);
if (!Var)
continue;
if (Field->hasAttr<HLSLPackOffsetAttr>()) {
PackOffsetVec.emplace_back(Var, Field->getAttr<HLSLPackOffsetAttr>());
HasPackOffset = true;
} else {
HasNonPackOffset = true;
}
}
if (!HasPackOffset)
return;
if (HasNonPackOffset)
S.Diag(BufDecl->getLocation(), diag::warn_hlsl_packoffset_mix);
// Make sure there is no overlap in packoffset - sort PackOffsetVec by offset
// and compare adjacent values.
ASTContext &Context = S.getASTContext();
std::sort(PackOffsetVec.begin(), PackOffsetVec.end(),
[](const std::pair<VarDecl *, HLSLPackOffsetAttr *> &LHS,
const std::pair<VarDecl *, HLSLPackOffsetAttr *> &RHS) {
return LHS.second->getOffsetInBytes() <
RHS.second->getOffsetInBytes();
});
for (unsigned i = 0; i < PackOffsetVec.size() - 1; i++) {
VarDecl *Var = PackOffsetVec[i].first;
HLSLPackOffsetAttr *Attr = PackOffsetVec[i].second;
unsigned Size = calculateLegacyCbufferSize(Context, Var->getType());
unsigned Begin = Attr->getOffsetInBytes();
unsigned End = Begin + Size;
unsigned NextBegin = PackOffsetVec[i + 1].second->getOffsetInBytes();
if (End > NextBegin) {
VarDecl *NextVar = PackOffsetVec[i + 1].first;
S.Diag(NextVar->getLocation(), diag::err_hlsl_packoffset_overlap)
<< NextVar << Var;
}
}
}
// Returns true if the array has a zero size = if any of the dimensions is 0
static bool isZeroSizedArray(const ConstantArrayType *CAT) {
while (CAT && !CAT->isZeroSize())
CAT = dyn_cast<ConstantArrayType>(
CAT->getElementType()->getUnqualifiedDesugaredType());
return CAT != nullptr;
}
// Returns true if the record type is an HLSL resource class
static bool isResourceRecordType(const Type *Ty) {
return HLSLAttributedResourceType::findHandleTypeOnResource(Ty) != nullptr;
}
// Returns true if the type is a leaf element type that is not valid to be
// included in HLSL Buffer, such as a resource class, empty struct, zero-sized
// array, or a builtin intangible type. Returns false it is a valid leaf element
// type or if it is a record type that needs to be inspected further.
static bool isInvalidConstantBufferLeafElementType(const Type *Ty) {
if (Ty->isRecordType()) {
if (isResourceRecordType(Ty) || Ty->getAsCXXRecordDecl()->isEmpty())
return true;
return false;
}
if (Ty->isConstantArrayType() &&
isZeroSizedArray(cast<ConstantArrayType>(Ty)))
return true;
if (Ty->isHLSLBuiltinIntangibleType())
return true;
return false;
}
// Returns true if the struct contains at least one element that prevents it
// from being included inside HLSL Buffer as is, such as an intangible type,
// empty struct, or zero-sized array. If it does, a new implicit layout struct
// needs to be created for HLSL Buffer use that will exclude these unwanted
// declarations (see createHostLayoutStruct function).
static bool requiresImplicitBufferLayoutStructure(const CXXRecordDecl *RD) {
if (RD->getTypeForDecl()->isHLSLIntangibleType() || RD->isEmpty())
return true;
// check fields
for (const FieldDecl *Field : RD->fields()) {
QualType Ty = Field->getType();
if (isInvalidConstantBufferLeafElementType(Ty.getTypePtr()))
return true;
if (Ty->isRecordType() &&
requiresImplicitBufferLayoutStructure(Ty->getAsCXXRecordDecl()))
return true;
}
// check bases
for (const CXXBaseSpecifier &Base : RD->bases())
if (requiresImplicitBufferLayoutStructure(
Base.getType()->getAsCXXRecordDecl()))
return true;
return false;
}
static CXXRecordDecl *findRecordDeclInContext(IdentifierInfo *II,
DeclContext *DC) {
CXXRecordDecl *RD = nullptr;
for (NamedDecl *Decl :
DC->getNonTransparentContext()->lookup(DeclarationName(II))) {
if (CXXRecordDecl *FoundRD = dyn_cast<CXXRecordDecl>(Decl)) {
assert(RD == nullptr &&
"there should be at most 1 record by a given name in a scope");
RD = FoundRD;
}
}
return RD;
}
// Creates a name for buffer layout struct using the provide name base.
// If the name must be unique (not previously defined), a suffix is added
// until a unique name is found.
static IdentifierInfo *getHostLayoutStructName(Sema &S, NamedDecl *BaseDecl,
bool MustBeUnique) {
ASTContext &AST = S.getASTContext();
IdentifierInfo *NameBaseII = BaseDecl->getIdentifier();
llvm::SmallString<64> Name("__layout_");
if (NameBaseII) {
Name.append(NameBaseII->getName());
} else {
// anonymous struct
Name.append("anon");
MustBeUnique = true;
}
size_t NameLength = Name.size();
IdentifierInfo *II = &AST.Idents.get(Name, tok::TokenKind::identifier);
if (!MustBeUnique)
return II;
unsigned suffix = 0;
while (true) {
if (suffix != 0) {
Name.append("_");
Name.append(llvm::Twine(suffix).str());
II = &AST.Idents.get(Name, tok::TokenKind::identifier);
}
if (!findRecordDeclInContext(II, BaseDecl->getDeclContext()))
return II;
// declaration with that name already exists - increment suffix and try
// again until unique name is found
suffix++;
Name.truncate(NameLength);
};
}
// Creates a field declaration of given name and type for HLSL buffer layout
// struct. Returns nullptr if the type cannot be use in HLSL Buffer layout.
static FieldDecl *createFieldForHostLayoutStruct(Sema &S, const Type *Ty,
IdentifierInfo *II,
CXXRecordDecl *LayoutStruct) {
if (isInvalidConstantBufferLeafElementType(Ty))
return nullptr;
if (Ty->isRecordType()) {
CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
if (requiresImplicitBufferLayoutStructure(RD)) {
RD = createHostLayoutStruct(S, RD);
if (!RD)
return nullptr;
Ty = RD->getTypeForDecl();
}
}
QualType QT = QualType(Ty, 0);
ASTContext &AST = S.getASTContext();
TypeSourceInfo *TSI = AST.getTrivialTypeSourceInfo(QT, SourceLocation());
auto *Field = FieldDecl::Create(AST, LayoutStruct, SourceLocation(),
SourceLocation(), II, QT, TSI, nullptr, false,
InClassInitStyle::ICIS_NoInit);
Field->setAccess(AccessSpecifier::AS_private);
return Field;
}
// Creates host layout struct for a struct included in HLSL Buffer.
// The layout struct will include only fields that are allowed in HLSL buffer.
// These fields will be filtered out:
// - resource classes
// - empty structs
// - zero-sized arrays
// Returns nullptr if the resulting layout struct would be empty.
static CXXRecordDecl *createHostLayoutStruct(Sema &S,
CXXRecordDecl *StructDecl) {
assert(requiresImplicitBufferLayoutStructure(StructDecl) &&
"struct is already HLSL buffer compatible");
ASTContext &AST = S.getASTContext();
DeclContext *DC = StructDecl->getDeclContext();
IdentifierInfo *II = getHostLayoutStructName(S, StructDecl, false);
// reuse existing if the layout struct if it already exists
if (CXXRecordDecl *RD = findRecordDeclInContext(II, DC))
return RD;
CXXRecordDecl *LS = CXXRecordDecl::Create(
AST, TagDecl::TagKind::Class, DC, SourceLocation(), SourceLocation(), II);
LS->setImplicit(true);
LS->startDefinition();
// copy base struct, create HLSL Buffer compatible version if needed
if (unsigned NumBases = StructDecl->getNumBases()) {
assert(NumBases == 1 && "HLSL supports only one base type");
(void)NumBases;
CXXBaseSpecifier Base = *StructDecl->bases_begin();
CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
if (requiresImplicitBufferLayoutStructure(BaseDecl)) {
BaseDecl = createHostLayoutStruct(S, BaseDecl);
if (BaseDecl) {
TypeSourceInfo *TSI = AST.getTrivialTypeSourceInfo(
QualType(BaseDecl->getTypeForDecl(), 0));
Base = CXXBaseSpecifier(SourceRange(), false, StructDecl->isClass(),
AS_none, TSI, SourceLocation());
}
}
if (BaseDecl) {
const CXXBaseSpecifier *BasesArray[1] = {&Base};
LS->setBases(BasesArray, 1);
}
}
// filter struct fields
for (const FieldDecl *FD : StructDecl->fields()) {
const Type *Ty = FD->getType()->getUnqualifiedDesugaredType();
if (FieldDecl *NewFD =
createFieldForHostLayoutStruct(S, Ty, FD->getIdentifier(), LS))
LS->addDecl(NewFD);
}
LS->completeDefinition();
if (LS->field_empty() && LS->getNumBases() == 0)
return nullptr;
DC->addDecl(LS);
return LS;
}
// Creates host layout struct for HLSL Buffer. The struct will include only
// fields of types that are allowed in HLSL buffer and it will filter out:
// - static variable declarations
// - resource classes
// - empty structs
// - zero-sized arrays
// - non-variable declarations
// The layour struct will be added to the HLSLBufferDecl declarations.
void createHostLayoutStructForBuffer(Sema &S, HLSLBufferDecl *BufDecl) {
ASTContext &AST = S.getASTContext();
IdentifierInfo *II = getHostLayoutStructName(S, BufDecl, true);
CXXRecordDecl *LS =
CXXRecordDecl::Create(AST, TagDecl::TagKind::Class, BufDecl,
SourceLocation(), SourceLocation(), II);
LS->setImplicit(true);
LS->startDefinition();
for (Decl *D : BufDecl->decls()) {
VarDecl *VD = dyn_cast<VarDecl>(D);
if (!VD || VD->getStorageClass() == SC_Static)
continue;
const Type *Ty = VD->getType()->getUnqualifiedDesugaredType();
if (FieldDecl *FD =
createFieldForHostLayoutStruct(S, Ty, VD->getIdentifier(), LS)) {
// add the field decl to the layout struct
LS->addDecl(FD);
// update address space of the original decl to hlsl_constant
QualType NewTy =
AST.getAddrSpaceQualType(VD->getType(), LangAS::hlsl_constant);
VD->setType(NewTy);
}
}
LS->completeDefinition();
BufDecl->addDecl(LS);
}
// Handle end of cbuffer/tbuffer declaration
void SemaHLSL::ActOnFinishBuffer(Decl *Dcl, SourceLocation RBrace) {
auto *BufDecl = cast<HLSLBufferDecl>(Dcl);
BufDecl->setRBraceLoc(RBrace);
validatePackoffset(SemaRef, BufDecl);
// create buffer layout struct
createHostLayoutStructForBuffer(SemaRef, BufDecl);
SemaRef.PopDeclContext();
}
HLSLNumThreadsAttr *SemaHLSL::mergeNumThreadsAttr(Decl *D,
const AttributeCommonInfo &AL,
int X, int Y, int Z) {
if (HLSLNumThreadsAttr *NT = D->getAttr<HLSLNumThreadsAttr>()) {
if (NT->getX() != X || NT->getY() != Y || NT->getZ() != Z) {
Diag(NT->getLocation(), diag::err_hlsl_attribute_param_mismatch) << AL;
Diag(AL.getLoc(), diag::note_conflicting_attribute);
}
return nullptr;
}
return ::new (getASTContext())
HLSLNumThreadsAttr(getASTContext(), AL, X, Y, Z);
}
HLSLWaveSizeAttr *SemaHLSL::mergeWaveSizeAttr(Decl *D,
const AttributeCommonInfo &AL,
int Min, int Max, int Preferred,
int SpelledArgsCount) {
if (HLSLWaveSizeAttr *WS = D->getAttr<HLSLWaveSizeAttr>()) {
if (WS->getMin() != Min || WS->getMax() != Max ||
WS->getPreferred() != Preferred ||
WS->getSpelledArgsCount() != SpelledArgsCount) {
Diag(WS->getLocation(), diag::err_hlsl_attribute_param_mismatch) << AL;
Diag(AL.getLoc(), diag::note_conflicting_attribute);
}
return nullptr;
}
HLSLWaveSizeAttr *Result = ::new (getASTContext())
HLSLWaveSizeAttr(getASTContext(), AL, Min, Max, Preferred);
Result->setSpelledArgsCount(SpelledArgsCount);
return Result;
}
HLSLShaderAttr *
SemaHLSL::mergeShaderAttr(Decl *D, const AttributeCommonInfo &AL,
llvm::Triple::EnvironmentType ShaderType) {
if (HLSLShaderAttr *NT = D->getAttr<HLSLShaderAttr>()) {
if (NT->getType() != ShaderType) {
Diag(NT->getLocation(), diag::err_hlsl_attribute_param_mismatch) << AL;
Diag(AL.getLoc(), diag::note_conflicting_attribute);
}
return nullptr;
}
return HLSLShaderAttr::Create(getASTContext(), ShaderType, AL);
}
HLSLParamModifierAttr *
SemaHLSL::mergeParamModifierAttr(Decl *D, const AttributeCommonInfo &AL,
HLSLParamModifierAttr::Spelling Spelling) {
// We can only merge an `in` attribute with an `out` attribute. All other
// combinations of duplicated attributes are ill-formed.
if (HLSLParamModifierAttr *PA = D->getAttr<HLSLParamModifierAttr>()) {
if ((PA->isIn() && Spelling == HLSLParamModifierAttr::Keyword_out) ||
(PA->isOut() && Spelling == HLSLParamModifierAttr::Keyword_in)) {
D->dropAttr<HLSLParamModifierAttr>();
SourceRange AdjustedRange = {PA->getLocation(), AL.getRange().getEnd()};
return HLSLParamModifierAttr::Create(
getASTContext(), /*MergedSpelling=*/true, AdjustedRange,
HLSLParamModifierAttr::Keyword_inout);
}
Diag(AL.getLoc(), diag::err_hlsl_duplicate_parameter_modifier) << AL;
Diag(PA->getLocation(), diag::note_conflicting_attribute);
return nullptr;
}
return HLSLParamModifierAttr::Create(getASTContext(), AL);
}
void SemaHLSL::ActOnTopLevelFunction(FunctionDecl *FD) {
auto &TargetInfo = getASTContext().getTargetInfo();
if (FD->getName() != TargetInfo.getTargetOpts().HLSLEntry)
return;
llvm::Triple::EnvironmentType Env = TargetInfo.getTriple().getEnvironment();
if (HLSLShaderAttr::isValidShaderType(Env) && Env != llvm::Triple::Library) {
if (const auto *Shader = FD->getAttr<HLSLShaderAttr>()) {
// The entry point is already annotated - check that it matches the
// triple.
if (Shader->getType() != Env) {
Diag(Shader->getLocation(), diag::err_hlsl_entry_shader_attr_mismatch)
<< Shader;
FD->setInvalidDecl();
}
} else {
// Implicitly add the shader attribute if the entry function isn't
// explicitly annotated.
FD->addAttr(HLSLShaderAttr::CreateImplicit(getASTContext(), Env,
FD->getBeginLoc()));
}
} else {
switch (Env) {
case llvm::Triple::UnknownEnvironment:
case llvm::Triple::Library:
break;
default:
llvm_unreachable("Unhandled environment in triple");
}
}
}
void SemaHLSL::CheckEntryPoint(FunctionDecl *FD) {
const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>();
assert(ShaderAttr && "Entry point has no shader attribute");
llvm::Triple::EnvironmentType ST = ShaderAttr->getType();
auto &TargetInfo = getASTContext().getTargetInfo();
VersionTuple Ver = TargetInfo.getTriple().getOSVersion();
switch (ST) {
case llvm::Triple::Pixel:
case llvm::Triple::Vertex:
case llvm::Triple::Geometry:
case llvm::Triple::Hull:
case llvm::Triple::Domain:
case llvm::Triple::RayGeneration:
case llvm::Triple::Intersection:
case llvm::Triple::AnyHit:
case llvm::Triple::ClosestHit:
case llvm::Triple::Miss:
case llvm::Triple::Callable:
if (const auto *NT = FD->getAttr<HLSLNumThreadsAttr>()) {
DiagnoseAttrStageMismatch(NT, ST,
{llvm::Triple::Compute,
llvm::Triple::Amplification,
llvm::Triple::Mesh});
FD->setInvalidDecl();
}
if (const auto *WS = FD->getAttr<HLSLWaveSizeAttr>()) {
DiagnoseAttrStageMismatch(WS, ST,
{llvm::Triple::Compute,
llvm::Triple::Amplification,
llvm::Triple::Mesh});
FD->setInvalidDecl();
}
break;
case llvm::Triple::Compute:
case llvm::Triple::Amplification:
case llvm::Triple::Mesh:
if (!FD->hasAttr<HLSLNumThreadsAttr>()) {
Diag(FD->getLocation(), diag::err_hlsl_missing_numthreads)
<< llvm::Triple::getEnvironmentTypeName(ST);
FD->setInvalidDecl();
}
if (const auto *WS = FD->getAttr<HLSLWaveSizeAttr>()) {
if (Ver < VersionTuple(6, 6)) {
Diag(WS->getLocation(), diag::err_hlsl_attribute_in_wrong_shader_model)
<< WS << "6.6";
FD->setInvalidDecl();
} else if (WS->getSpelledArgsCount() > 1 && Ver < VersionTuple(6, 8)) {
Diag(
WS->getLocation(),
diag::err_hlsl_attribute_number_arguments_insufficient_shader_model)
<< WS << WS->getSpelledArgsCount() << "6.8";
FD->setInvalidDecl();
}
}
break;
default:
llvm_unreachable("Unhandled environment in triple");
}
for (ParmVarDecl *Param : FD->parameters()) {
if (const auto *AnnotationAttr = Param->getAttr<HLSLAnnotationAttr>()) {
CheckSemanticAnnotation(FD, Param, AnnotationAttr);
} else {
// FIXME: Handle struct parameters where annotations are on struct fields.
// See: https://github.com/llvm/llvm-project/issues/57875
Diag(FD->getLocation(), diag::err_hlsl_missing_semantic_annotation);
Diag(Param->getLocation(), diag::note_previous_decl) << Param;
FD->setInvalidDecl();
}
}
// FIXME: Verify return type semantic annotation.
}
void SemaHLSL::CheckSemanticAnnotation(
FunctionDecl *EntryPoint, const Decl *Param,
const HLSLAnnotationAttr *AnnotationAttr) {
auto *ShaderAttr = EntryPoint->getAttr<HLSLShaderAttr>();
assert(ShaderAttr && "Entry point has no shader attribute");
llvm::Triple::EnvironmentType ST = ShaderAttr->getType();
switch (AnnotationAttr->getKind()) {
case attr::HLSLSV_DispatchThreadID:
case attr::HLSLSV_GroupIndex:
case attr::HLSLSV_GroupThreadID:
case attr::HLSLSV_GroupID:
if (ST == llvm::Triple::Compute)
return;
DiagnoseAttrStageMismatch(AnnotationAttr, ST, {llvm::Triple::Compute});
break;
default:
llvm_unreachable("Unknown HLSLAnnotationAttr");
}
}
void SemaHLSL::DiagnoseAttrStageMismatch(
const Attr *A, llvm::Triple::EnvironmentType Stage,
std::initializer_list<llvm::Triple::EnvironmentType> AllowedStages) {
SmallVector<StringRef, 8> StageStrings;
llvm::transform(AllowedStages, std::back_inserter(StageStrings),
[](llvm::Triple::EnvironmentType ST) {
return StringRef(
HLSLShaderAttr::ConvertEnvironmentTypeToStr(ST));
});
Diag(A->getLoc(), diag::err_hlsl_attr_unsupported_in_stage)
<< A << llvm::Triple::getEnvironmentTypeName(Stage)
<< (AllowedStages.size() != 1) << join(StageStrings, ", ");
}
template <CastKind Kind>
static void castVector(Sema &S, ExprResult &E, QualType &Ty, unsigned Sz) {
if (const auto *VTy = Ty->getAs<VectorType>())
Ty = VTy->getElementType();
Ty = S.getASTContext().getExtVectorType(Ty, Sz);
E = S.ImpCastExprToType(E.get(), Ty, Kind);
}
template <CastKind Kind>
static QualType castElement(Sema &S, ExprResult &E, QualType Ty) {
E = S.ImpCastExprToType(E.get(), Ty, Kind);
return Ty;
}
static QualType handleFloatVectorBinOpConversion(
Sema &SemaRef, ExprResult &LHS, ExprResult &RHS, QualType LHSType,
QualType RHSType, QualType LElTy, QualType RElTy, bool IsCompAssign) {
bool LHSFloat = LElTy->isRealFloatingType();
bool RHSFloat = RElTy->isRealFloatingType();
if (LHSFloat && RHSFloat) {
if (IsCompAssign ||
SemaRef.getASTContext().getFloatingTypeOrder(LElTy, RElTy) > 0)
return castElement<CK_FloatingCast>(SemaRef, RHS, LHSType);
return castElement<CK_FloatingCast>(SemaRef, LHS, RHSType);
}
if (LHSFloat)
return castElement<CK_IntegralToFloating>(SemaRef, RHS, LHSType);
assert(RHSFloat);
if (IsCompAssign)
return castElement<clang::CK_FloatingToIntegral>(SemaRef, RHS, LHSType);
return castElement<CK_IntegralToFloating>(SemaRef, LHS, RHSType);
}
static QualType handleIntegerVectorBinOpConversion(
Sema &SemaRef, ExprResult &LHS, ExprResult &RHS, QualType LHSType,
QualType RHSType, QualType LElTy, QualType RElTy, bool IsCompAssign) {
int IntOrder = SemaRef.Context.getIntegerTypeOrder(LElTy, RElTy);
bool LHSSigned = LElTy->hasSignedIntegerRepresentation();
bool RHSSigned = RElTy->hasSignedIntegerRepresentation();
auto &Ctx = SemaRef.getASTContext();
// If both types have the same signedness, use the higher ranked type.
if (LHSSigned == RHSSigned) {
if (IsCompAssign || IntOrder >= 0)
return castElement<CK_IntegralCast>(SemaRef, RHS, LHSType);
return castElement<CK_IntegralCast>(SemaRef, LHS, RHSType);
}
// If the unsigned type has greater than or equal rank of the signed type, use
// the unsigned type.
if (IntOrder != (LHSSigned ? 1 : -1)) {
if (IsCompAssign || RHSSigned)
return castElement<CK_IntegralCast>(SemaRef, RHS, LHSType);
return castElement<CK_IntegralCast>(SemaRef, LHS, RHSType);
}
// At this point the signed type has higher rank than the unsigned type, which
// means it will be the same size or bigger. If the signed type is bigger, it
// can represent all the values of the unsigned type, so select it.
if (Ctx.getIntWidth(LElTy) != Ctx.getIntWidth(RElTy)) {
if (IsCompAssign || LHSSigned)
return castElement<CK_IntegralCast>(SemaRef, RHS, LHSType);
return castElement<CK_IntegralCast>(SemaRef, LHS, RHSType);
}
// This is a bit of an odd duck case in HLSL. It shouldn't happen, but can due
// to C/C++ leaking through. The place this happens today is long vs long
// long. When arguments are vector<unsigned long, N> and vector<long long, N>,
// the long long has higher rank than long even though they are the same size.
// If this is a compound assignment cast the right hand side to the left hand
// side's type.
if (IsCompAssign)
return castElement<CK_IntegralCast>(SemaRef, RHS, LHSType);
// If this isn't a compound assignment we convert to unsigned long long.
QualType ElTy = Ctx.getCorrespondingUnsignedType(LHSSigned ? LElTy : RElTy);
QualType NewTy = Ctx.getExtVectorType(
ElTy, RHSType->castAs<VectorType>()->getNumElements());
(void)castElement<CK_IntegralCast>(SemaRef, RHS, NewTy);
return castElement<CK_IntegralCast>(SemaRef, LHS, NewTy);
}
static CastKind getScalarCastKind(ASTContext &Ctx, QualType DestTy,
QualType SrcTy) {
if (DestTy->isRealFloatingType() && SrcTy->isRealFloatingType())
return CK_FloatingCast;
if (DestTy->isIntegralType(Ctx) && SrcTy->isIntegralType(Ctx))
return CK_IntegralCast;
if (DestTy->isRealFloatingType())
return CK_IntegralToFloating;
assert(SrcTy->isRealFloatingType() && DestTy->isIntegralType(Ctx));
return CK_FloatingToIntegral;
}
QualType SemaHLSL::handleVectorBinOpConversion(ExprResult &LHS, ExprResult &RHS,
QualType LHSType,
QualType RHSType,
bool IsCompAssign) {
const auto *LVecTy = LHSType->getAs<VectorType>();
const auto *RVecTy = RHSType->getAs<VectorType>();
auto &Ctx = getASTContext();
// If the LHS is not a vector and this is a compound assignment, we truncate
// the argument to a scalar then convert it to the LHS's type.
if (!LVecTy && IsCompAssign) {
QualType RElTy = RHSType->castAs<VectorType>()->getElementType();
RHS = SemaRef.ImpCastExprToType(RHS.get(), RElTy, CK_HLSLVectorTruncation);
RHSType = RHS.get()->getType();
if (Ctx.hasSameUnqualifiedType(LHSType, RHSType))
return LHSType;
RHS = SemaRef.ImpCastExprToType(RHS.get(), LHSType,
getScalarCastKind(Ctx, LHSType, RHSType));
return LHSType;
}
unsigned EndSz = std::numeric_limits<unsigned>::max();
unsigned LSz = 0;
if (LVecTy)
LSz = EndSz = LVecTy->getNumElements();
if (RVecTy)
EndSz = std::min(RVecTy->getNumElements(), EndSz);
assert(EndSz != std::numeric_limits<unsigned>::max() &&
"one of the above should have had a value");
// In a compound assignment, the left operand does not change type, the right
// operand is converted to the type of the left operand.
if (IsCompAssign && LSz != EndSz) {
Diag(LHS.get()->getBeginLoc(),
diag::err_hlsl_vector_compound_assignment_truncation)
<< LHSType << RHSType;
return QualType();
}
if (RVecTy && RVecTy->getNumElements() > EndSz)
castVector<CK_HLSLVectorTruncation>(SemaRef, RHS, RHSType, EndSz);
if (!IsCompAssign && LVecTy && LVecTy->getNumElements() > EndSz)
castVector<CK_HLSLVectorTruncation>(SemaRef, LHS, LHSType, EndSz);
if (!RVecTy)
castVector<CK_VectorSplat>(SemaRef, RHS, RHSType, EndSz);
if (!IsCompAssign && !LVecTy)
castVector<CK_VectorSplat>(SemaRef, LHS, LHSType, EndSz);
// If we're at the same type after resizing we can stop here.
if (Ctx.hasSameUnqualifiedType(LHSType, RHSType))
return Ctx.getCommonSugaredType(LHSType, RHSType);
QualType LElTy = LHSType->castAs<VectorType>()->getElementType();
QualType RElTy = RHSType->castAs<VectorType>()->getElementType();
// Handle conversion for floating point vectors.
if (LElTy->isRealFloatingType() || RElTy->isRealFloatingType())
return handleFloatVectorBinOpConversion(SemaRef, LHS, RHS, LHSType, RHSType,
LElTy, RElTy, IsCompAssign);
assert(LElTy->isIntegralType(Ctx) && RElTy->isIntegralType(Ctx) &&
"HLSL Vectors can only contain integer or floating point types");
return handleIntegerVectorBinOpConversion(SemaRef, LHS, RHS, LHSType, RHSType,
LElTy, RElTy, IsCompAssign);
}
void SemaHLSL::emitLogicalOperatorFixIt(Expr *LHS, Expr *RHS,
BinaryOperatorKind Opc) {
assert((Opc == BO_LOr || Opc == BO_LAnd) &&
"Called with non-logical operator");
llvm::SmallVector<char, 256> Buff;
llvm::raw_svector_ostream OS(Buff);
PrintingPolicy PP(SemaRef.getLangOpts());
StringRef NewFnName = Opc == BO_LOr ? "or" : "and";
OS << NewFnName << "(";
LHS->printPretty(OS, nullptr, PP);
OS << ", ";
RHS->printPretty(OS, nullptr, PP);
OS << ")";
SourceRange FullRange = SourceRange(LHS->getBeginLoc(), RHS->getEndLoc());
SemaRef.Diag(LHS->getBeginLoc(), diag::note_function_suggestion)
<< NewFnName << FixItHint::CreateReplacement(FullRange, OS.str());
}
void SemaHLSL::handleNumThreadsAttr(Decl *D, const ParsedAttr &AL) {
llvm::VersionTuple SMVersion =
getASTContext().getTargetInfo().getTriple().getOSVersion();
uint32_t ZMax = 1024;
uint32_t ThreadMax = 1024;
if (SMVersion.getMajor() <= 4) {
ZMax = 1;
ThreadMax = 768;
} else if (SMVersion.getMajor() == 5) {
ZMax = 64;
ThreadMax = 1024;
}
uint32_t X;
if (!SemaRef.checkUInt32Argument(AL, AL.getArgAsExpr(0), X))
return;
if (X > 1024) {
Diag(AL.getArgAsExpr(0)->getExprLoc(),
diag::err_hlsl_numthreads_argument_oor)
<< 0 << 1024;
return;
}
uint32_t Y;
if (!SemaRef.checkUInt32Argument(AL, AL.getArgAsExpr(1), Y))
return;
if (Y > 1024) {
Diag(AL.getArgAsExpr(1)->getExprLoc(),
diag::err_hlsl_numthreads_argument_oor)
<< 1 << 1024;
return;
}
uint32_t Z;
if (!SemaRef.checkUInt32Argument(AL, AL.getArgAsExpr(2), Z))
return;
if (Z > ZMax) {
SemaRef.Diag(AL.getArgAsExpr(2)->getExprLoc(),
diag::err_hlsl_numthreads_argument_oor)
<< 2 << ZMax;
return;
}
if (X * Y * Z > ThreadMax) {
Diag(AL.getLoc(), diag::err_hlsl_numthreads_invalid) << ThreadMax;
return;
}
HLSLNumThreadsAttr *NewAttr = mergeNumThreadsAttr(D, AL, X, Y, Z);
if (NewAttr)
D->addAttr(NewAttr);
}
static bool isValidWaveSizeValue(unsigned Value) {
return llvm::isPowerOf2_32(Value) && Value >= 4 && Value <= 128;
}
void SemaHLSL::handleWaveSizeAttr(Decl *D, const ParsedAttr &AL) {
// validate that the wavesize argument is a power of 2 between 4 and 128
// inclusive
unsigned SpelledArgsCount = AL.getNumArgs();
if (SpelledArgsCount == 0 || SpelledArgsCount > 3)
return;
uint32_t Min;
if (!SemaRef.checkUInt32Argument(AL, AL.getArgAsExpr(0), Min))
return;
uint32_t Max = 0;
if (SpelledArgsCount > 1 &&
!SemaRef.checkUInt32Argument(AL, AL.getArgAsExpr(1), Max))
return;
uint32_t Preferred = 0;
if (SpelledArgsCount > 2 &&
!SemaRef.checkUInt32Argument(AL, AL.getArgAsExpr(2), Preferred))
return;
if (SpelledArgsCount > 2) {
if (!isValidWaveSizeValue(Preferred)) {
Diag(AL.getArgAsExpr(2)->getExprLoc(),
diag::err_attribute_power_of_two_in_range)
<< AL << llvm::dxil::MinWaveSize << llvm::dxil::MaxWaveSize
<< Preferred;
return;
}
// Preferred not in range.
if (Preferred < Min || Preferred > Max) {
Diag(AL.getArgAsExpr(2)->getExprLoc(),
diag::err_attribute_power_of_two_in_range)
<< AL << Min << Max << Preferred;
return;
}
} else if (SpelledArgsCount > 1) {
if (!isValidWaveSizeValue(Max)) {
Diag(AL.getArgAsExpr(1)->getExprLoc(),
diag::err_attribute_power_of_two_in_range)
<< AL << llvm::dxil::MinWaveSize << llvm::dxil::MaxWaveSize << Max;
return;
}
if (Max < Min) {
Diag(AL.getLoc(), diag::err_attribute_argument_invalid) << AL << 1;
return;
} else if (Max == Min) {
Diag(AL.getLoc(), diag::warn_attr_min_eq_max) << AL;
}
} else {
if (!isValidWaveSizeValue(Min)) {
Diag(AL.getArgAsExpr(0)->getExprLoc(),
diag::err_attribute_power_of_two_in_range)
<< AL << llvm::dxil::MinWaveSize << llvm::dxil::MaxWaveSize << Min;
return;
}
}
HLSLWaveSizeAttr *NewAttr =
mergeWaveSizeAttr(D, AL, Min, Max, Preferred, SpelledArgsCount);
if (NewAttr)
D->addAttr(NewAttr);
}
bool SemaHLSL::diagnoseInputIDType(QualType T, const ParsedAttr &AL) {
const auto *VT = T->getAs<VectorType>();
if (!T->hasUnsignedIntegerRepresentation() ||
(VT && VT->getNumElements() > 3)) {
Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_type)
<< AL << "uint/uint2/uint3";
return false;
}
return true;
}
void SemaHLSL::handleSV_DispatchThreadIDAttr(Decl *D, const ParsedAttr &AL) {
auto *VD = cast<ValueDecl>(D);
if (!diagnoseInputIDType(VD->getType(), AL))
return;
D->addAttr(::new (getASTContext())
HLSLSV_DispatchThreadIDAttr(getASTContext(), AL));
}
void SemaHLSL::handleSV_GroupThreadIDAttr(Decl *D, const ParsedAttr &AL) {
auto *VD = cast<ValueDecl>(D);
if (!diagnoseInputIDType(VD->getType(), AL))
return;
D->addAttr(::new (getASTContext())
HLSLSV_GroupThreadIDAttr(getASTContext(), AL));
}
void SemaHLSL::handleSV_GroupIDAttr(Decl *D, const ParsedAttr &AL) {
auto *VD = cast<ValueDecl>(D);
if (!diagnoseInputIDType(VD->getType(), AL))
return;
D->addAttr(::new (getASTContext()) HLSLSV_GroupIDAttr(getASTContext(), AL));
}
void SemaHLSL::handlePackOffsetAttr(Decl *D, const ParsedAttr &AL) {
if (!isa<VarDecl>(D) || !isa<HLSLBufferDecl>(D->getDeclContext())) {
Diag(AL.getLoc(), diag::err_hlsl_attr_invalid_ast_node)
<< AL << "shader constant in a constant buffer";
return;
}
uint32_t SubComponent;
if (!SemaRef.checkUInt32Argument(AL, AL.getArgAsExpr(0), SubComponent))
return;
uint32_t Component;
if (!SemaRef.checkUInt32Argument(AL, AL.getArgAsExpr(1), Component))
return;
QualType T = cast<VarDecl>(D)->getType().getCanonicalType();
// Check if T is an array or struct type.
// TODO: mark matrix type as aggregate type.
bool IsAggregateTy = (T->isArrayType() || T->isStructureType());
// Check Component is valid for T.
if (Component) {
unsigned Size = getASTContext().getTypeSize(T);
if (IsAggregateTy || Size > 128) {
Diag(AL.getLoc(), diag::err_hlsl_packoffset_cross_reg_boundary);
return;
} else {
// Make sure Component + sizeof(T) <= 4.
if ((Component * 32 + Size) > 128) {
Diag(AL.getLoc(), diag::err_hlsl_packoffset_cross_reg_boundary);
return;
}
QualType EltTy = T;
if (const auto *VT = T->getAs<VectorType>())
EltTy = VT->getElementType();
unsigned Align = getASTContext().getTypeAlign(EltTy);
if (Align > 32 && Component == 1) {
// NOTE: Component 3 will hit err_hlsl_packoffset_cross_reg_boundary.
// So we only need to check Component 1 here.
Diag(AL.getLoc(), diag::err_hlsl_packoffset_alignment_mismatch)
<< Align << EltTy;
return;
}
}
}
D->addAttr(::new (getASTContext()) HLSLPackOffsetAttr(
getASTContext(), AL, SubComponent, Component));
}
void SemaHLSL::handleShaderAttr(Decl *D, const ParsedAttr &AL) {
StringRef Str;
SourceLocation ArgLoc;
if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
return;
llvm::Triple::EnvironmentType ShaderType;
if (!HLSLShaderAttr::ConvertStrToEnvironmentType(Str, ShaderType)) {
Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
<< AL << Str << ArgLoc;
return;
}
// FIXME: check function match the shader stage.
HLSLShaderAttr *NewAttr = mergeShaderAttr(D, AL, ShaderType);
if (NewAttr)
D->addAttr(NewAttr);
}
bool clang::CreateHLSLAttributedResourceType(
Sema &S, QualType Wrapped, ArrayRef<const Attr *> AttrList,
QualType &ResType, HLSLAttributedResourceLocInfo *LocInfo) {
assert(AttrList.size() && "expected list of resource attributes");
QualType ContainedTy = QualType();
TypeSourceInfo *ContainedTyInfo = nullptr;
SourceLocation LocBegin = AttrList[0]->getRange().getBegin();
SourceLocation LocEnd = AttrList[0]->getRange().getEnd();
HLSLAttributedResourceType::Attributes ResAttrs;
bool HasResourceClass = false;
for (const Attr *A : AttrList) {
if (!A)
continue;
LocEnd = A->getRange().getEnd();
switch (A->getKind()) {
case attr::HLSLResourceClass: {
ResourceClass RC = cast<HLSLResourceClassAttr>(A)->getResourceClass();
if (HasResourceClass) {
S.Diag(A->getLocation(), ResAttrs.ResourceClass == RC
? diag::warn_duplicate_attribute_exact
: diag::warn_duplicate_attribute)
<< A;
return false;
}
ResAttrs.ResourceClass = RC;
HasResourceClass = true;
break;
}
case attr::HLSLROV:
if (ResAttrs.IsROV) {
S.Diag(A->getLocation(), diag::warn_duplicate_attribute_exact) << A;
return false;
}
ResAttrs.IsROV = true;
break;
case attr::HLSLRawBuffer:
if (ResAttrs.RawBuffer) {
S.Diag(A->getLocation(), diag::warn_duplicate_attribute_exact) << A;
return false;
}
ResAttrs.RawBuffer = true;
break;
case attr::HLSLContainedType: {
const HLSLContainedTypeAttr *CTAttr = cast<HLSLContainedTypeAttr>(A);
QualType Ty = CTAttr->getType();
if (!ContainedTy.isNull()) {
S.Diag(A->getLocation(), ContainedTy == Ty
? diag::warn_duplicate_attribute_exact
: diag::warn_duplicate_attribute)
<< A;
return false;
}
ContainedTy = Ty;
ContainedTyInfo = CTAttr->getTypeLoc();
break;
}
default:
llvm_unreachable("unhandled resource attribute type");
}
}
if (!HasResourceClass) {
S.Diag(AttrList.back()->getRange().getEnd(),
diag::err_hlsl_missing_resource_class);
return false;
}
ResType = S.getASTContext().getHLSLAttributedResourceType(
Wrapped, ContainedTy, ResAttrs);
if (LocInfo && ContainedTyInfo) {
LocInfo->Range = SourceRange(LocBegin, LocEnd);
LocInfo->ContainedTyInfo = ContainedTyInfo;
}
return true;
}
// Validates and creates an HLSL attribute that is applied as type attribute on
// HLSL resource. The attributes are collected in HLSLResourcesTypeAttrs and at
// the end of the declaration they are applied to the declaration type by
// wrapping it in HLSLAttributedResourceType.
bool SemaHLSL::handleResourceTypeAttr(QualType T, const ParsedAttr &AL) {
// only allow resource type attributes on intangible types
if (!T->isHLSLResourceType()) {
Diag(AL.getLoc(), diag::err_hlsl_attribute_needs_intangible_type)
<< AL << getASTContext().HLSLResourceTy;
return false;
}
// validate number of arguments
if (!AL.checkExactlyNumArgs(SemaRef, AL.getMinArgs()))
return false;
Attr *A = nullptr;
switch (AL.getKind()) {
case ParsedAttr::AT_HLSLResourceClass: {
if (!AL.isArgIdent(0)) {
Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return false;
}
IdentifierLoc *Loc = AL.getArgAsIdent(0);
StringRef Identifier = Loc->Ident->getName();
SourceLocation ArgLoc = Loc->Loc;
// Validate resource class value
ResourceClass RC;
if (!HLSLResourceClassAttr::ConvertStrToResourceClass(Identifier, RC)) {
Diag(ArgLoc, diag::warn_attribute_type_not_supported)
<< "ResourceClass" << Identifier;
return false;
}
A = HLSLResourceClassAttr::Create(getASTContext(), RC, AL.getLoc());
break;
}
case ParsedAttr::AT_HLSLROV:
A = HLSLROVAttr::Create(getASTContext(), AL.getLoc());
break;
case ParsedAttr::AT_HLSLRawBuffer:
A = HLSLRawBufferAttr::Create(getASTContext(), AL.getLoc());
break;
case ParsedAttr::AT_HLSLContainedType: {
if (AL.getNumArgs() != 1 && !AL.hasParsedType()) {
Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1;
return false;
}
TypeSourceInfo *TSI = nullptr;
QualType QT = SemaRef.GetTypeFromParser(AL.getTypeArg(), &TSI);
assert(TSI && "no type source info for attribute argument");
if (SemaRef.RequireCompleteType(TSI->getTypeLoc().getBeginLoc(), QT,
diag::err_incomplete_type))
return false;
A = HLSLContainedTypeAttr::Create(getASTContext(), TSI, AL.getLoc());
break;
}
default:
llvm_unreachable("unhandled HLSL attribute");
}
HLSLResourcesTypeAttrs.emplace_back(A);
return true;
}
// Combines all resource type attributes and creates HLSLAttributedResourceType.
QualType SemaHLSL::ProcessResourceTypeAttributes(QualType CurrentType) {
if (!HLSLResourcesTypeAttrs.size())
return CurrentType;
QualType QT = CurrentType;
HLSLAttributedResourceLocInfo LocInfo;
if (CreateHLSLAttributedResourceType(SemaRef, CurrentType,
HLSLResourcesTypeAttrs, QT, &LocInfo)) {
const HLSLAttributedResourceType *RT =
cast<HLSLAttributedResourceType>(QT.getTypePtr());
// Temporarily store TypeLoc information for the new type.
// It will be transferred to HLSLAttributesResourceTypeLoc
// shortly after the type is created by TypeSpecLocFiller which
// will call the TakeLocForHLSLAttribute method below.
LocsForHLSLAttributedResources.insert(std::pair(RT, LocInfo));
}
HLSLResourcesTypeAttrs.clear();
return QT;
}
// Returns source location for the HLSLAttributedResourceType
HLSLAttributedResourceLocInfo
SemaHLSL::TakeLocForHLSLAttribute(const HLSLAttributedResourceType *RT) {
HLSLAttributedResourceLocInfo LocInfo = {};
auto I = LocsForHLSLAttributedResources.find(RT);
if (I != LocsForHLSLAttributedResources.end()) {
LocInfo = I->second;
LocsForHLSLAttributedResources.erase(I);
return LocInfo;
}
LocInfo.Range = SourceRange();
return LocInfo;
}
// Walks though the global variable declaration, collects all resource binding
// requirements and adds them to Bindings
void SemaHLSL::collectResourcesOnUserRecordDecl(const VarDecl *VD,
const RecordType *RT) {
const RecordDecl *RD = RT->getDecl();
for (FieldDecl *FD : RD->fields()) {
const Type *Ty = FD->getType()->getUnqualifiedDesugaredType();
// Unwrap arrays
// FIXME: Calculate array size while unwrapping
assert(!Ty->isIncompleteArrayType() &&
"incomplete arrays inside user defined types are not supported");
while (Ty->isConstantArrayType()) {
const ConstantArrayType *CAT = cast<ConstantArrayType>(Ty);
Ty = CAT->getElementType()->getUnqualifiedDesugaredType();
}
if (!Ty->isRecordType())
continue;
if (const HLSLAttributedResourceType *AttrResType =
HLSLAttributedResourceType::findHandleTypeOnResource(Ty)) {
// Add a new DeclBindingInfo to Bindings if it does not already exist
ResourceClass RC = AttrResType->getAttrs().ResourceClass;
DeclBindingInfo *DBI = Bindings.getDeclBindingInfo(VD, RC);
if (!DBI)
Bindings.addDeclBindingInfo(VD, RC);
} else if (const RecordType *RT = dyn_cast<RecordType>(Ty)) {
// Recursively scan embedded struct or class; it would be nice to do this
// without recursion, but tricky to correctly calculate the size of the
// binding, which is something we are probably going to need to do later
// on. Hopefully nesting of structs in structs too many levels is
// unlikely.
collectResourcesOnUserRecordDecl(VD, RT);
}
}
}
// Diagnore localized register binding errors for a single binding; does not
// diagnose resource binding on user record types, that will be done later
// in processResourceBindingOnDecl based on the information collected in
// collectResourcesOnVarDecl.
// Returns false if the register binding is not valid.
static bool DiagnoseLocalRegisterBinding(Sema &S, SourceLocation &ArgLoc,
Decl *D, RegisterType RegType,
bool SpecifiedSpace) {
int RegTypeNum = static_cast<int>(RegType);
// check if the decl type is groupshared
if (D->hasAttr<HLSLGroupSharedAddressSpaceAttr>()) {
S.Diag(ArgLoc, diag::err_hlsl_binding_type_mismatch) << RegTypeNum;
return false;
}
// Cbuffers and Tbuffers are HLSLBufferDecl types
if (HLSLBufferDecl *CBufferOrTBuffer = dyn_cast<HLSLBufferDecl>(D)) {
ResourceClass RC = CBufferOrTBuffer->isCBuffer() ? ResourceClass::CBuffer
: ResourceClass::SRV;
if (RegType == getRegisterType(RC))
return true;
S.Diag(D->getLocation(), diag::err_hlsl_binding_type_mismatch)
<< RegTypeNum;
return false;
}
// Samplers, UAVs, and SRVs are VarDecl types
assert(isa<VarDecl>(D) && "D is expected to be VarDecl or HLSLBufferDecl");
VarDecl *VD = cast<VarDecl>(D);
// Resource
if (const HLSLAttributedResourceType *AttrResType =
HLSLAttributedResourceType::findHandleTypeOnResource(
VD->getType().getTypePtr())) {
if (RegType == getRegisterType(AttrResType->getAttrs().ResourceClass))
return true;
S.Diag(D->getLocation(), diag::err_hlsl_binding_type_mismatch)
<< RegTypeNum;
return false;
}
const clang::Type *Ty = VD->getType().getTypePtr();
while (Ty->isArrayType())
Ty = Ty->getArrayElementTypeNoTypeQual();
// Basic types
if (Ty->isArithmeticType()) {
bool DeclaredInCOrTBuffer = isa<HLSLBufferDecl>(D->getDeclContext());
if (SpecifiedSpace && !DeclaredInCOrTBuffer)
S.Diag(ArgLoc, diag::err_hlsl_space_on_global_constant);
if (!DeclaredInCOrTBuffer &&
(Ty->isIntegralType(S.getASTContext()) || Ty->isFloatingType())) {
// Default Globals
if (RegType == RegisterType::CBuffer)
S.Diag(ArgLoc, diag::warn_hlsl_deprecated_register_type_b);
else if (RegType != RegisterType::C)
S.Diag(ArgLoc, diag::err_hlsl_binding_type_mismatch) << RegTypeNum;
} else {
if (RegType == RegisterType::C)
S.Diag(ArgLoc, diag::warn_hlsl_register_type_c_packoffset);
else
S.Diag(ArgLoc, diag::err_hlsl_binding_type_mismatch) << RegTypeNum;
}
return false;
}
if (Ty->isRecordType())
// RecordTypes will be diagnosed in processResourceBindingOnDecl
// that is called from ActOnVariableDeclarator
return true;
// Anything else is an error
S.Diag(ArgLoc, diag::err_hlsl_binding_type_mismatch) << RegTypeNum;
return false;
}
static bool ValidateMultipleRegisterAnnotations(Sema &S, Decl *TheDecl,
RegisterType regType) {
// make sure that there are no two register annotations
// applied to the decl with the same register type
bool RegisterTypesDetected[5] = {false};
RegisterTypesDetected[static_cast<int>(regType)] = true;
for (auto it = TheDecl->attr_begin(); it != TheDecl->attr_end(); ++it) {
if (HLSLResourceBindingAttr *attr =
dyn_cast<HLSLResourceBindingAttr>(*it)) {
RegisterType otherRegType = attr->getRegisterType();
if (RegisterTypesDetected[static_cast<int>(otherRegType)]) {
int otherRegTypeNum = static_cast<int>(otherRegType);
S.Diag(TheDecl->getLocation(),
diag::err_hlsl_duplicate_register_annotation)
<< otherRegTypeNum;
return false;
}
RegisterTypesDetected[static_cast<int>(otherRegType)] = true;
}
}
return true;
}
static bool DiagnoseHLSLRegisterAttribute(Sema &S, SourceLocation &ArgLoc,
Decl *D, RegisterType RegType,
bool SpecifiedSpace) {
// exactly one of these two types should be set
assert(((isa<VarDecl>(D) && !isa<HLSLBufferDecl>(D)) ||
(!isa<VarDecl>(D) && isa<HLSLBufferDecl>(D))) &&
"expecting VarDecl or HLSLBufferDecl");
// check if the declaration contains resource matching the register type
if (!DiagnoseLocalRegisterBinding(S, ArgLoc, D, RegType, SpecifiedSpace))
return false;
// next, if multiple register annotations exist, check that none conflict.
return ValidateMultipleRegisterAnnotations(S, D, RegType);
}
void SemaHLSL::handleResourceBindingAttr(Decl *TheDecl, const ParsedAttr &AL) {
if (isa<VarDecl>(TheDecl)) {
if (SemaRef.RequireCompleteType(TheDecl->getBeginLoc(),
cast<ValueDecl>(TheDecl)->getType(),
diag::err_incomplete_type))
return;
}
StringRef Space = "space0";
StringRef Slot = "";
if (!AL.isArgIdent(0)) {
Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
IdentifierLoc *Loc = AL.getArgAsIdent(0);
StringRef Str = Loc->Ident->getName();
SourceLocation ArgLoc = Loc->Loc;
SourceLocation SpaceArgLoc;
bool SpecifiedSpace = false;
if (AL.getNumArgs() == 2) {
SpecifiedSpace = true;
Slot = Str;
if (!AL.isArgIdent(1)) {
Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
IdentifierLoc *Loc = AL.getArgAsIdent(1);
Space = Loc->Ident->getName();
SpaceArgLoc = Loc->Loc;
} else {
Slot = Str;
}
RegisterType RegType;
unsigned SlotNum = 0;
unsigned SpaceNum = 0;
// Validate.
if (!Slot.empty()) {
if (!convertToRegisterType(Slot, &RegType)) {
Diag(ArgLoc, diag::err_hlsl_binding_type_invalid) << Slot.substr(0, 1);
return;
}
if (RegType == RegisterType::I) {
Diag(ArgLoc, diag::warn_hlsl_deprecated_register_type_i);
return;
}
StringRef SlotNumStr = Slot.substr(1);
if (SlotNumStr.getAsInteger(10, SlotNum)) {
Diag(ArgLoc, diag::err_hlsl_unsupported_register_number);
return;
}
}
if (!Space.starts_with("space")) {
Diag(SpaceArgLoc, diag::err_hlsl_expected_space) << Space;
return;
}
StringRef SpaceNumStr = Space.substr(5);
if (SpaceNumStr.getAsInteger(10, SpaceNum)) {
Diag(SpaceArgLoc, diag::err_hlsl_expected_space) << Space;
return;
}
if (!DiagnoseHLSLRegisterAttribute(SemaRef, ArgLoc, TheDecl, RegType,
SpecifiedSpace))
return;
HLSLResourceBindingAttr *NewAttr =
HLSLResourceBindingAttr::Create(getASTContext(), Slot, Space, AL);
if (NewAttr) {
NewAttr->setBinding(RegType, SlotNum, SpaceNum);
TheDecl->addAttr(NewAttr);
}
}
void SemaHLSL::handleParamModifierAttr(Decl *D, const ParsedAttr &AL) {
HLSLParamModifierAttr *NewAttr = mergeParamModifierAttr(
D, AL,
static_cast<HLSLParamModifierAttr::Spelling>(AL.getSemanticSpelling()));
if (NewAttr)
D->addAttr(NewAttr);
}
namespace {
/// This class implements HLSL availability diagnostics for default
/// and relaxed mode
///
/// The goal of this diagnostic is to emit an error or warning when an
/// unavailable API is found in code that is reachable from the shader
/// entry function or from an exported function (when compiling a shader
/// library).
///
/// This is done by traversing the AST of all shader entry point functions
/// and of all exported functions, and any functions that are referenced
/// from this AST. In other words, any functions that are reachable from
/// the entry points.
class DiagnoseHLSLAvailability : public DynamicRecursiveASTVisitor {
Sema &SemaRef;
// Stack of functions to be scaned
llvm::SmallVector<const FunctionDecl *, 8> DeclsToScan;
// Tracks which environments functions have been scanned in.
//
// Maps FunctionDecl to an unsigned number that represents the set of shader
// environments the function has been scanned for.
// The llvm::Triple::EnvironmentType enum values for shader stages guaranteed
// to be numbered from llvm::Triple::Pixel to llvm::Triple::Amplification
// (verified by static_asserts in Triple.cpp), we can use it to index
// individual bits in the set, as long as we shift the values to start with 0
// by subtracting the value of llvm::Triple::Pixel first.
//
// The N'th bit in the set will be set if the function has been scanned
// in shader environment whose llvm::Triple::EnvironmentType integer value
// equals (llvm::Triple::Pixel + N).
//
// For example, if a function has been scanned in compute and pixel stage
// environment, the value will be 0x21 (100001 binary) because:
//
// (int)(llvm::Triple::Pixel - llvm::Triple::Pixel) == 0
// (int)(llvm::Triple::Compute - llvm::Triple::Pixel) == 5
//
// A FunctionDecl is mapped to 0 (or not included in the map) if it has not
// been scanned in any environment.
llvm::DenseMap<const FunctionDecl *, unsigned> ScannedDecls;
// Do not access these directly, use the get/set methods below to make
// sure the values are in sync
llvm::Triple::EnvironmentType CurrentShaderEnvironment;
unsigned CurrentShaderStageBit;
// True if scanning a function that was already scanned in a different
// shader stage context, and therefore we should not report issues that
// depend only on shader model version because they would be duplicate.
bool ReportOnlyShaderStageIssues;
// Helper methods for dealing with current stage context / environment
void SetShaderStageContext(llvm::Triple::EnvironmentType ShaderType) {
static_assert(sizeof(unsigned) >= 4);
assert(HLSLShaderAttr::isValidShaderType(ShaderType));
assert((unsigned)(ShaderType - llvm::Triple::Pixel) < 31 &&
"ShaderType is too big for this bitmap"); // 31 is reserved for
// "unknown"
unsigned bitmapIndex = ShaderType - llvm::Triple::Pixel;
CurrentShaderEnvironment = ShaderType;
CurrentShaderStageBit = (1 << bitmapIndex);
}
void SetUnknownShaderStageContext() {
CurrentShaderEnvironment = llvm::Triple::UnknownEnvironment;
CurrentShaderStageBit = (1 << 31);
}
llvm::Triple::EnvironmentType GetCurrentShaderEnvironment() const {
return CurrentShaderEnvironment;
}
bool InUnknownShaderStageContext() const {
return CurrentShaderEnvironment == llvm::Triple::UnknownEnvironment;
}
// Helper methods for dealing with shader stage bitmap
void AddToScannedFunctions(const FunctionDecl *FD) {
unsigned &ScannedStages = ScannedDecls[FD];
ScannedStages |= CurrentShaderStageBit;
}
unsigned GetScannedStages(const FunctionDecl *FD) { return ScannedDecls[FD]; }
bool WasAlreadyScannedInCurrentStage(const FunctionDecl *FD) {
return WasAlreadyScannedInCurrentStage(GetScannedStages(FD));
}
bool WasAlreadyScannedInCurrentStage(unsigned ScannerStages) {
return ScannerStages & CurrentShaderStageBit;
}
static bool NeverBeenScanned(unsigned ScannedStages) {
return ScannedStages == 0;
}
// Scanning methods
void HandleFunctionOrMethodRef(FunctionDecl *FD, Expr *RefExpr);
void CheckDeclAvailability(NamedDecl *D, const AvailabilityAttr *AA,
SourceRange Range);
const AvailabilityAttr *FindAvailabilityAttr(const Decl *D);
bool HasMatchingEnvironmentOrNone(const AvailabilityAttr *AA);
public:
DiagnoseHLSLAvailability(Sema &SemaRef)
: SemaRef(SemaRef),
CurrentShaderEnvironment(llvm::Triple::UnknownEnvironment),
CurrentShaderStageBit(0), ReportOnlyShaderStageIssues(false) {}
// AST traversal methods
void RunOnTranslationUnit(const TranslationUnitDecl *TU);
void RunOnFunction(const FunctionDecl *FD);
bool VisitDeclRefExpr(DeclRefExpr *DRE) override {
FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(DRE->getDecl());
if (FD)
HandleFunctionOrMethodRef(FD, DRE);
return true;
}
bool VisitMemberExpr(MemberExpr *ME) override {
FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(ME->getMemberDecl());
if (FD)
HandleFunctionOrMethodRef(FD, ME);
return true;
}
};
void DiagnoseHLSLAvailability::HandleFunctionOrMethodRef(FunctionDecl *FD,
Expr *RefExpr) {
assert((isa<DeclRefExpr>(RefExpr) || isa<MemberExpr>(RefExpr)) &&
"expected DeclRefExpr or MemberExpr");
// has a definition -> add to stack to be scanned
const FunctionDecl *FDWithBody = nullptr;
if (FD->hasBody(FDWithBody)) {
if (!WasAlreadyScannedInCurrentStage(FDWithBody))
DeclsToScan.push_back(FDWithBody);
return;
}
// no body -> diagnose availability
const AvailabilityAttr *AA = FindAvailabilityAttr(FD);
if (AA)
CheckDeclAvailability(
FD, AA, SourceRange(RefExpr->getBeginLoc(), RefExpr->getEndLoc()));
}
void DiagnoseHLSLAvailability::RunOnTranslationUnit(
const TranslationUnitDecl *TU) {
// Iterate over all shader entry functions and library exports, and for those
// that have a body (definiton), run diag scan on each, setting appropriate
// shader environment context based on whether it is a shader entry function
// or an exported function. Exported functions can be in namespaces and in
// export declarations so we need to scan those declaration contexts as well.
llvm::SmallVector<const DeclContext *, 8> DeclContextsToScan;
DeclContextsToScan.push_back(TU);
while (!DeclContextsToScan.empty()) {
const DeclContext *DC = DeclContextsToScan.pop_back_val();
for (auto &D : DC->decls()) {
// do not scan implicit declaration generated by the implementation
if (D->isImplicit())
continue;
// for namespace or export declaration add the context to the list to be
// scanned later
if (llvm::dyn_cast<NamespaceDecl>(D) || llvm::dyn_cast<ExportDecl>(D)) {
DeclContextsToScan.push_back(llvm::dyn_cast<DeclContext>(D));
continue;
}
// skip over other decls or function decls without body
const FunctionDecl *FD = llvm::dyn_cast<FunctionDecl>(D);
if (!FD || !FD->isThisDeclarationADefinition())
continue;
// shader entry point
if (HLSLShaderAttr *ShaderAttr = FD->getAttr<HLSLShaderAttr>()) {
SetShaderStageContext(ShaderAttr->getType());
RunOnFunction(FD);
continue;
}
// exported library function
// FIXME: replace this loop with external linkage check once issue #92071
// is resolved
bool isExport = FD->isInExportDeclContext();
if (!isExport) {
for (const auto *Redecl : FD->redecls()) {
if (Redecl->isInExportDeclContext()) {
isExport = true;
break;
}
}
}
if (isExport) {
SetUnknownShaderStageContext();
RunOnFunction(FD);
continue;
}
}
}
}
void DiagnoseHLSLAvailability::RunOnFunction(const FunctionDecl *FD) {
assert(DeclsToScan.empty() && "DeclsToScan should be empty");
DeclsToScan.push_back(FD);
while (!DeclsToScan.empty()) {
// Take one decl from the stack and check it by traversing its AST.
// For any CallExpr found during the traversal add it's callee to the top of
// the stack to be processed next. Functions already processed are stored in
// ScannedDecls.
const FunctionDecl *FD = DeclsToScan.pop_back_val();
// Decl was already scanned
const unsigned ScannedStages = GetScannedStages(FD);
if (WasAlreadyScannedInCurrentStage(ScannedStages))
continue;
ReportOnlyShaderStageIssues = !NeverBeenScanned(ScannedStages);
AddToScannedFunctions(FD);
TraverseStmt(FD->getBody());
}
}
bool DiagnoseHLSLAvailability::HasMatchingEnvironmentOrNone(
const AvailabilityAttr *AA) {
IdentifierInfo *IIEnvironment = AA->getEnvironment();
if (!IIEnvironment)
return true;
llvm::Triple::EnvironmentType CurrentEnv = GetCurrentShaderEnvironment();
if (CurrentEnv == llvm::Triple::UnknownEnvironment)
return false;
llvm::Triple::EnvironmentType AttrEnv =
AvailabilityAttr::getEnvironmentType(IIEnvironment->getName());
return CurrentEnv == AttrEnv;
}
const AvailabilityAttr *
DiagnoseHLSLAvailability::FindAvailabilityAttr(const Decl *D) {
AvailabilityAttr const *PartialMatch = nullptr;
// Check each AvailabilityAttr to find the one for this platform.
// For multiple attributes with the same platform try to find one for this
// environment.
for (const auto *A : D->attrs()) {
if (const auto *Avail = dyn_cast<AvailabilityAttr>(A)) {
StringRef AttrPlatform = Avail->getPlatform()->getName();
StringRef TargetPlatform =
SemaRef.getASTContext().getTargetInfo().getPlatformName();
// Match the platform name.
if (AttrPlatform == TargetPlatform) {
// Find the best matching attribute for this environment
if (HasMatchingEnvironmentOrNone(Avail))
return Avail;
PartialMatch = Avail;
}
}
}
return PartialMatch;
}
// Check availability against target shader model version and current shader
// stage and emit diagnostic
void DiagnoseHLSLAvailability::CheckDeclAvailability(NamedDecl *D,
const AvailabilityAttr *AA,
SourceRange Range) {
IdentifierInfo *IIEnv = AA->getEnvironment();
if (!IIEnv) {
// The availability attribute does not have environment -> it depends only
// on shader model version and not on specific the shader stage.
// Skip emitting the diagnostics if the diagnostic mode is set to
// strict (-fhlsl-strict-availability) because all relevant diagnostics
// were already emitted in the DiagnoseUnguardedAvailability scan
// (SemaAvailability.cpp).
if (SemaRef.getLangOpts().HLSLStrictAvailability)
return;
// Do not report shader-stage-independent issues if scanning a function
// that was already scanned in a different shader stage context (they would
// be duplicate)
if (ReportOnlyShaderStageIssues)
return;
} else {
// The availability attribute has environment -> we need to know
// the current stage context to property diagnose it.
if (InUnknownShaderStageContext())
return;
}
// Check introduced version and if environment matches
bool EnvironmentMatches = HasMatchingEnvironmentOrNone(AA);
VersionTuple Introduced = AA->getIntroduced();
VersionTuple TargetVersion =
SemaRef.Context.getTargetInfo().getPlatformMinVersion();
if (TargetVersion >= Introduced && EnvironmentMatches)
return;
// Emit diagnostic message
const TargetInfo &TI = SemaRef.getASTContext().getTargetInfo();
llvm::StringRef PlatformName(
AvailabilityAttr::getPrettyPlatformName(TI.getPlatformName()));
llvm::StringRef CurrentEnvStr =
llvm::Triple::getEnvironmentTypeName(GetCurrentShaderEnvironment());
llvm::StringRef AttrEnvStr =
AA->getEnvironment() ? AA->getEnvironment()->getName() : "";
bool UseEnvironment = !AttrEnvStr.empty();
if (EnvironmentMatches) {
SemaRef.Diag(Range.getBegin(), diag::warn_hlsl_availability)
<< Range << D << PlatformName << Introduced.getAsString()
<< UseEnvironment << CurrentEnvStr;
} else {
SemaRef.Diag(Range.getBegin(), diag::warn_hlsl_availability_unavailable)
<< Range << D;
}
SemaRef.Diag(D->getLocation(), diag::note_partial_availability_specified_here)
<< D << PlatformName << Introduced.getAsString()
<< SemaRef.Context.getTargetInfo().getPlatformMinVersion().getAsString()
<< UseEnvironment << AttrEnvStr << CurrentEnvStr;
}
} // namespace
void SemaHLSL::DiagnoseAvailabilityViolations(TranslationUnitDecl *TU) {
// Skip running the diagnostics scan if the diagnostic mode is
// strict (-fhlsl-strict-availability) and the target shader stage is known
// because all relevant diagnostics were already emitted in the
// DiagnoseUnguardedAvailability scan (SemaAvailability.cpp).
const TargetInfo &TI = SemaRef.getASTContext().getTargetInfo();
if (SemaRef.getLangOpts().HLSLStrictAvailability &&
TI.getTriple().getEnvironment() != llvm::Triple::EnvironmentType::Library)
return;
DiagnoseHLSLAvailability(SemaRef).RunOnTranslationUnit(TU);
}
// Helper function for CheckHLSLBuiltinFunctionCall
static bool CheckVectorElementCallArgs(Sema *S, CallExpr *TheCall) {
assert(TheCall->getNumArgs() > 1);
ExprResult A = TheCall->getArg(0);
QualType ArgTyA = A.get()->getType();
auto *VecTyA = ArgTyA->getAs<VectorType>();
SourceLocation BuiltinLoc = TheCall->getBeginLoc();
bool AllBArgAreVectors = true;
for (unsigned i = 1; i < TheCall->getNumArgs(); ++i) {
ExprResult B = TheCall->getArg(i);
QualType ArgTyB = B.get()->getType();
auto *VecTyB = ArgTyB->getAs<VectorType>();
if (VecTyB == nullptr)
AllBArgAreVectors &= false;
if (VecTyA && VecTyB == nullptr) {
// Note: if we get here 'B' is scalar which
// requires a VectorSplat on ArgN
S->Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
<< TheCall->getDirectCallee() << /*useAllTerminology*/ true
<< SourceRange(A.get()->getBeginLoc(), B.get()->getEndLoc());
return true;
}
if (VecTyA && VecTyB) {
bool retValue = false;
if (VecTyA->getElementType() != VecTyB->getElementType()) {
// Note: type promotion is intended to be handeled via the intrinsics
// and not the builtin itself.
S->Diag(TheCall->getBeginLoc(),
diag::err_vec_builtin_incompatible_vector)
<< TheCall->getDirectCallee() << /*useAllTerminology*/ true
<< SourceRange(A.get()->getBeginLoc(), B.get()->getEndLoc());
retValue = true;
}
if (VecTyA->getNumElements() != VecTyB->getNumElements()) {
// You should only be hitting this case if you are calling the builtin
// directly. HLSL intrinsics should avoid this case via a
// HLSLVectorTruncation.
S->Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
<< TheCall->getDirectCallee() << /*useAllTerminology*/ true
<< SourceRange(A.get()->getBeginLoc(), B.get()->getEndLoc());
retValue = true;
}
if (retValue)
return retValue;
}
}
if (VecTyA == nullptr && AllBArgAreVectors) {
// Note: if we get here 'A' is a scalar which
// requires a VectorSplat on Arg0
S->Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
<< TheCall->getDirectCallee() << /*useAllTerminology*/ true
<< SourceRange(A.get()->getBeginLoc(), A.get()->getEndLoc());
return true;
}
return false;
}
static bool CheckArgTypeMatches(Sema *S, Expr *Arg, QualType ExpectedType) {
QualType ArgType = Arg->getType();
if (!S->getASTContext().hasSameUnqualifiedType(ArgType, ExpectedType)) {
S->Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
<< ArgType << ExpectedType << 1 << 0 << 0;
return true;
}
return false;
}
static bool CheckArgTypeIsCorrect(
Sema *S, Expr *Arg, QualType ExpectedType,
llvm::function_ref<bool(clang::QualType PassedType)> Check) {
QualType PassedType = Arg->getType();
if (Check(PassedType)) {
if (auto *VecTyA = PassedType->getAs<VectorType>())
ExpectedType = S->Context.getVectorType(
ExpectedType, VecTyA->getNumElements(), VecTyA->getVectorKind());
S->Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
<< PassedType << ExpectedType << 1 << 0 << 0;
return true;
}
return false;
}
static bool CheckAllArgTypesAreCorrect(
Sema *S, CallExpr *TheCall, QualType ExpectedType,
llvm::function_ref<bool(clang::QualType PassedType)> Check) {
for (unsigned i = 0; i < TheCall->getNumArgs(); ++i) {
Expr *Arg = TheCall->getArg(i);
if (CheckArgTypeIsCorrect(S, Arg, ExpectedType, Check)) {
return true;
}
}
return false;
}
static bool CheckAllArgsHaveFloatRepresentation(Sema *S, CallExpr *TheCall) {
auto checkAllFloatTypes = [](clang::QualType PassedType) -> bool {
return !PassedType->hasFloatingRepresentation();
};
return CheckAllArgTypesAreCorrect(S, TheCall, S->Context.FloatTy,
checkAllFloatTypes);
}
static bool CheckFloatOrHalfRepresentations(Sema *S, CallExpr *TheCall) {
auto checkFloatorHalf = [](clang::QualType PassedType) -> bool {
clang::QualType BaseType =
PassedType->isVectorType()
? PassedType->getAs<clang::VectorType>()->getElementType()
: PassedType;
return !BaseType->isHalfType() && !BaseType->isFloat32Type();
};
return CheckAllArgTypesAreCorrect(S, TheCall, S->Context.FloatTy,
checkFloatorHalf);
}
static bool CheckModifiableLValue(Sema *S, CallExpr *TheCall,
unsigned ArgIndex) {
auto *Arg = TheCall->getArg(ArgIndex);
SourceLocation OrigLoc = Arg->getExprLoc();
if (Arg->IgnoreCasts()->isModifiableLvalue(S->Context, &OrigLoc) ==
Expr::MLV_Valid)
return false;
S->Diag(OrigLoc, diag::error_hlsl_inout_lvalue) << Arg << 0;
return true;
}
static bool CheckNoDoubleVectors(Sema *S, CallExpr *TheCall) {
auto checkDoubleVector = [](clang::QualType PassedType) -> bool {
if (const auto *VecTy = PassedType->getAs<VectorType>())
return VecTy->getElementType()->isDoubleType();
return false;
};
return CheckAllArgTypesAreCorrect(S, TheCall, S->Context.FloatTy,
checkDoubleVector);
}
static bool CheckFloatingOrIntRepresentation(Sema *S, CallExpr *TheCall) {
auto checkAllSignedTypes = [](clang::QualType PassedType) -> bool {
return !PassedType->hasIntegerRepresentation() &&
!PassedType->hasFloatingRepresentation();
};
return CheckAllArgTypesAreCorrect(S, TheCall, S->Context.IntTy,
checkAllSignedTypes);
}
static bool CheckUnsignedIntRepresentation(Sema *S, CallExpr *TheCall) {
auto checkAllUnsignedTypes = [](clang::QualType PassedType) -> bool {
return !PassedType->hasUnsignedIntegerRepresentation();
};
return CheckAllArgTypesAreCorrect(S, TheCall, S->Context.UnsignedIntTy,
checkAllUnsignedTypes);
}
static void SetElementTypeAsReturnType(Sema *S, CallExpr *TheCall,
QualType ReturnType) {
auto *VecTyA = TheCall->getArg(0)->getType()->getAs<VectorType>();
if (VecTyA)
ReturnType = S->Context.getVectorType(ReturnType, VecTyA->getNumElements(),
VectorKind::Generic);
TheCall->setType(ReturnType);
}
static bool CheckScalarOrVector(Sema *S, CallExpr *TheCall, QualType Scalar,
unsigned ArgIndex) {
assert(TheCall->getNumArgs() >= ArgIndex);
QualType ArgType = TheCall->getArg(ArgIndex)->getType();
auto *VTy = ArgType->getAs<VectorType>();
// not the scalar or vector<scalar>
if (!(S->Context.hasSameUnqualifiedType(ArgType, Scalar) ||
(VTy &&
S->Context.hasSameUnqualifiedType(VTy->getElementType(), Scalar)))) {
S->Diag(TheCall->getArg(0)->getBeginLoc(),
diag::err_typecheck_expect_scalar_or_vector)
<< ArgType << Scalar;
return true;
}
return false;
}
static bool CheckAnyScalarOrVector(Sema *S, CallExpr *TheCall,
unsigned ArgIndex) {
assert(TheCall->getNumArgs() >= ArgIndex);
QualType ArgType = TheCall->getArg(ArgIndex)->getType();
auto *VTy = ArgType->getAs<VectorType>();
// not the scalar or vector<scalar>
if (!(ArgType->isScalarType() ||
(VTy && VTy->getElementType()->isScalarType()))) {
S->Diag(TheCall->getArg(0)->getBeginLoc(),
diag::err_typecheck_expect_any_scalar_or_vector)
<< ArgType << 1;
return true;
}
return false;
}
static bool CheckWaveActive(Sema *S, CallExpr *TheCall) {
QualType BoolType = S->getASTContext().BoolTy;
assert(TheCall->getNumArgs() >= 1);
QualType ArgType = TheCall->getArg(0)->getType();
auto *VTy = ArgType->getAs<VectorType>();
// is the bool or vector<bool>
if (S->Context.hasSameUnqualifiedType(ArgType, BoolType) ||
(VTy &&
S->Context.hasSameUnqualifiedType(VTy->getElementType(), BoolType))) {
S->Diag(TheCall->getArg(0)->getBeginLoc(),
diag::err_typecheck_expect_any_scalar_or_vector)
<< ArgType << 0;
return true;
}
return false;
}
static bool CheckBoolSelect(Sema *S, CallExpr *TheCall) {
assert(TheCall->getNumArgs() == 3);
Expr *Arg1 = TheCall->getArg(1);
Expr *Arg2 = TheCall->getArg(2);
if (!S->Context.hasSameUnqualifiedType(Arg1->getType(), Arg2->getType())) {
S->Diag(TheCall->getBeginLoc(),
diag::err_typecheck_call_different_arg_types)
<< Arg1->getType() << Arg2->getType() << Arg1->getSourceRange()
<< Arg2->getSourceRange();
return true;
}
TheCall->setType(Arg1->getType());
return false;
}
static bool CheckVectorSelect(Sema *S, CallExpr *TheCall) {
assert(TheCall->getNumArgs() == 3);
Expr *Arg1 = TheCall->getArg(1);
Expr *Arg2 = TheCall->getArg(2);
if (!Arg1->getType()->isVectorType()) {
S->Diag(Arg1->getBeginLoc(), diag::err_builtin_non_vector_type)
<< "Second" << TheCall->getDirectCallee() << Arg1->getType()
<< Arg1->getSourceRange();
return true;
}
if (!Arg2->getType()->isVectorType()) {
S->Diag(Arg2->getBeginLoc(), diag::err_builtin_non_vector_type)
<< "Third" << TheCall->getDirectCallee() << Arg2->getType()
<< Arg2->getSourceRange();
return true;
}
if (!S->Context.hasSameUnqualifiedType(Arg1->getType(), Arg2->getType())) {
S->Diag(TheCall->getBeginLoc(),
diag::err_typecheck_call_different_arg_types)
<< Arg1->getType() << Arg2->getType() << Arg1->getSourceRange()
<< Arg2->getSourceRange();
return true;
}
// caller has checked that Arg0 is a vector.
// check all three args have the same length.
if (TheCall->getArg(0)->getType()->getAs<VectorType>()->getNumElements() !=
Arg1->getType()->getAs<VectorType>()->getNumElements()) {
S->Diag(TheCall->getBeginLoc(),
diag::err_typecheck_vector_lengths_not_equal)
<< TheCall->getArg(0)->getType() << Arg1->getType()
<< TheCall->getArg(0)->getSourceRange() << Arg1->getSourceRange();
return true;
}
TheCall->setType(Arg1->getType());
return false;
}
static bool CheckResourceHandle(
Sema *S, CallExpr *TheCall, unsigned ArgIndex,
llvm::function_ref<bool(const HLSLAttributedResourceType *ResType)> Check =
nullptr) {
assert(TheCall->getNumArgs() >= ArgIndex);
QualType ArgType = TheCall->getArg(ArgIndex)->getType();
const HLSLAttributedResourceType *ResTy =
ArgType.getTypePtr()->getAs<HLSLAttributedResourceType>();
if (!ResTy) {
S->Diag(TheCall->getArg(ArgIndex)->getBeginLoc(),
diag::err_typecheck_expect_hlsl_resource)
<< ArgType;
return true;
}
if (Check && Check(ResTy)) {
S->Diag(TheCall->getArg(ArgIndex)->getExprLoc(),
diag::err_invalid_hlsl_resource_type)
<< ArgType;
return true;
}
return false;
}
// Note: returning true in this case results in CheckBuiltinFunctionCall
// returning an ExprError
bool SemaHLSL::CheckBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
switch (BuiltinID) {
case Builtin::BI__builtin_hlsl_resource_getpointer: {
if (SemaRef.checkArgCount(TheCall, 2) ||
CheckResourceHandle(&SemaRef, TheCall, 0) ||
CheckArgTypeMatches(&SemaRef, TheCall->getArg(1),
SemaRef.getASTContext().UnsignedIntTy))
return true;
auto *ResourceTy =
TheCall->getArg(0)->getType()->castAs<HLSLAttributedResourceType>();
QualType ContainedTy = ResourceTy->getContainedType();
// TODO: Map to an hlsl_device address space.
TheCall->setType(getASTContext().getPointerType(ContainedTy));
TheCall->setValueKind(VK_LValue);
break;
}
case Builtin::BI__builtin_hlsl_all:
case Builtin::BI__builtin_hlsl_any: {
if (SemaRef.checkArgCount(TheCall, 1))
return true;
break;
}
case Builtin::BI__builtin_hlsl_asdouble: {
if (SemaRef.checkArgCount(TheCall, 2))
return true;
if (CheckUnsignedIntRepresentation(&SemaRef, TheCall))
return true;
SetElementTypeAsReturnType(&SemaRef, TheCall, getASTContext().DoubleTy);
break;
}
case Builtin::BI__builtin_hlsl_elementwise_clamp: {
if (SemaRef.checkArgCount(TheCall, 3))
return true;
if (CheckVectorElementCallArgs(&SemaRef, TheCall))
return true;
if (SemaRef.BuiltinElementwiseTernaryMath(
TheCall, /*CheckForFloatArgs*/
TheCall->getArg(0)->getType()->hasFloatingRepresentation()))
return true;
break;
}
case Builtin::BI__builtin_hlsl_cross: {
if (SemaRef.checkArgCount(TheCall, 2))
return true;
if (CheckVectorElementCallArgs(&SemaRef, TheCall))
return true;
if (CheckFloatOrHalfRepresentations(&SemaRef, TheCall))
return true;
// ensure both args have 3 elements
int NumElementsArg1 =
TheCall->getArg(0)->getType()->castAs<VectorType>()->getNumElements();
int NumElementsArg2 =
TheCall->getArg(1)->getType()->castAs<VectorType>()->getNumElements();
if (NumElementsArg1 != 3) {
int LessOrMore = NumElementsArg1 > 3 ? 1 : 0;
SemaRef.Diag(TheCall->getBeginLoc(),
diag::err_vector_incorrect_num_elements)
<< LessOrMore << 3 << NumElementsArg1 << /*operand*/ 1;
return true;
}
if (NumElementsArg2 != 3) {
int LessOrMore = NumElementsArg2 > 3 ? 1 : 0;
SemaRef.Diag(TheCall->getBeginLoc(),
diag::err_vector_incorrect_num_elements)
<< LessOrMore << 3 << NumElementsArg2 << /*operand*/ 1;
return true;
}
ExprResult A = TheCall->getArg(0);
QualType ArgTyA = A.get()->getType();
// return type is the same as the input type
TheCall->setType(ArgTyA);
break;
}
case Builtin::BI__builtin_hlsl_dot: {
if (SemaRef.checkArgCount(TheCall, 2))
return true;
if (CheckVectorElementCallArgs(&SemaRef, TheCall))
return true;
if (SemaRef.BuiltinVectorToScalarMath(TheCall))
return true;
if (CheckNoDoubleVectors(&SemaRef, TheCall))
return true;
break;
}
case Builtin::BI__builtin_hlsl_elementwise_firstbithigh:
case Builtin::BI__builtin_hlsl_elementwise_firstbitlow: {
if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall))
return true;
const Expr *Arg = TheCall->getArg(0);
QualType ArgTy = Arg->getType();
QualType EltTy = ArgTy;
QualType ResTy = SemaRef.Context.UnsignedIntTy;
if (auto *VecTy = EltTy->getAs<VectorType>()) {
EltTy = VecTy->getElementType();
ResTy = SemaRef.Context.getVectorType(ResTy, VecTy->getNumElements(),
VecTy->getVectorKind());
}
if (!EltTy->isIntegerType()) {
Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
<< 1 << /* integer ty */ 6 << ArgTy;
return true;
}
TheCall->setType(ResTy);
break;
}
case Builtin::BI__builtin_hlsl_select: {
if (SemaRef.checkArgCount(TheCall, 3))
return true;
if (CheckScalarOrVector(&SemaRef, TheCall, getASTContext().BoolTy, 0))
return true;
QualType ArgTy = TheCall->getArg(0)->getType();
if (ArgTy->isBooleanType() && CheckBoolSelect(&SemaRef, TheCall))
return true;
auto *VTy = ArgTy->getAs<VectorType>();
if (VTy && VTy->getElementType()->isBooleanType() &&
CheckVectorSelect(&SemaRef, TheCall))
return true;
break;
}
case Builtin::BI__builtin_hlsl_elementwise_saturate:
case Builtin::BI__builtin_hlsl_elementwise_rcp: {
if (CheckAllArgsHaveFloatRepresentation(&SemaRef, TheCall))
return true;
if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall))
return true;
break;
}
case Builtin::BI__builtin_hlsl_elementwise_degrees:
case Builtin::BI__builtin_hlsl_elementwise_radians:
case Builtin::BI__builtin_hlsl_elementwise_rsqrt:
case Builtin::BI__builtin_hlsl_elementwise_frac: {
if (CheckFloatOrHalfRepresentations(&SemaRef, TheCall))
return true;
if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall))
return true;
break;
}
case Builtin::BI__builtin_hlsl_elementwise_isinf: {
if (CheckFloatOrHalfRepresentations(&SemaRef, TheCall))
return true;
if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall))
return true;
SetElementTypeAsReturnType(&SemaRef, TheCall, getASTContext().BoolTy);
break;
}
case Builtin::BI__builtin_hlsl_lerp: {
if (SemaRef.checkArgCount(TheCall, 3))
return true;
if (CheckVectorElementCallArgs(&SemaRef, TheCall))
return true;
if (SemaRef.BuiltinElementwiseTernaryMath(TheCall))
return true;
if (CheckFloatOrHalfRepresentations(&SemaRef, TheCall))
return true;
break;
}
case Builtin::BI__builtin_hlsl_mad: {
if (SemaRef.checkArgCount(TheCall, 3))
return true;
if (CheckVectorElementCallArgs(&SemaRef, TheCall))
return true;
if (SemaRef.BuiltinElementwiseTernaryMath(
TheCall, /*CheckForFloatArgs*/
TheCall->getArg(0)->getType()->hasFloatingRepresentation()))
return true;
break;
}
case Builtin::BI__builtin_hlsl_normalize: {
if (CheckFloatOrHalfRepresentations(&SemaRef, TheCall))
return true;
if (SemaRef.checkArgCount(TheCall, 1))
return true;
ExprResult A = TheCall->getArg(0);
QualType ArgTyA = A.get()->getType();
// return type is the same as the input type
TheCall->setType(ArgTyA);
break;
}
case Builtin::BI__builtin_hlsl_elementwise_sign: {
if (CheckFloatingOrIntRepresentation(&SemaRef, TheCall))
return true;
if (SemaRef.PrepareBuiltinElementwiseMathOneArgCall(TheCall))
return true;
SetElementTypeAsReturnType(&SemaRef, TheCall, getASTContext().IntTy);
break;
}
case Builtin::BI__builtin_hlsl_step: {
if (SemaRef.checkArgCount(TheCall, 2))
return true;
if (CheckFloatOrHalfRepresentations(&SemaRef, TheCall))
return true;
ExprResult A = TheCall->getArg(0);
QualType ArgTyA = A.get()->getType();
// return type is the same as the input type
TheCall->setType(ArgTyA);
break;
}
case Builtin::BI__builtin_hlsl_wave_active_max:
case Builtin::BI__builtin_hlsl_wave_active_sum: {
if (SemaRef.checkArgCount(TheCall, 1))
return true;
// Ensure input expr type is a scalar/vector and the same as the return type
if (CheckAnyScalarOrVector(&SemaRef, TheCall, 0))
return true;
if (CheckWaveActive(&SemaRef, TheCall))
return true;
ExprResult Expr = TheCall->getArg(0);
QualType ArgTyExpr = Expr.get()->getType();
TheCall->setType(ArgTyExpr);
break;
}
// Note these are llvm builtins that we want to catch invalid intrinsic
// generation. Normal handling of these builitns will occur elsewhere.
case Builtin::BI__builtin_elementwise_bitreverse: {
if (CheckUnsignedIntRepresentation(&SemaRef, TheCall))
return true;
break;
}
case Builtin::BI__builtin_hlsl_wave_read_lane_at: {
if (SemaRef.checkArgCount(TheCall, 2))
return true;
// Ensure index parameter type can be interpreted as a uint
ExprResult Index = TheCall->getArg(1);
QualType ArgTyIndex = Index.get()->getType();
if (!ArgTyIndex->isIntegerType()) {
SemaRef.Diag(TheCall->getArg(1)->getBeginLoc(),
diag::err_typecheck_convert_incompatible)
<< ArgTyIndex << SemaRef.Context.UnsignedIntTy << 1 << 0 << 0;
return true;
}
// Ensure input expr type is a scalar/vector and the same as the return type
if (CheckAnyScalarOrVector(&SemaRef, TheCall, 0))
return true;
ExprResult Expr = TheCall->getArg(0);
QualType ArgTyExpr = Expr.get()->getType();
TheCall->setType(ArgTyExpr);
break;
}
case Builtin::BI__builtin_hlsl_wave_get_lane_index: {
if (SemaRef.checkArgCount(TheCall, 0))
return true;
break;
}
case Builtin::BI__builtin_hlsl_elementwise_splitdouble: {
if (SemaRef.checkArgCount(TheCall, 3))
return true;
if (CheckScalarOrVector(&SemaRef, TheCall, SemaRef.Context.DoubleTy, 0) ||
CheckScalarOrVector(&SemaRef, TheCall, SemaRef.Context.UnsignedIntTy,
1) ||
CheckScalarOrVector(&SemaRef, TheCall, SemaRef.Context.UnsignedIntTy,
2))
return true;
if (CheckModifiableLValue(&SemaRef, TheCall, 1) ||
CheckModifiableLValue(&SemaRef, TheCall, 2))
return true;
break;
}
case Builtin::BI__builtin_hlsl_elementwise_clip: {
if (SemaRef.checkArgCount(TheCall, 1))
return true;
if (CheckScalarOrVector(&SemaRef, TheCall, SemaRef.Context.FloatTy, 0))
return true;
break;
}
case Builtin::BI__builtin_elementwise_acos:
case Builtin::BI__builtin_elementwise_asin:
case Builtin::BI__builtin_elementwise_atan:
case Builtin::BI__builtin_elementwise_atan2:
case Builtin::BI__builtin_elementwise_ceil:
case Builtin::BI__builtin_elementwise_cos:
case Builtin::BI__builtin_elementwise_cosh:
case Builtin::BI__builtin_elementwise_exp:
case Builtin::BI__builtin_elementwise_exp2:
case Builtin::BI__builtin_elementwise_floor:
case Builtin::BI__builtin_elementwise_fmod:
case Builtin::BI__builtin_elementwise_log:
case Builtin::BI__builtin_elementwise_log2:
case Builtin::BI__builtin_elementwise_log10:
case Builtin::BI__builtin_elementwise_pow:
case Builtin::BI__builtin_elementwise_roundeven:
case Builtin::BI__builtin_elementwise_sin:
case Builtin::BI__builtin_elementwise_sinh:
case Builtin::BI__builtin_elementwise_sqrt:
case Builtin::BI__builtin_elementwise_tan:
case Builtin::BI__builtin_elementwise_tanh:
case Builtin::BI__builtin_elementwise_trunc: {
if (CheckFloatOrHalfRepresentations(&SemaRef, TheCall))
return true;
break;
}
case Builtin::BI__builtin_hlsl_buffer_update_counter: {
auto checkResTy = [](const HLSLAttributedResourceType *ResTy) -> bool {
return !(ResTy->getAttrs().ResourceClass == ResourceClass::UAV &&
ResTy->getAttrs().RawBuffer && ResTy->hasContainedType());
};
if (SemaRef.checkArgCount(TheCall, 2) ||
CheckResourceHandle(&SemaRef, TheCall, 0, checkResTy) ||
CheckArgTypeMatches(&SemaRef, TheCall->getArg(1),
SemaRef.getASTContext().IntTy))
return true;
Expr *OffsetExpr = TheCall->getArg(1);
std::optional<llvm::APSInt> Offset =
OffsetExpr->getIntegerConstantExpr(SemaRef.getASTContext());
if (!Offset.has_value() || std::abs(Offset->getExtValue()) != 1) {
SemaRef.Diag(TheCall->getArg(1)->getBeginLoc(),
diag::err_hlsl_expect_arg_const_int_one_or_neg_one)
<< 1;
return true;
}
break;
}
}
return false;
}
static void BuildFlattenedTypeList(QualType BaseTy,
llvm::SmallVectorImpl<QualType> &List) {
llvm::SmallVector<QualType, 16> WorkList;
WorkList.push_back(BaseTy);
while (!WorkList.empty()) {
QualType T = WorkList.pop_back_val();
T = T.getCanonicalType().getUnqualifiedType();
assert(!isa<MatrixType>(T) && "Matrix types not yet supported in HLSL");
if (const auto *AT = dyn_cast<ConstantArrayType>(T)) {
llvm::SmallVector<QualType, 16> ElementFields;
// Generally I've avoided recursion in this algorithm, but arrays of
// structs could be time-consuming to flatten and churn through on the
// work list. Hopefully nesting arrays of structs containing arrays
// of structs too many levels deep is unlikely.
BuildFlattenedTypeList(AT->getElementType(), ElementFields);
// Repeat the element's field list n times.
for (uint64_t Ct = 0; Ct < AT->getZExtSize(); ++Ct)
List.insert(List.end(), ElementFields.begin(), ElementFields.end());
continue;
}
// Vectors can only have element types that are builtin types, so this can
// add directly to the list instead of to the WorkList.
if (const auto *VT = dyn_cast<VectorType>(T)) {
List.insert(List.end(), VT->getNumElements(), VT->getElementType());
continue;
}
if (const auto *RT = dyn_cast<RecordType>(T)) {
const RecordDecl *RD = RT->getDecl();
if (RD->isUnion()) {
List.push_back(T);
continue;
}
const CXXRecordDecl *CXXD = dyn_cast<CXXRecordDecl>(RD);
llvm::SmallVector<QualType, 16> FieldTypes;
if (CXXD && CXXD->isStandardLayout())
RD = CXXD->getStandardLayoutBaseWithFields();
for (const auto *FD : RD->fields())
FieldTypes.push_back(FD->getType());
// Reverse the newly added sub-range.
std::reverse(FieldTypes.begin(), FieldTypes.end());
WorkList.insert(WorkList.end(), FieldTypes.begin(), FieldTypes.end());
// If this wasn't a standard layout type we may also have some base
// classes to deal with.
if (CXXD && !CXXD->isStandardLayout()) {
FieldTypes.clear();
for (const auto &Base : CXXD->bases())
FieldTypes.push_back(Base.getType());
std::reverse(FieldTypes.begin(), FieldTypes.end());
WorkList.insert(WorkList.end(), FieldTypes.begin(), FieldTypes.end());
}
continue;
}
List.push_back(T);
}
}
bool SemaHLSL::IsTypedResourceElementCompatible(clang::QualType QT) {
// null and array types are not allowed.
if (QT.isNull() || QT->isArrayType())
return false;
// UDT types are not allowed
if (QT->isRecordType())
return false;
if (QT->isBooleanType() || QT->isEnumeralType())
return false;
// the only other valid builtin types are scalars or vectors
if (QT->isArithmeticType()) {
if (SemaRef.Context.getTypeSize(QT) / 8 > 16)
return false;
return true;
}
if (const VectorType *VT = QT->getAs<VectorType>()) {
int ArraySize = VT->getNumElements();
if (ArraySize > 4)
return false;
QualType ElTy = VT->getElementType();
if (ElTy->isBooleanType())
return false;
if (SemaRef.Context.getTypeSize(QT) / 8 > 16)
return false;
return true;
}
return false;
}
bool SemaHLSL::IsScalarizedLayoutCompatible(QualType T1, QualType T2) const {
if (T1.isNull() || T2.isNull())
return false;
T1 = T1.getCanonicalType().getUnqualifiedType();
T2 = T2.getCanonicalType().getUnqualifiedType();
// If both types are the same canonical type, they're obviously compatible.
if (SemaRef.getASTContext().hasSameType(T1, T2))
return true;
llvm::SmallVector<QualType, 16> T1Types;
BuildFlattenedTypeList(T1, T1Types);
llvm::SmallVector<QualType, 16> T2Types;
BuildFlattenedTypeList(T2, T2Types);
// Check the flattened type list
return llvm::equal(T1Types, T2Types,
[this](QualType LHS, QualType RHS) -> bool {
return SemaRef.IsLayoutCompatible(LHS, RHS);
});
}
bool SemaHLSL::CheckCompatibleParameterABI(FunctionDecl *New,
FunctionDecl *Old) {
if (New->getNumParams() != Old->getNumParams())
return true;
bool HadError = false;
for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
ParmVarDecl *NewParam = New->getParamDecl(i);
ParmVarDecl *OldParam = Old->getParamDecl(i);
// HLSL parameter declarations for inout and out must match between
// declarations. In HLSL inout and out are ambiguous at the call site,
// but have different calling behavior, so you cannot overload a
// method based on a difference between inout and out annotations.
const auto *NDAttr = NewParam->getAttr<HLSLParamModifierAttr>();
unsigned NSpellingIdx = (NDAttr ? NDAttr->getSpellingListIndex() : 0);
const auto *ODAttr = OldParam->getAttr<HLSLParamModifierAttr>();
unsigned OSpellingIdx = (ODAttr ? ODAttr->getSpellingListIndex() : 0);
if (NSpellingIdx != OSpellingIdx) {
SemaRef.Diag(NewParam->getLocation(),
diag::err_hlsl_param_qualifier_mismatch)
<< NDAttr << NewParam;
SemaRef.Diag(OldParam->getLocation(), diag::note_previous_declaration_as)
<< ODAttr;
HadError = true;
}
}
return HadError;
}
ExprResult SemaHLSL::ActOnOutParamExpr(ParmVarDecl *Param, Expr *Arg) {
assert(Param->hasAttr<HLSLParamModifierAttr>() &&
"We should not get here without a parameter modifier expression");
const auto *Attr = Param->getAttr<HLSLParamModifierAttr>();
if (Attr->getABI() == ParameterABI::Ordinary)
return ExprResult(Arg);
bool IsInOut = Attr->getABI() == ParameterABI::HLSLInOut;
if (!Arg->isLValue()) {
SemaRef.Diag(Arg->getBeginLoc(), diag::error_hlsl_inout_lvalue)
<< Arg << (IsInOut ? 1 : 0);
return ExprError();
}
ASTContext &Ctx = SemaRef.getASTContext();
QualType Ty = Param->getType().getNonLValueExprType(Ctx);
// HLSL allows implicit conversions from scalars to vectors, but not the
// inverse, so we need to disallow `inout` with scalar->vector or
// scalar->matrix conversions.
if (Arg->getType()->isScalarType() != Ty->isScalarType()) {
SemaRef.Diag(Arg->getBeginLoc(), diag::error_hlsl_inout_scalar_extension)
<< Arg << (IsInOut ? 1 : 0);
return ExprError();
}
auto *ArgOpV = new (Ctx) OpaqueValueExpr(Param->getBeginLoc(), Arg->getType(),
VK_LValue, OK_Ordinary, Arg);
// Parameters are initialized via copy initialization. This allows for
// overload resolution of argument constructors.
InitializedEntity Entity =
InitializedEntity::InitializeParameter(Ctx, Ty, false);
ExprResult Res =
SemaRef.PerformCopyInitialization(Entity, Param->getBeginLoc(), ArgOpV);
if (Res.isInvalid())
return ExprError();
Expr *Base = Res.get();
// After the cast, drop the reference type when creating the exprs.
Ty = Ty.getNonLValueExprType(Ctx);
auto *OpV = new (Ctx)
OpaqueValueExpr(Param->getBeginLoc(), Ty, VK_LValue, OK_Ordinary, Base);
// Writebacks are performed with `=` binary operator, which allows for
// overload resolution on writeback result expressions.
Res = SemaRef.ActOnBinOp(SemaRef.getCurScope(), Param->getBeginLoc(),
tok::equal, ArgOpV, OpV);
if (Res.isInvalid())
return ExprError();
Expr *Writeback = Res.get();
auto *OutExpr =
HLSLOutArgExpr::Create(Ctx, Ty, ArgOpV, OpV, Writeback, IsInOut);
return ExprResult(OutExpr);
}
QualType SemaHLSL::getInoutParameterType(QualType Ty) {
// If HLSL gains support for references, all the cites that use this will need
// to be updated with semantic checking to produce errors for
// pointers/references.
assert(!Ty->isReferenceType() &&
"Pointer and reference types cannot be inout or out parameters");
Ty = SemaRef.getASTContext().getLValueReferenceType(Ty);
Ty.addRestrict();
return Ty;
}
void SemaHLSL::ActOnVariableDeclarator(VarDecl *VD) {
if (VD->hasGlobalStorage()) {
// make sure the declaration has a complete type
if (SemaRef.RequireCompleteType(
VD->getLocation(),
SemaRef.getASTContext().getBaseElementType(VD->getType()),
diag::err_typecheck_decl_incomplete_type)) {
VD->setInvalidDecl();
return;
}
// find all resources on decl
if (VD->getType()->isHLSLIntangibleType())
collectResourcesOnVarDecl(VD);
// process explicit bindings
processExplicitBindingsOnDecl(VD);
}
}
// Walks though the global variable declaration, collects all resource binding
// requirements and adds them to Bindings
void SemaHLSL::collectResourcesOnVarDecl(VarDecl *VD) {
assert(VD->hasGlobalStorage() && VD->getType()->isHLSLIntangibleType() &&
"expected global variable that contains HLSL resource");
// Cbuffers and Tbuffers are HLSLBufferDecl types
if (const HLSLBufferDecl *CBufferOrTBuffer = dyn_cast<HLSLBufferDecl>(VD)) {
Bindings.addDeclBindingInfo(VD, CBufferOrTBuffer->isCBuffer()
? ResourceClass::CBuffer
: ResourceClass::SRV);
return;
}
// Unwrap arrays
// FIXME: Calculate array size while unwrapping
const Type *Ty = VD->getType()->getUnqualifiedDesugaredType();
while (Ty->isConstantArrayType()) {
const ConstantArrayType *CAT = cast<ConstantArrayType>(Ty);
Ty = CAT->getElementType()->getUnqualifiedDesugaredType();
}
// Resource (or array of resources)
if (const HLSLAttributedResourceType *AttrResType =
HLSLAttributedResourceType::findHandleTypeOnResource(Ty)) {
Bindings.addDeclBindingInfo(VD, AttrResType->getAttrs().ResourceClass);
return;
}
// User defined record type
if (const RecordType *RT = dyn_cast<RecordType>(Ty))
collectResourcesOnUserRecordDecl(VD, RT);
}
// Walks though the explicit resource binding attributes on the declaration,
// and makes sure there is a resource that matched the binding and updates
// DeclBindingInfoLists
void SemaHLSL::processExplicitBindingsOnDecl(VarDecl *VD) {
assert(VD->hasGlobalStorage() && "expected global variable");
for (Attr *A : VD->attrs()) {
HLSLResourceBindingAttr *RBA = dyn_cast<HLSLResourceBindingAttr>(A);
if (!RBA)
continue;
RegisterType RT = RBA->getRegisterType();
assert(RT != RegisterType::I && "invalid or obsolete register type should "
"never have an attribute created");
if (RT == RegisterType::C) {
if (Bindings.hasBindingInfoForDecl(VD))
SemaRef.Diag(VD->getLocation(),
diag::warn_hlsl_user_defined_type_missing_member)
<< static_cast<int>(RT);
continue;
}
// Find DeclBindingInfo for this binding and update it, or report error
// if it does not exist (user type does to contain resources with the
// expected resource class).
ResourceClass RC = getResourceClass(RT);
if (DeclBindingInfo *BI = Bindings.getDeclBindingInfo(VD, RC)) {
// update binding info
BI->setBindingAttribute(RBA, BindingType::Explicit);
} else {
SemaRef.Diag(VD->getLocation(),
diag::warn_hlsl_user_defined_type_missing_member)
<< static_cast<int>(RT);
}
}
}
|